
CONVOLUTION SAMPLING AND RECONSTRUCTION
OF SIGNALS IN A REPRODUCING KERNEL

SUBSPACE

M. ZUHAIR NASHED, QIYU SUN, AND JUN XIAN

Abstract. We consider convolution sampling and reconstruction
of signals in certain reproducing kernel subspaces of Lp, 1 ≤ p ≤
∞. We show that signals in those subspaces could be stably re-
constructed from their convolution samples taken on a relatively-
separated set with small gap. Exponential convergence and error
estimates are established for the iterative approximation-projection
reconstruction algorithm.

1. Introduction

In this paper, we consider convolution sampling of signals in a re-
producing kernel subspace of Lp := Lp(Rd), 1 ≤ p ≤ ∞. Here Lp, 1 ≤
p ≤ ∞, is the space of all p-integrable functions on the d-dimensional
Euclidean space with its standard norm denoted by ‖ · ‖p.

Convoluting a signal f ∈ Lp with an integrable convolutor ψ, the
continuous analog of filtering a digital signal, gives

ψ ∗ f :=

∫
Rd

f(y)ψ(· − y)dy.

For given convolutor ψ and sampling set Γ ⊂ Rd, the associated con-
volution sampling of a signal f yields the data {f ∗ ψ(γ)}γ∈Γ. This is
the ideal sampling of the convoluted signal ψ ∗ f taken on a sampling
set Γ,

f
convoluting7−→ f ∗ ψ sampling7−→ {f ∗ ψ(γ)}γ∈Γ.

In this paper, a sampling set Γ means a relatively-separated discrete
subset of Rd; i.e.,

(1.1) BΓ(δ) := sup
x∈Rd

∑
γ∈Γ

χ[−δ,δ]d(x− γ) <∞for some δ > 0,

where χE is the characteristic function on a set E [2, 4, 5].
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An idempotent operator T on Lp is a bounded linear operator T on
Lp that satisfies

(1.2) T 2f = Tf for all f ∈ Lp.

The reproducing kernel subspace Vp of Lp for our signals to live in is
the range space of an idempotent integral operator T ,

(1.3) Vp :=
{
Tf | f ∈ Lp

}
,

whose kernel K has certain regularity and decay at infinity [13]. Par-
ticularly, we assume that the kernel K of the integral operator T ,

Tf(x) =

∫
Rd

K(x, y)f(y)dy, f ∈ Lp,

satisfies

(1.4) max
(

sup
x∈Rd

‖K(x, ·)‖W 1 , sup
y∈Rd

‖K(·, y)‖W 1

)
<∞

and

(1.5) lim
δ→0

max
(

sup
x∈Rd

‖ωδ(K)(x, ·)‖W 1 , sup
y∈Rd

‖ωδ(K)(·, y)‖W 1

)
= 0.

Here

(1.6) W 1 =
{
f
∣∣ ‖f‖W 1 :=

∥∥ sup
z∈[−1/2,1/2)d

|f(·+ z)|
∥∥

1
<∞

}
is the Wiener amalgam space, and

ωδ(K)(x, y) := sup
z1,z2∈[−δ,δ]d

|K(x+ z1, y + z2)−K(x, y)|.(1.7)

is the modulus of continuity of a kernel function K on Rd × Rd.
We recall that the range space Vp in (1.3) is a reproducing kernel

space [13]. Here a closed subspace V of Lp is a reproducing kernel
subspace of Lp such that sup06=f∈V |f(x)|/‖f‖p < ∞ for all x ∈ Rd

[6, 14]. Examples of reproducing kernel subspace Vp of Lp include the
space of non-uniform splines of order n having n − 1 continuity at
each knot [15, 26], the shift-invariant space generated by finitely many
functions with certain regularity and decay at infinity [2, 25], and the
space modeling signals with finite rate of innovation [7, 20, 23].

