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Abstract

Let ¢n, N > 1 be Daubechies’ scaling function with symbol (%)NQN@),
and let s,(¢n),0 < p < 0o be the corresponding LP Sobolev exponent.
In this paper, we make a sharp estimation of s,(¢n), we prove that
there exists a constant C independent of N such that

o IH|QN(27F/3)| C < Sp(QbN) <N — ln|QN(27T/3)|
- In2 ’

N _ =
In2 N —

This answers a question of Cohen and Daubeschies [3] positively.
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1 Introduction

For N > 1, let

Then
(1-t)Py(t) +t"Py(1—t) =1

and Py is the unique polynomial solution of the equation with degree not
greater than N — 1.

Let Qn (&) be a trigonometric polynomial with real coefficients satisfying

Qu(©) = Py(sin® 5). 1)
It is known that such @y exists by the Riesz Lemma, but )y is not unique.

Set _
l+e ™

Y Ox(€) = % 3 epe

kez

HN(f) = (

We are interested on the Qx such that the solution ¢y of the refinement
equation

On(r) =) cupn(2z — k) (2)

kEZ

with f[g #n(z)dz = 1 generates an orthonormal basis of L?(IR). The func-
tions ¢y are the well known Daubechies’ scaling functions [6]. For an inte-
grable function f, we let f(£) = fr f(x)e *“dx be the Fourier transform of
f. Then

(€)= Hu(5)on(3) Q
and -
ox(€) = [T Hy(27%). (1)

j=1

The regularity of the scaling functions has central importance in the the-
ory of wavelets. In [14] Volkmer proved that the Holder index of ¢y is
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(1 — 22)N + o(N) as N tends to infinity. Recently Bi, Dai and Sun ([1])

| 2In2 ; )
improved the estimation as
In3 In N

1— N
( 21n2) +4ln2

Another popular approach to the regularity is to use the Sobolev exponent.
Recall that the Sobolev exponent s,(f),0 < p < oo is defined by

so(f) =sup {5 [ 1F©F(+ g ds < oo},

and for p = oo,

+0(1).

Soo(f) =sup {s: f(£)(1+ |€])* isaboundedfunction}.

There is considerable literature devoted to estimate the Sobolev exponent
for scaling functions in general, for example, [8] and [13] for so(f), [2] for
s1(f), [10] and [9] for s,(f) with 1 < p < oo, [12] for Triebel-Lizorkin space
and Besov space, and [11] for L? Lipschitz space. For Daubechies’ scaling
functions, Volkmer [15] proved that

~ InfQn(27/3)] 1 In|Qy(27/3)|

1« <N -
n2 5 S 52(on) < In2

Recently, Cohen and Daubechies ([3], [7]) computed s,(¢y) for p=1,2,4,8
and N = 1,2,---,19, and found that the difference of s,(¢y) between dif-

ferent p becomes very small for N large. Based on this observation, they
asked

N

Problem. Let ¢y be defined by (2). For 0 < p, q < oo, is it true that

i (s,(dn) = 54(6w)) = 07

In this paper, we answer this question affirmatively and generalize the
estimation in [15] in part.

Theorem. Let ¢y be defined by (2). For 0 < p < oo, there exists a constant
C independent on N such that

~ In|@n(@2r/3)] C In |@n(27/3)]

N _ Y < <N -
In2 N = 5(on) < n2



and for p = oo,
In |Qn(27/3)]
00 =N-—- ——
Soo(ON) 2
In the following, we list the approximate value of the LP Sobolev exponent

Sp(¢n). The first three columns s,(én),p = 1,2,8 are obtained by Cohen
and Daubechies in [3]. The last colume N — w is the approximate
value from the theorem. Note that the numerical data matches with the

theorem.
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p=1

p=2

p=38

N _ OxC/3)

In2

0.521293

0.999820

1.310014

1.339036

0.979675

1.414947

1.631688

1.636040

1.391644

1.775305

1.912144

1.912537

1.767934

2.096541

2.174682

2.176608

2.116733

2.388060

2.431755

2.432246

2.441544

2.658569

2.680307

2.681743

2.746639

2.914556

2.925926

2.926549

3.035292

3.161380

3.165533

3.167644

3.309107

3.402546

3.405141

3.405724

DS oo~ o] ot | wo| 0| =2

3.572141

3.639569

3.638529

3.641301

—
DN

3.825525

3.873991

3.871917

3.874766

—
w

4.071021

4.105802

4.105305

4.106422

—
=

4.311641

4.336042

4.335502

4.336511

—
ot

4.547368

4.564708

4.562449

4.565229

—_
D

4.780028

4.792323

4.792645

4.792735

—_
~J

5.010231

5.018884

5.016283

5.019164

—_
co

5.238588

0.244390

0.243230

0.244627

—
Ne}

5.464480

5.468841

5.466868

5.469221

Upper bound estimation

In this section, we will prove the upper bound estimate of s,(¢x).




