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Sparse approximation property and stable recovery
of sparse signals from noisy measurements

Qiyu Sun

Abstract—In this paper, we introduce a sparse approximation
property of order s for a measurement matrix A:

‖xs‖2 ≤ D‖Ax‖2 + β
σs(x)√

s
for all x,

where xs is the best s-sparse approximation of the vector x in `2,
σs(x) is the s-sparse approximation error of the vector x in `1,
and D and β are positive constants. The sparse approximation
property for a measurement matrix can be thought of as a
weaker version of its restricted isometry property and a stronger
version of its null space property. In this paper, we show that
the sparse approximation property is an appropriate condition
on a measurement matrix to consider stable recovery of any
compressible signal from its noisy measurements. In particular,
we show that any compressible signal can be stably recovered
from its noisy measurements via solving an `1-minimization
problem if the measurement matrix has the sparse approximation
property with β ∈ (0, 1), and conversely the measurement matrix
has the sparse approximation property with β ∈ (0,∞) if
any compressible signal can be stably recovered from its noisy
measurements via solving an `1-minimization problem.

I. INTRODUCTION

Given positive integers m and n with m ≤ n and a
measurement matrix A of size m×n, we consider the problem
of compressive sampling in recovering a compressible signal
x ∈ Rn from its noisy measurements z = Ax+n via solving
the following `q-minimization problem:

min ‖y‖qq subject to ‖Ay − z‖p ≤ ε, (I.1)

where 0 < q ≤ 1, q ≤ p ≤ ∞, ε ≥ 0, and the measurement
noise n satisfies ‖n‖p ≤ ε ([1] – [8]). Here ‖ · ‖q, 0 < q ≤ ∞,
stand for the “`q-norm” on the Euclidean space.

Given a subset S ⊂ {1, . . . , n} and a vector x ∈ Rn,
denoted by xS the vector whose components on S are the same
as those of the vector x and vanish on the complement Sc. A
vector x ∈ Rn is said to be s-sparse if x = xS for some subset
S ⊂ {1, . . . , n} with its cardinality #S less than or equal to
s, where s ≥ 1. Denote by Σs the set of all s-sparse vectors.
Given a vector x, its best s-sparse approximation vector xs in
`q is an s-sparse vector which has minimal distance to x in
`q; i.e., ‖x−xs‖q = σs,q(x) := infy∈Σs

‖x−y‖q . For q = 1,
we use σs(x) instead of σs,1(x) for brevity.
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In this paper, we introduce a new property of a measurement
matrix A: there exist positive constants D and β such that

‖xs‖qr ≤ D‖Ax‖qp + βsq/r−1(σs,q(x))q for all x ∈ Rn,
(I.2)

where 0 < p, q, r ≤ ∞, s is a positive integer, and xs is the
best s-sparse approximation of the vector x in `q . The property
of a measurement matrix mentioned in the abstract is a special
case of the above property where p = r = 2 and q = 1. We call
the property (I.2) the sparse approximation property of order
s, as it is closely related to the best s-sparse approximation.
We call the minimal constant β such that (I.2) holds the sparse
approximation constant, and denote it by βs(A).

In this paper, we show that for the stable recovery of a com-
pressible signal x from its noisy measurements z = Ax + n
via solving the `q-minimization problem (I.1), the sparse ap-
proximation property (I.2) with sparse approximation constant
βs(A) < 1 is sufficient while the sparse approximation
property (I.2) with finite sparse approximation constant βs(A)
is necessary. We refer the reader to [2], [3], [7], [9] – [17]
and the references therein for other various conditions on a
measurement matrix that guarantee the stable recovery of any
compressible signal from its noisy measurements via solving
the `q-minimization problem (I.1).

Theorem 1.1: Let 0 < q ≤ 1, q ≤ r ≤ ∞, 1 ≤ p ≤ ∞,
ε ≥ 0, positive integers m,n, s satisfy 2s ≤ m ≤ n, A be a
matrix of size m×n having the sparse approximation property
(I.2) with D ∈ (0,∞) and β ∈ (0, 1), z = Ax + n with
‖n‖p ≤ ε and x ∈ Rn, and let x∗ be the solution of the
`q-minimization problem (I.1). Then