In this paper, we study the convolution sampling of signals in the
reproducing kernel space Vp on a sampling set Γ with small gap (Theo-
rems 2.1 and 2.2), and the exponential convergence and error estimates
of the iterative approximation-projection algorithm for reconstructing
signals from their convolution samples (Theorems 3.1, 4.1 and 4.2).
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2. Stability of convolution sampling

In this section, we study stability of the convolution sampling for
signals in a reproducing kernel subspace of Lp. We show that any sig-
nal in the reproducing kernel subspace Vp can be stably reconstructed
from its convolution samples taken on a sampling set with small gap,
provided that the convolution is stable on Vp.

To state our main result of this section, we recall the gap of a sam-
pling set and the space of all p-summable sequences. A sampling set Γ
is said to have gap δ > 0 if

(2.1) AΓ(δ) := inf
x∈Rd

∑
γ∈Γ

χ[−δ,δ]d(x− γ) ≥ 1

([2, 4, 5]). The space of all p-summable sequences on a sampling set Γ
is denoted by `p := `p(Γ) with its standard norm by ‖ · ‖`p(Γ) (or ‖ · ‖p
for short).

Theorem 2.1. Let 1 ≤ p ≤ ∞, ψ1, · · · , ψL be integrable functions on
Rd, Vp be the reproducing kernel subspace of Lp in (1.3) with the kernel
K of the associated idempotent operator satisfying (1.4) and (1.5), and
set Ψ = (ψ1, · · · , ψL)T . Then the following statements are equivalent:

(i) Ψ is a stable convolution sampler on Vp for all sampling sets
having sufficiently small gap; i.e., there exists δ0 > 0 such that

0 < inf
06=f∈Vp

∑L
l=1

∥∥(ψl ∗ f(γ)
)
γ∈Γ

∥∥
p

‖f‖p
≤ sup

06=f∈Vp

∑L
l=1

∥∥(ψl ∗ f(γ)
)
γ∈Γ

∥∥
p

‖f‖p
<∞

holds for any sampling set Γ satisfying 1 ≤ AΓ(δ) ≤ BΓ(δ) <∞
for some δ ∈ (0, δ0).

(ii) Ψ is a stable convolutor on Vp; i.e.,

(2.2) 0 < inf
g∈Vp,‖g‖p=1

L∑
l=1

‖ψl ∗ g‖p ≤ sup
g∈Vp,‖g‖p=1

L∑
l=1

‖ψl ∗ g‖p <∞.

We remark that the above equivalence between a stable convolutor
on Vp and a stable convolution sampler on Vp for sampling sets with
sufficiently small gap is established in [4] provided that Vp is assumed
to be a finitely-generated shift-invariant space. The readers may refer
to [2, 3, 4, 5, 8, 12, 19, 20, 23, 24, 25, 27, 28, 29, 30] and references
therein for sampling and reconstruction of signals in a shift-invariant
space and in a reproducing kernel space.

Let V be a closed subspace of Lp, and R1, . . . , RL be bounded oper-
ators on Lp, 1 ≤ p ≤ ∞. We say that R1, . . . , RL are collectively stable
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on V if

(2.3) 0 < inf
g∈V,‖g‖p=1

L∑
l=1

‖Rlg‖p ≤ sup
g∈V,‖g‖p=1

L∑
l=1

‖Rlg‖p <∞,

and that R1, . . . , RL are stable average samplers on V for sampling sets
having small gap if there exists a sufficiently small positive number δ0

such that
(2.4)

0 < inf
g∈V,‖g‖p=1

L∑
l=1

∥∥(Rlg(γ))γ∈Γ

∥∥
p
≤ sup

g∈V,‖g‖p=1

L∑
l=1

∥∥(Rlg(γ))γ∈Γ

∥∥
p
<∞

for any sampling set Γ with 1 ≤ AΓ(δ) ≤ BΓ(δ) < ∞ where δ ∈
(0, δ0). In this section, we will prove the following slight generalization
of Theorem 2.1.

Theorem 2.2. Let 1 ≤ p ≤ ∞, V be a closed subspace of Lp, and let
R1, . . . , RL be integral operators with their kernels K1, . . . , KL satisfying

(2.5) max
(

sup
x∈Rd

‖Kl(x, ·)‖W 1 , sup
y∈Rd

‖Kl(·, y)‖W 1

)
<∞

and
(2.6)

lim
δ→0

max
(

sup
x∈Rd

‖ωδ(Kl)(x, ·)‖W 1 , sup
y∈Rd

‖ωδ(Kl)(·, y)‖W 1

)
= 0, 1 ≤ l ≤ L.

Then integral operators R1, . . . , RL are collectively stable on V if and
only if they are stable average samplers on V for all sampling sets
having sufficiently small gap.

For a moment, we assume that Theorem 2.2 holds and proceed the
proof of Theorem 2.1.

Proof of Theorem 2.1. Given integrable functions ψ1, . . . , ψL and a re-
producing kernel subspace of Lp with the kernel K of the associated
idempotent operator satisfying (1.4) and (1.5), we let

Kl(x, y) =

∫
Rd

ψl(z)K(x− z, y)dz

and define

(2.7) Rlf(x) =

∫
Rd

Kl(x, y)f(y)dy, 1 ≤ l ≤ L.

Then for any 1 ≤ l ≤ L, it is easy to show that

(2.8) ‖Rlf‖p ≤ max
(

sup
x∈Rd

‖K(x, ·)‖W 1 , sup
y∈Rd

‖K(·, y)‖W 1

)
‖ψl‖1‖f‖p
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for all f ∈ Lp, and hence the integral operator Rl is a bounded operator
on Lp. Also for any 1 ≤ l ≤ L, the integral operator Rl coincides with
the convolution operator ψl on Vp,

(2.9) Rlf = ψl ∗ f for all f ∈ Vp;

and its kernel Kl satisfies (2.5) and (2.6). These facts together with
Theorem 2.2 lead to the equivalence in Theorem 2.1. �

Now we proceed to prove Theorem 2.2. For a kernel function K on
Rd × Rd, define

(2.10) ‖K‖W := max
(

sup
x∈Rd

‖K(x, ·)‖1, sup
y∈Rd

‖K(·, y)‖1

)
<∞.

The proof of Theorem 2.2 is based on the following two lemmas. The
first lemma shows the necessity, while the second one establishes the
sufficiency.

Lemma 2.3. Let 1 ≤ p ≤ ∞, V be a closed subspace of Lp, and let
R1, · · · , RL be integral operators with their kernels K1, · · · , KL satisfy-
ing

(2.11) ‖Kl‖W <∞ and lim
δ→0
‖ωδ(Kl)‖W = 0, 1 ≤ l ≤ L.

If R1, · · · , RL are collectively stable on V , then for any sampling set Γ
with 1 ≤ AΓ(δ0) ≤ BΓ(δ0) <∞ for some δ0 > 0, we have that

(Aγ(δ0))1/p
(

inf
g∈V,‖g‖p=1

L∑
l=1

∥∥Rlg‖p −
L∑
l=1

‖ωδ0(Kl)‖W
)
‖f‖p

≤ δ
1/p
0

L∑
l=1

∥∥(Rlf(γ)
)
γ∈Γ

∥∥
p

≤ (Bτ (δ0))1/p
(

sup
g∈V,‖g‖p=1

L∑
l=1

∥∥Rlg‖p +
L∑
l=1

‖ωδ0(Kl)‖W
)
‖f‖p(2.12)

for all f ∈ V .

Proof. Let δ0 > 0 and Γ be a sampling set with

(2.13) 1 ≤ AΓ(δ0) ≤ BΓ(δ0) <∞.