‖x∗ − x‖qr ≤
(3 + β)D

1− β
(2ε)q +

2(1 + β)2

1− β
sq/r−1(σs,q(x))q

(I.3)
and

‖x∗ − x‖qq ≤
(3 + β)D

1− β
s1−q/p(2ε)q +

2(1 + β)2

1− β
(σs,q(x))q

(I.4)
if q < r, and

‖x∗ − x‖qq ≤
2D

1− β
(2ε)q +

2(1 + β)

1− β
(σs,q(x))q (I.5)

if q = r.
Theorem 1.2: Let 0 < q, p ≤ ∞, positive integers m,n, s

satisfy 2s ≤ m ≤ n, and let A be a matrix of size m × n.
If for any ε ≥ 0 and x ∈ Rn, the error between the given
vector x and the solution x∗ of the `q-minimization problem
(I.1) satisfies

‖x∗ − x‖qp ≤ B1ε
q +B2s

q/p−1(σs,q(x))q, (I.6)
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where B1 and B2 are positive constants independent of ε and
x, then

‖x‖qp ≤ B1‖Ax‖qp +B2s
q/p−1(σs,q(x))q for all x ∈ Rn,

(I.7)
and hence A has the sparse approximation property (I.2) with
r = p, D = B1 and β = B2.

The m × n adjacency matrix Φ of an unbalanced (2s, α)-
expander with left degree d and α ∈ (0, 1/4) satisfies

‖xs‖1 ≤
1

d(1− 4α)
‖Φx‖1 +

2α

1− 4α
σs(x) for all x ∈ Rn,

(I.8)
(and hence it has the sparse approximation property (I.2) with
p = q = r = 1). The above property for the adjacency matrix
Φ is established in [12, Lemma 16] implicitly. Then by (I.8)
and Theorem 1.1, we have the following result similar to [12,
Theorem 17].

Corollary 1.3: Let ε ≥ 0, positive integers m,n, s satisfy
2s ≤ m ≤ n, α ∈ (0, 1/6), Φ be the m × n adjacency
matrix of an unbalanced (2s, α)-expander with left degree d,
z = Φx + n with ‖n‖1 ≤ ε for some x ∈ Rn, and let x∗ be
the solution of the minimization problem (I.1) with p = q = 1.
Then

‖x∗ − x‖1 ≤
4

d(1− 6α)
ε+

2− 4α

1− 6α
σs(x). (I.9)

The paper is organized as follows. One of two basic proper-
ties of a measurement matrix A in compressive sampling ([18]
– [24]) is the null space property of order s in `q, 0 < q ≤ 1;
i.e., there exists a positive constant γ such that

‖xS‖qq ≤ γ‖xSc‖qq (I.10)

hold for all vectors x in the null space N(A) of the matrix
A and all sets S with cardinality #S less than or equal to s.
In Section II, we show in Theorem 2.1 that any measurement
matrix satisfying (I.2) will have the null space property (I.10).
So the sparse approximation property (I.2) of a measurement
matrix can be considered as a stronger version of the null
space property (I.10). The other basic property of a measure-
ment matrix A in compressive sampling ([1], [2], [7], [18] –
[24]) is the restricted isometry property of order s; i.e., there
exists a positive constant δ ∈ (0, 1) such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 for all x ∈ Σs.
(I.11)

In Section III, we prove that if a measurement matrix has
the restricted isometry property (I.11) of order 2s then it has
the sparse approximation property (I.2) with p = r = 2,
and furthermore the constant β in (I.2) is small when the
restricted isometry constant is small, see Theorems 3.1 and 3.2
for details. Thus the sparse approximation property (I.2) of a
measurement matrix can also thought of as a weaker version
of the restricted isometry property (I.11), see also Remarks
3.3 and 3.4. The proofs of all theorems are included in the
appendix.

II. NULL SPACE PROPERTY AND SPARSE APPROXIMATION
PROPERTY

Let R(A) be the set of matrices R satisfying A = ARA,
and denote by ‖R‖p→q the operator norm of a matrix R from

`p to `q , i.e., ‖Rx‖q ≤ ‖R‖p→q‖x‖p for all vectors x. In this
section, we show that any measurement matrix satisfying (I.2)
will have the null space property (I.10) with its null space
constant less than or equal to the constant β in (I.2). Here
null space constant γs(A) of a measurement matrix A is the
minimal constant γ such that (I.10) holds.