Hence {γ+[−δ0, δ0]d| γ ∈ Γ} is a finite covering of Rd, and the collection
of functions

(2.14) uγ(x) =
χ[−δ0,δ0]d(x− γ)∑

γ′∈Γ χ[−δ0,δ0]d(x− γ′)
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defines a bounded uniform partition of the unity (BUPU) U = {uγ}γ∈Γ;
i.e.,

(2.15)


0 ≤ uγ(x) ≤ 1 for all x ∈ Rd and γ ∈ Γ,
uγ(x) = 0 if x 6∈ γ + [−δ0, δ0]d,∑

γ∈Γ uγ(x) = 1 for all x ∈ Rd.

Moreover,

(2.16)
δd0

BΓ(δ0)
≤ ‖uγ‖1 ≤

δd0
AΓ(δ0)

for all γ ∈ Γ.

For all 1 ≤ l ≤ L and f ∈ Lp, 1 ≤ p ≤ ∞, we have that

(2.17) ‖ωδ0(Rlf)‖p ≤ ‖ωδ0(Kl)‖W‖f‖p

and

(2.18) |Rlf(x)| − ωδ0(Rlf)(x) ≤ Rlf(γ) ≤ |Rlf(x)|+ ωδ0(Rlf)(x),

where x ∈ γ + [−δ0, δ0]d, γ ∈ Γ. Then the conclusion (2.12) for p =∞
follows directly from (2.13), (2.17) and (2.18).

For 1 ≤ p <∞, we obtain from (2.16), (2.17), (2.18) and the stability
of R1, · · · , RL on V that

L∑
l=1

∥∥(Rlf(γ)
)
γ∈Γ

∥∥
p

≤ (δ−d0 BΓ(δ0))1/p

L∑
l=1

(∑
γ∈Γ

|Rlf(γ)|p‖uγ‖1

)1/p

≤ (δ−d0 BΓ(δ0))1/p

L∑
l=1

∥∥|Rlf |+ ωδ0(Rlf)
∥∥
p

≤ (δ−d0 BΓ(δ0))1/p
( L∑
l=1

∥∥Rlf‖p +
L∑
l=1

‖ωδ0(Kl)‖W‖f‖p
)

≤ (δ−d0 BΓ(δ0))1/p
(

sup
g∈V,‖g‖p=1

L∑
l=1

∥∥Rlg‖p +
L∑
l=1

‖ωδ0(Kl)‖W
)
‖f‖p
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and

L∑
l=1

∥∥(Rlf(γ)
)
γ∈Γ

∥∥
p

≥ (δ−d0 AΓ(δ0))1/p

L∑
l=1

(∑
γ∈Γ

|Rlf(γ)|p‖uγ‖1

)1/p

≥ (δ−d0 AΓ(δ0))1/p

L∑
l=1

(
‖Rlf‖p − ‖ωδ0(Rlf)‖p

)
≥ (δ−d0 Aγ(δ0))1/p

(
inf

g∈V,‖g‖p=1

L∑
l=1

∥∥Rlg‖p −
L∑
l=1

‖ωδ0(Kl)‖W
)
‖f‖p

for all 1 ≤ p < ∞ and f ∈ V . This proves (2.12) for 1 ≤ p < ∞ and
completes the proof. �

Lemma 2.4. Let 1 ≤ p ≤ ∞, V be a closed subspace of Lp, R1, · · · , RL

be integral operators with their kernels K1, · · · , KL satisfying (2.5) and
(2.6), and let Γ be a sampling set with 1 ≤ AΓ(δ0) ≤ BΓ(δ0) < ∞ for
some δ0 > 0. If
(2.19)

0 < inf
f∈V,‖f‖p=1

L∑
l=1

∥∥(Rlf(γ)
)
γ∈Γ

∥∥
p
≤ sup

f∈V,‖f‖p=1

L∑
l=1

∥∥(Rlf(γ)
)
γ∈Γ

∥∥
p
<∞,

then R1, · · · , RL are collectively stable on V .

Proof. The stability of R1, . . . , RL for p = ∞ follows directly from
(2.19) and the assumption on their kernels. Now we assume that 1 ≤
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p <∞. In this case, we have that for 0 < δ ≤ δ0,∑
γ∈Γ

∫
γ+[−δ/2,δ/2]d

|ωδ(Rlf)(x)|pdx

≤
∑
γ∈Γ

∫
γ+[−δ/2,δ/2]d

∣∣∣ ∫
Rd

ωδ(Kl)(x, y)|f(y)|dy
∣∣∣pdx

≤
(

sup
x∈Rd

‖ωδ(Kl)(x, ·)‖1

)p−1
∑
γ∈Γ

∫
γ+[−δ/2,δ/2]d

∫
Rd

ωδ(Kl)(x, y)|f(y)|pdydx

≤
(

sup
y∈Rd

∑
k∈Zd

∑
γ∈Γ

∫
(γ+[−δ/2,δ/2]d)∩(k+[−1/2,1/2]d)

ωδ(Kl)(x, y)dx
)

×
(

sup
x∈Rd

‖ωδ(Kl)(x, ·)‖W 1

)p−1

‖f‖pp

≤
(

sup
z∈Rd

∑
γ∈Γ

|(γ + [−δ/2, δ/2]d) ∩ (z + [−1/2, 1/2]d)|
)

×
(

sup
x∈Rd

‖ωδ(Kl)(x, ·)‖W 1

)p−1(
sup
y∈Rd

‖ωδ(Kl)(·, y)‖W 1

)
‖f‖pp

≤ BΓ(1 + δ0)
(

sup
x∈Rd

‖ωδ(Kl)(x, ·)‖W 1

)p−1(
sup
y∈Rd

‖ωδ(Kl)(·, y)‖W 1

)
δd‖f‖pp.

This implies that

(BΓ(δ0))1/p

L∑
l=1

‖Rlf‖p

≥
L∑
l=1

(∑
γ∈Γ

∫
γ+[−δ/2,δ/2]d

|Rlf(x)|pdx
)1/p

≥ δd/p
L∑
l=1

(∑
γ∈Γ

|Rlf(γ)|p
)1/p

−
L∑
l=1

(∑
γ∈Γ

∫
γ+[−δ/2,δ/2]d

|ωδ(Rlf)(x)|pdx
)1/p

≥ δd/p‖f‖p
(

inf
g∈V,‖g‖p=1

L∑
l=1

‖(Rlg(γ))γ∈Γ‖p − (BΓ(1 + δ0))1/p

×
( L∑
l=1

(
sup
x∈Rd

‖ωδ(Kl)(x, ·)‖W 1

)(p−1)/p(
sup
y∈Rd

‖ωδ(Kl)(·, y)‖W 1

)1/p)
≥ 1

2
δd/p

(
inf

g∈V,‖g‖p=1

L∑
l=1

‖(Rlg(γ))γ∈Γ‖p
)
‖f‖p
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by (2.6), when δ is chosen sufficiently small. Hence the stability of the
integral operators R1, · · · , RL on V for 1 ≤ p <∞ follows. �

Finally we prove Theorem 2.2.

Proof of Theorem 2.2. The necessity follows from Lemma 2.3, while
the sufficiency holds by Lemma 2.4. �

3. Exponential convergence of the iterative
approximation-projection reconstruction algorithm

Let B(Lp), 1 ≤ p ≤ ∞, be the Banach algebra of bounded linear op-
erators on Lp and denote by ‖·‖B(Lp) its norm. In this section, we estab-
lish exponential convergence of the iterative approximation-projection
algorithm to reconstruct signals in a reproducing kernel subspace Vp of
Lp, 1 ≤ p ≤ ∞, from their convolution samples on a sampling set with
small gap.

Theorem 3.1. Let 1 ≤ p ≤ ∞ and V be a closed subspace of Lp.
Assume that integral operators R1, . . . , RL are stable convolutor on V
whose kernels K1, . . . , KL satisfy (2.5) and (2.6), and that R̃1, · · · , R̃L

are bounded operators from Lp to V satisfying

(3.1)
L∑
l=1

R̃l(Rlf) = f for all f ∈ V.