Theorem 2.1: Let 0 < q ≤ r ≤ ∞, 0 < p < ∞, integers
m,n, s satisfy 2 ≤ 2s ≤ m ≤ n, and A be a matrix of size
m× n. Then the following statements hold.
(i) If the matrix A has the sparse approximation property

(I.2), then it has the null space property of order s in `q

with its null space constant γs(A) ≤ βs(A).
(ii) If the matrix A has the null space property of order s

in `q with the null space constant γs(A), then it has the
sparse approximation property (I.2) with p = q = r, D =
max(1, γs(A)) infR∈R(A) ‖R‖qq→q and β = γs(A); i.e.,

‖xs‖qq ≤
(

max(1, γs(A)) inf
R∈R(A)

‖R‖qq→q

)
‖Ax‖qq

+γs(A)(σs,q(x))q for all x ∈ Rn.

Applying Theorems 1.1 and 2.1 with p = q = r = 1, we
have the following result on recovering compressible signals
from noisy measurements when the measurement matrix has
the null space property of order s in `1, which is obtained in
[8] for the noiseless case.

Corollary 2.2: Let ε ≥ 0, m,n, s be positive integers with
2s ≤ m ≤ n, A be a matrix of size m× n satisfying the null
space property (I.10) with q = 1, z = Ax + n with ‖n‖1 ≤ ε
and x ∈ Rn, and let x∗ be the solution of the minimization
problem (I.1) with p = q = 1. If the null space constant
γs(A) ∈ (0, 1), then

‖x∗ − x‖1 ≤
4 infR∈R(A) ‖R‖1→1

1− γs(A)
ε+

2 + 2γs(A)

1− γs(A)
σs(x).

Remark 2.3: The null space property of a measurement
matrix is invariant under preconditioning, i.e., if a measure-
ment matrix A has the null space property (I.10) then the
preconditioned matrix PA has the null space property (I.10)
with the same null space constants, where a preconditioner is
a nonsingular matrix P. The sparse approximation property
(I.2) is weakly preconditioning-invariant in the sense that if
a measurement matrix A satisfies (I.2) then the precondi-
tioned matrix PA also satisfies (I.2) with D replaced by
‖P−1‖p→pD. This suggests appropriate preconditioning the
measurement matrix (and hence the noisy measurements)
before signal recovery from its noisy measurements via solving
an `q-minimization problem.

Remark 2.4: Let the matrix A of size m×n have full rank
m (which is the case in most of compressive sampling prob-
lems) and A = UΣVt be its singular value decomposition.
Here and hereafter xt stands for the transpose of a vector or
a matrix x. Then Σ = (Σ′ 0) for some nonsingular diagonal
matrix Σ′. Now we define the conventional preconditioned
measurement matrix Ã by Ã = PA, where P = (Σ′)−1Ut.

In this case, R ∈ R(A) if and only if R = V
(

I
B

)
, where

I is the unit matrix of size m × m and B is an arbitrary
matrix of size (m−n)×n. Let vi, 1 ≤ i ≤ n, be the column
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vectors of the matrix V. Then the null space N(A) of the
matrix A is spanned by vi,m + 1 ≤ i ≤ n, and the vectors
vi, 1 ≤ i ≤ m, form an orthonormal basis for N(A)⊥, the
orthogonal complement of the null space N(A) of the matrix
A. As the set {Rx : ‖x‖1 ≤ 1} is a polygon, the maximal
`1-norm of Rx, ‖x‖1 ≤ 1, is then attained at some vertices.
Thus

inf
R∈R(Ã)

‖R‖1→1 = inf
R∈R(Ã)

max
1≤i≤m

‖Rei‖1

= inf
B

max
1≤i≤m

‖vi − (vm+1 · · · vn)Bei‖1

= inf
u∈N(A)

max
1≤i≤m

‖vi − u‖1, (II.1)

where ei, 1 ≤ i ≤ m, form the standard orthonormal basis of
Rm. In other words, the quantity infR∈R(Ã) ‖R‖1→1 is the
same as the distance of vi, 1 ≤ i ≤ m, from the null space
N(A) in `1. From (II.1) it follows that infR∈R(Ã) ‖R‖1→1 ≤
max1≤i≤m ‖vi‖1 ≤ n1/2. It would be an interesting topic on
preconditioning a measurement matrix A with the null space
property (I.10) such that the quantity infR∈R(Ã) ‖R‖q→q, 0 <

q ≤ 1, for the preconditioned matrix Ã is not a large number.