Given a sample set Γ with 1 ≤ AΓ(δ0) ≤ BΓ(δ0) <∞ for some δ0 > 0,
let {uγ}γ∈Γ be a bounded uniform partition of the unity in (2.15) and
define an operator P from Lp to V by

(3.2) Pf(x) =
L∑
l=1

∑
γ∈Γ

Rlf(γ)R̃luγ(x), f ∈ Lp.

Then given samples Rlg(γ), γ ∈ Γ, of a signal g ∈ V , the following
iterative algorithm,

(3.3) g0 = Pg and gn = g0 + gn−1 − Pgn−1 when n ≥ 1,

converges exponentially to g ∈ V , provided that

(3.4) r :=
L∑
l=1

‖R̃l‖B(Lp)‖ωδ0(Kl)‖W < 1.

Moreover

(3.5) ‖gn − g‖p ≤
rn+1

1− r
‖Pg‖p for all g ∈ V.
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Let T be an integral idempotent operator whose kernel satisfies
(1.4) and (1.5), and Vp be the corresponding reproducing kernel sub-
space of Lp in (1.3). Using an argument similar to the one in the
proof of Theorem 2.1 and applying Theorem 3.1 with Rlf replaced by
ψl ∗ Tf, 1 ≤ l ≤ L, we obtain the exponential convergence of the itera-
tive approximation-projection algorithm for reconstructing signals in a
reproducing kernel subspace Vp of Lp from their convolution samples.

Corollary 3.2. Let 1 ≤ p ≤ ∞, T be an integral idempotent op-
erator whose kernel satisfies (1.4) and (1.5), and Vp be the corre-
sponding reproducing kernel subspace of Lp in (1.3). Assume that
Ψ := (ψ1, . . . , ψL) is a stable convolutor on Vp and has its components

ψ1, . . . , ψL being integrable, and that R̃1, · · · , R̃L are bounded operators
from Lp to Vp satisfying

∑L
l=1 R̃l(ψl ∗ f) = f for all f ∈ Vp. Given

a sample set Γ with 1 ≤ AΓ(δ0) ≤ BΓ(δ0) < ∞ for some δ0 > 0,
let {uγ}γ∈Γ be a bounded uniform partition of the unity in (2.15) and
define an operator Q from Lp to Vp by

(3.6) Qf(x) =
L∑
l=1

∑
γ∈Γ

ψl ∗ f(γ)R̃luγ(x), f ∈ Lp.

Then given convolution samples ψl ∗ g(γ), γ ∈ Γ, 1 ≤ l ≤ L, of a signal
g ∈ Vp, the iterative approximation-projection algorithm,

(3.7) g0 = Qg and gn = g0 + gn−1 −Qgn−1 when n ≥ 1,

converges exponentially to g ∈ V provided that

r :=
( L∑
l=1

‖R̃l‖B(Lp)‖ψl‖1

)
‖ωδ0(K)‖W < 1.

Moreover ‖gn − g‖p ≤ rn+1

1−r ‖Qg‖p for all g ∈ Vp.
Remark 3.1. The iterative algorithm (3.3) can be thought as a gen-
eralization of the approximation-projection reconstruction algorithm
in [9] for convolution sampling. We remark that the approximation-
projection algorithm was originally introduced in [9] for reconstructing
band-limited signals, and was later generalized in [1] to the recovery
of signals in a shift-invariant space, see [2, 4, 5, 13] and the references
therein for various generalizations and applications of that reconstruc-
tion algorithm.