III. RESTRICTED ISOMETRY PROPERTY AND SPARSE
APPROXIMATION PROPERTY

In this section, we prove that if a measurement matrix has
the restricted isometry property (I.11) of order 2s, then it has
the sparse approximation property (I.2) with p = r = 2, and
the sparse approximation constant is small when the restricted
isometry constant is small. Here the restricted isometry con-
stant δs(A) of a measurement matrix A is the smallest positive
constant δ that satisfies (I.11).

Theorem 3.1: Let 0 < q ≤ 1, positive integers m,n, s
satisfy 2s ≤ m ≤ n, and the matrix A of size m×n have the
restricted isometry property (I.11) of order 2s with restricted
isometry constant δ2s(A) ∈ (0, 1). Then for all x ∈ Rn,

‖x‖22 ≤
√

1 + δ2s(A) +
√

2δ2s(A)

(1− δ2s(A))
√

1 + δ2s(A)
‖Ax‖22

+
(√1 + δ2s(A) +

√
2δ2s(A)

1− δ2s(A)

)2

×δ2s(A)s1−2/q
(
σs,q(x)

)2
(III.1)

and

‖Ax‖22 ≤
(
1 + δ2s(A) +

√
2δ2s(A)

)
‖x‖22

+
(
1 +

√
2δ2s(A)

)
δ2s(A)

×s1−2/q(σs,q(x))2. (III.2)

Theorem 3.2: Let 0 < q ≤ r ≤ ∞, 0 < p ≤ ∞, positive
integers m,n, s satisfy 2s ≤ m ≤ n, and A be a matrix of
size m × n that has the sparse approximation property (I.2).
Then

1

D
‖x‖qr ≤ ‖Ax‖qp for all x ∈ Σs, (III.3)

and
1− β
2D
‖x‖qr ≤ ‖Ax‖qp for all x ∈ Σ2s. (III.4)

Remark 3.3: From Theorem 3.1, we see that a measurement
matrix with small restricted isometry constant will have the
sparse approximation property (I.2) with p = r = 2, D close
to one and β close to zero. Conversely for p = r = 2 we
obtain from Theorem 3.2 that if a measurement matrix A has
the sparse approximation property (I.2) with D close to one
and β close to zero, then the first inequality in the restricted
isometry property (I.11) holds for some constant δ close to
1/2 only. For p = q = r = 1, the m× n adjacency matrices
Φ of unbalanced (2s, α)-expander with fixed left degree d
has the sparse approximation property (I.2) with small sparse
approximation constant (see (I.8)) and the restricted isometry
property with respect to `1-norm:

(1−Cα)‖x‖1 ≤ ‖Φx‖1/d ≤ (1+Cα)‖x‖1 for all x ∈ Σ2s

where C is a positive constant (see [12, Theorem 1]), but
it does not have the restricted isometry property (I.11) when
m/s2 is sufficiently small [27].

Remark 3.4: If a measurement matrix A has the restricted
isometry property (I.11) with small restricted isometry con-
stant (see [1], [4], [24], [25], [26] for examples of such
measurement matrices), then the preconditioned measurement
matrix PA has the sparse approximation property (I.2) with
p = r = 2, D close to ‖P−1‖2→2 and β close to zero but it
does not have the restricted isometry property (I.11) in general.
This observation may suggest that preconditioning procedure
could generate new measurement matrices for the stable recov-
ery of compressible signals from their noisy measurements.

IV. CONCLUSIONS AND FINAL REMARKS

In this paper, we introduce the sparse approximation prop-
erty (I.2) of a measurement matrix and show that it is a suf-
ficient and almost necessary condition that any compressible
signal can be stably recovered from its noisy measurements
via solving the `q-minimization problem (I.1).

The sparse approximation property (I.2) of a measurement
matrix with q ≤ r is a stronger version of the null space
property (I.10) with the preconditioning-invariance almost pre-
served. The sparse approximation property (I.2) with p = r =
2 and 0 < q ≤ 1 is a weaker version of the restricted isometry
property (I.11). The adjacency matrices of some unbalanced
expanders have the sparse approximation property (I.2) with
p = q = r = 1 and small sparse approximation constant,
but they do not have the restricted isometry property (I.11).
A challenging problem is the construction of measurement
matrices, other than random matrices [1], [4], [24], [25], [26]
and adjacency matrices of a graph [12], [27], [28], [29], [30],
that have sparse approximation property (I.2) with small sparse
approximation constant.