Remark 3.2. The bounded operators R̃1, . . . , R̃l in (3.1) can be inter-
preted as the inverse of integral operators R1, . . . , RL on the closed sub-
space V . The existence problem of such bounded operators is open, ex-
cept that V is a finitely generated shift-invariant space and R1, . . . , RL
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are convolution operators. As integral operators R1, . . . , Rl has their
kernels with certain regularity and decay at infinity, we expect that
R̃1, . . . , R̃L can be chosen to have the same property. This is a very in-
teresting topic closely related to Wiener’s lemma for localized integral
operators. The readers may refer to [10, 16, 18, 21, 22] and references
therein for Wiener’s lemma for infinite matrices and localized integral
operators.

Proof of Theorem 3.1. The operator P in (3.2) is well defined because
R̃l, 1 ≤ l ≤ L, are bounded operators on Lp by the assumption, and∑

γ∈ΓRlf(γ)uγ, 1 ≤ l ≤ L, belongs to Lp as (Rlf(γ))γ∈Γ ∈ `p(Γ) by
Lemma 2.3. Let f ∈ V ⊂ Lp, 1 ≤ p ≤ ∞. Then for 1 ≤ p <∞,

‖f − Pf‖p =
(∫

Rd

∣∣f(x)−
L∑
l=1

∑
γ∈Γ

Rlf(γ)R̃luγ(x)
∣∣pdx)1/p

=
(∫

Rd

∣∣∣ L∑
l=1

R̃l

(
Rlf −

∑
γ∈Γ

Rlf(γ)uγ
)
(x)
∣∣∣pdx)1/p

≤
L∑
l=1

‖R̃l‖B(Lp)

×
(∫

Rd

∣∣∣ ∫
Rd

(
Kl(x, y)−

∑
γ∈Γ

Kl(γ, y)uγ(x)
)
f(y)dy

∣∣∣pdx)1/p

≤
( L∑
l=1

‖R̃l‖B(Lp)‖ωδ0(Kl)‖W
)
‖f‖p,(3.8)

and for p =∞,

‖f − Pf‖p = sup
x∈Rd

∣∣f(x)−
L∑
l=1

∑
γ∈Γ

Rlf(γ)R̃luγ(x)
∣∣

≤
L∑
l=1

‖R̃l‖B(L∞) sup
x∈Rd

∣∣∣ ∫
Rd

(
Kl(x, y)−

∑
γ∈Γ

Kl(γ, y)uγ(x)
)
f(y)dy

∣∣∣
≤

( L∑
l=1

‖R̃l‖B(L∞)‖ωδ0(Kl)‖W
)
‖f‖∞.(3.9)

From (3.3) it follows that

(3.10) fn+1 − fn = (I − P )(fn − fn−1) = · · · = (I − P )n+1Pf

for all n ≥ 0. This together with (3.4), (3.8) and (3.9) proves (3.5), and
hence the exponential convergence of fn, n ≥ 0, defined in (3.3). �
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4. Error estimates of the iterative
approximation-projection reconstruction algorithm

In this section, we first consider the iterative approximation-projection
algorithm (3.3) when samples are corrupted, that is {Rlg(γ) + εl(γ)},
where {εl(γ)} is noise .

Theorem 4.1. Let 1 ≤ p ≤ ∞, V be a closed subspace of Lp, in-
tegral operators R1, . . . , RL be stable convolutor on V whose kernels
K1, · · · , KL satisfy (2.5) and (2.6), and R̃1, · · · , R̃L be bounded op-
erators from Lp to V satisfying (3.1). Given a sample set Γ with
1 ≤ AΓ(δ0) ≤ BΓ(δ0) < ∞ for some δ0 > 0, let {uγ}γ∈Γ be a bounded
uniform partition of the unity in (2.15) and define an operator P from
Lp to V as in (3.2). Then given noisy samples Rlg(γ)+εl(γ), γ ∈ Γ of a
signal g ∈ V with εl := (εl(γ))γ∈Γ ∈ `p(Γ), the iterative approximation-
projection algorithm,{

g̃0 =
∑L

l=1

∑
γ∈Γ(Rlg(γ) + εl(γ))R̃luγ

g̃n = g̃0 + g̃n−1 − P g̃n−1 when n ≥ 1,

converges exponentially to g̃ ∈ V provided that (3.4) holds. Moreover

(4.1) ‖g − g̃‖p ≤
δ
d/p
0

∑L
l=1 ‖R̃l‖B(Lp)‖(εl(γ))γ∈Γ‖p(

AΓ(δ0)
)1/p(

1−
∑L

l=1 ‖R̃l‖B(Lp)‖ωδ0(Kl)‖W
) .