APPENDIX

A. Proof of Theorem 1.1

Set h = x∗ − x. Let S0 be so chosen that ‖xSc
0
‖q = ‖x−

xs‖q , S1 be the set of indices of the s largest components, in
absolute value, of h in Sc

0, S2 be the set of indices of the next
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s largest components, in absolute value, of h in (S0 ∪ S1)c,
and so on. Then

‖Ah‖p ≤ 2ε and ‖hSc
0
‖qq ≤ ‖hS0

‖qq + 2‖x−xs‖qq (A.1)

by (I.1), and

‖hSj‖r̃ ≤ s1/r̃−1/q‖hSj−1‖q, j ≥ 2 (A.2)

by the construction of the sets Sj , j ≥ 1, where q ≤ r̃ ≤ r.
Combining (I.2) and (A.1) gives

‖hT ‖qr ≤ D(2ε)q + βsq/r−1‖hT c‖qq (A.3)

for any subset T of {1, . . . , n} with #T ≤ s. Applying (A.3)
with T replaced by S0 and then using the estimate (A.1) for
‖hSc

0
‖qq ,

‖hS0‖qr ≤ D(2ε)q + 2βsq/r−1‖x− xs‖qq + βsq/r−1‖hS0‖qq.
(A.4)

By Hölder inequality and the property that #S0 ≤ s,

‖hS0‖q ≤ s1/q−1/r‖hS0‖r. (A.5)

Substituting the above inequality into the right-hand side of
the inequality (A.4) leads to the first crucial inequality:

‖hS0
‖qr ≤

D

1− β
(2ε)q +

2β

1− β
sq/r−1‖x− xs‖qq. (A.6)

Combining (A.1), (A.5) and (A.6) yields the second crucial
inequality:

‖hSc
0
‖qq ≤

D

1− β
s1−q/r(2ε)q +

2

1− β
‖x− xs‖qq. (A.7)

For r = q, the conclusion (I.5) follows from (A.6) and (A.7).
Applying (A.3) with T replaced by S1 yields

‖hS1‖qr ≤ D(2ε)q + βsq/r−1‖hSc
1
‖qq.

This together with (A.1), (A.5), (A.6) and (A.7) leads to the
third crucial inequality:

‖hS1
‖qr ≤ D(2ε)q + βsq/r−1

(
‖hS0

‖qq + ‖h(S0∪S1)c‖qq
)

≤ D(1 + β)

1− β
(2ε)q +

2β(1 + β)

1− β
sq/r−1‖x− xs‖qq.

(A.8)

Therefore for q ≤ r̃ ≤ r,

‖h‖qr̃ ≤ ‖hS0
‖qr̃ + ‖hS1

‖qr̃ +
∑
j≥2

‖hSj
‖qr̃

≤ sq/r̃−q/r‖hS0‖qr + sq/r̃−q/r‖hS1‖qr
+sq/r̃−1‖hSc

0
‖qq

≤ D(3 + β)

1− β
sq/r̃−q/r(2ε)q

+
2(1 + β)2

1− β
sq/r̃−1‖x− xs‖qq, (A.9)

where the first inequality holds by the triangle inequality for
‖ · ‖q/r̃q/r̃ as q ≤ r̃, the second inequality is true by Hölder
inequality and (A.2), and the third inequality follows from
(A.6), (A.7) and (A.8). Then the conclusions (I.3) and (I.4)
follow by letting r̃ = r and r̃ = q in (A.9) respectively.

B. Proof of Theorem 1.2
The conclusion (I.7) follows from the estimate (I.6) and

the observation that the zero vector is the solution of the `q-
minimization problem (I.1) with ε = ‖Ax‖p and z = Ax for
any x ∈ Rn.

C. Proof of Theorem 2.1
(i) Take a vector x ∈ Rn with Ax = 0 and let xs

be its best s-sparse approximation in `q . Then it is a best
s-sparse approximation in `r. This together with the sparse
approximation property (I.2) leads to ‖xs‖qq ≤ s1−q/r‖xs‖qr ≤
βs(A)(σs,q(x))q . Thus the measurement matrix A has the null
space property of order s with γs(A) ≤ βs(A).