Proof. Set h0 =
∑L

l=1

∑
γ∈Γ εl(γ)R̃luγ, and define gn, n ≥ 0, by

(4.2) g0 = Pg and gn = g0 + gn−1 − Pgn−1 when n ≥ 1.

Then h0 ∈ V and

g̃n − gn = h0 + (I − P )h0 + · · ·+ (I − P )nh0, n ≥ 0.

This together with (3.8), (3.9) and Theorem 3.1 leads to the exponential
convergence of the sequence g̃n, n ≥ 0, to a function g̃ ∈ V . Moreover,

‖g̃ − g‖p ≤
∞∑
n=0

‖(I − P )nh0‖p ≤
‖h0‖p
1− r

≤ (1− r)−1

L∑
l=1

‖R̃l‖B(Lp)

∥∥∑
γ∈Γ

εl(γ)uγ
∥∥
p

≤ (1− r)−1

L∑
l=1

‖R̃l‖B(Lp)‖(εl(γ))γ∈Γ‖p
(

sup
γ∈Γ
‖uγ‖1

)1/p
.

This together with (2.16) proves (4.1). �
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We conclude this section by considering the iterative approximation-
projection reconstruction algorithm (3.3) when the iterative algorithm
is corrupted, that is, each iteration step is corrupted by noise {hn}.

Theorem 4.2. Let 1 ≤ p ≤ ∞, V be a closed subspace of Lp, in-
tegral operators R1, . . . , RL be stable convolutor on V whose kernels
K1, . . . , KL satisfy (2.5) and (2.6), and R̃1, . . . , R̃L be bounded op-
erators from Lp to V satisfying (3.1). Given a sample set Γ with
1 ≤ AΓ(δ0) ≤ BΓ(δ0) < ∞ for some δ0 > 0, let {uγ}γ∈Γ be a bounded
uniform partition of the unity in (2.15) and define an operator P from
Lp to V as in (3.2). Given samples Rlg(γ), γ ∈ Γ, of a signal g ∈ V ,
assume that the iterative approximation-projection algorithm,

(4.3) g̃0 = Pg + h0 and g̃n = g̃0 + g̃n−1 − P g̃n−1 + hn when n ≥ 1,

are corrupted by hn ∈ V, n ≥ 0, during the implementation. Then

(4.4) ‖g̃n − g‖p ≤
rn

1− r
‖Pg‖p +

1

1− r
‖h0‖p +

n∑
l=1

rn−l‖hl‖p, n ≥ 1,

provided that (3.4) holds, where r =
L∑
l=1

‖R̃l‖B(Lp)‖ωδ0(Kl)‖W ∈ (0, 1).

Proof. Let gn, n ≥ 0, be as in (4.2). Then

(4.5) g̃n = gn +
n∑
l=0

(I − P )lh0 +
n∑
l=1

(I − P )n−lhl, n ≥ 1.

Then (4.4) follows from (3.8), (3.9), (3.10) and (4.5). �

Remark 4.1. We remark that hn, n ≥ 0, in the implementation (4.3) is
assumed to belong to a subspace V of Lp instead of living in the whole
space Lp with more freedom, as we notice that in that general case the
error in the implementation could accumulate quickly at each step, c.f.
[13]. On the other hand, the assumption that hn ∈ V, n ≥ 0, can be

reached easily by replacing hn ∈ Lp by h̃n :=
∑L

l=1 R̃l(Rlhn) ∈ V .
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