(ii) Take a vector x ∈ Rn. Then it suffices to prove that

‖xT ‖qq ≤
(

max(1, γs(A)) inf
R∈R(A)

‖R‖qp→q

)
‖Ax‖qp

+γs(A)‖xT c‖qq, (A.10)

for all subsets T ⊂ {1, . . . , n} with #T ≤ s, where 0 < p ≤
∞. Note that A(x − RAx) = (A − ARA)x = 0 for all
R ∈ R(A). This together with the null space property (I.10)
of the measurement matrix A leads to ‖(x − RAx)T ‖qq ≤
γs(A)‖(x −RAx)T c‖qq for all subsets T ⊂ {1, . . . , n} with
#T ≤ s and R ∈ R(A). Hence

‖xT ‖qq ≤ max(1, γs(A))‖R‖qp→q‖Ax‖qp + γs(A)‖xT c‖qq.

Taking minimum over all matrices R ∈ R(A) in the right-
hand side of the above estimate leads to (A.10), and hence
proves the second conclusion.

D. Proof of Theorem 3.1
Take a vector x ∈ Rn and let xs be its s-sparse approxi-

mation in `2. We write x =
∑

j≥0 xSj , where S0 is the set of
indices of the s largest components, in absolute value, of x, S1

is the set of indices of the s largest components, in absolute
value, of x in Sc

0, and so on. From the construction of the
sets Sj , j ≥ 0, we obtain that xS0

= xs, ‖xSc
0
‖q = σs,q(x),∑

j≥2 ‖xSj
‖2 ≤ s1/2−1/qσs,q(x),

‖xSj
‖2 ≤ s1/2−1/q‖xSj−1

‖1−q/2
q ‖xSj

‖q/2
q

≤ s1/2−1/q‖xSj−1
‖q (A.11)

for all j ≥ 1, and

‖Ax‖22 = ‖A(xS0 + xS1)‖22 +
∑
j≥2

‖AxSj‖22

+2
∑
j≥2

〈AxS0
,AxSj

〉+ 2
∑
j≥2

〈AxS1
,AxSj

〉

+2
∑

2≤j<j′

〈AxSj
,AxSj′ 〉. (A.12)

Recalling that |〈AxSj
,AxSj′ 〉| ≤ δ2s(A)‖xSj

‖2‖xSj′‖2 for
all j′ 6= j ([1]), and applying the restricted isometry property
(I.11), we obtain from (A.11) and (A.12) that

(1− δ2s(A))‖x‖22 ≤ ‖Ax‖22 + δ2s(A)s1−2/q(σs,q(x))2

+2
√

2δ2s(A)s1/2−1/q‖x‖2σs,q(x)

≤ ‖Ax‖22 + δ2s(A)ε‖x‖22
+δ2s(A)(1 + 2ε−1)s1−2/q(σs,q(x))2,
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where ε > 0. Then (III.1) follows by taking ε = −2 +√
2(δ2s(A))−1 + 2.
Similarly we get

‖Ax‖22 ≤
(
1 + δ2s(A) +

√
2δ2s(A)

)
‖x‖22

+
(
1 +

√
2δ2s(A)

)
δ2s(A)s1−2/q(σs,q(x))2.

This proves (III.2).

E. Proof of Theorem 3.2

Take an s-sparse vector x ∈ Rn. Then x = xs and
σs,q(x) = 0. This together with the sparse approxima-
tion property (I.2) gives ‖x‖qr = ‖xs‖qr ≤ D‖Ax‖qp +

βsq/p−1σs,q(x)q = D‖Ax‖qp, and hence proves (III.3).
Take a 2s-sparse vector x ∈ Rn and write x = xS0 +

xS1
for some subsets S0 and S1 of {1, . . . , n} with empty

intersection and cardinality less than or equal to s. Applying
(I.2) to the given 2s-sparse vector x and replacing S by S0

and S1 respectively, we obtain

‖xS0
‖qr ≤ D‖Ax‖qp +βsq/p−1‖xS1

‖qq ≤ D‖Ax‖qp +β‖xS1
‖qr

(A.13)
and

‖xS1‖qr ≤ D‖Ax‖qp+βsq/p−1‖xS0‖qq ≤ D‖Ax‖qp+β‖xS0
‖qr.

(A.14)
Summing up the above estimates (A.13) and (A.14) yields the
following inequality:

(1− β)‖x‖qr = (1− β)(‖xS0
‖rr + ‖xS1

‖rr)q/r

≤ (1− β)(‖xS0
‖qr + ‖xS1

‖qr) ≤ 2D‖Ax‖qp.

Hence (III.4) follows.
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