Proposition 1 Let ¢y be defined by (2). Then for 0 < p < oo,

splow) < N — IONCT (5)

Proof. It follows from (3) that

— 2kx (ke 2 e, 2T
[on (5)| = 27 F DN QN () P on ().
3 3 3
Hence (5) holds for p = oc.

To prove the case for 0 < p < 0o, we let (]~5N be the compactly supported
distribution defined by

—

on(6) = I @n(e/2).
j=1
Let nj, = (4% —1)/3, then by a similar method as used in Proposition 3 in [4],
we obtain for any € > 0 there exists a constant C' such that for £ € [—7, 7]
and for sufficiently large k,

= 27 e
[N (€ + 2ng)| > C|QN(§)|%4 .
Since 2 ie '
— 2 14+e 278 Ny 1—e™ N7
on(§) = T ()" on(®) = (=) "o (),
j=1
there exists an integer ky such that for £ € [%", %’r] and k > ko,
— 2T
[On (€ + 2mem)| = C4™MHQu ()
Obviously

S 108 (O (1 + €l de < o
implies that
[ P+l
(%5 5] +2n,m

is bounded on k. Hence there exists a constant C such that 4¢=NV=9*|Q (22)| 2P <
C for all k. This implies that

I |Qv@r/3)]
In2
and (5) follows from the definition of s,(¢n), 0 <p < co. O

s—N e<0
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3 Lower bound estimation

In this section, we prove the lower bound estimate for s,(¢x).

Proposition 2 Let ¢y be defined by (2). Then for 0 < p < oo and for
any integer M > 2 there ezist a constant 1/2 < r < 1 and an integer N,
independent on p and M such that for N > Nj,

pM1In |Qn(27/3)| + In(2 + 2M7NP)
>N — .
s(on) 2 pM1n?2

Also
_ InjQu(2e/3)|

seol®w) 2 N In2

Obviously our main theorem follows from Proposition 1 and 2 by choosing
the above M as the integral part of —p/N Inr/In2. We need some lemmas to
prove the proposition. The main estimate is Lemma 6, based on the accurate
estimates of Qy(€) on [0, 2F) and Qn (€)Qn(2€) on [%, 7). First we introduce
an auxiliary function

(cos$)™, 1< 3
g(€) =1 4(sin)’,  F<[E] <7 (6)
g(& —2mm), € € 2mm + [—m, 7.

Lemma 3 There exists a constant C independent of N and & such that
CIN ()" <N (O < ()", (7)

Proof. The right inequality was proved by Cohen and Séré [5, Lemma 2.3].
It remains to prove the left inequality. Write

ak(g):(N_;”)(smg)%, 0<k<N-—1.

Then

ar() _N+k-1_,¢
ak_l(ﬁ) k‘ 2



Let ko be the integral part of (N — 1) tan? g Then by observing that

ar(§) 2 5
ag-1(£)

and that |tan$| < 1 for |¢| < I, we have

maxi <p<n-105(§) = ark,(§), [§] < /2.
By using the Stirling formula

k= kre ™ "V2rk(1 + o(1)),

> 1 ifandonlyif £ < (N —1)tan

we have for |£] < 7/2,

Wt ko — 1) 1)!(Sln§)2k0 _ (N4 ko — 1)N+k0_1(sin§
ko!(N —1)! 27 k(N — 1)t 2

where C"*N~¢ < By < CN. By substituting —1 < kg— (N —1) tan2§ <0
into the above expression and simplifying, we have

ary (§) = )" By

Bal€) = B(cos 517 = By 96, lel < /2

where (C')'N~¢" < By < C'NY'. This yields the left inequality of (7) for
& < /2.

For Z < [¢| < m, tan? § > 1 implies that

ao(§) < ar(§) < -+ <an-i(§).
By using the Stirling formula again and making a similar estimation, we have

§

CTIN Y)Y = CIN s N <an 1O < IQ(OF, S <l <

which completes the proof. O
Lemma 4 Let g(&) be defined by (6). Then

02 9(€)908) < oCIP,  lel € 157, )

and for 0 < b6 < % there exists 0 < 11 <1 such that

02 9(€)926) < Rlg(P, el € (5 +om], )



Proof. Recall that g(§) is an even periodic function, hence it suffices to
prove (8) for £ € [0, 7]. Note that

16 sin?§ sin?¢, ¢ €[, ]

9(8)9(28) = { 4sin? & cosT2E, S [??Twaﬁ]-

2

2

o, ). Hence

It is easy to check that the product is strictly decreasing on |

2w 4w 2T

0 < g(&g(28) < g(5)g9(5) = lg(

2
3 3 3)|

The second part follows from the strictly decreasing property. O

Lemma 5 For any integer N > 1,

Q@] < 1D b el0. ) (10)
QOO < V(DI e En.

Furthermore for any 0 < 6 < /6, there exists 0 < ry < 1 and an integer Ny
such that for N > Ny,

2T

N 2w
Q@] < lnCOlL ldel T
QnORNEO] < rlonEr/AP, el ol (13)

0) (12)

Proof. The first two inequalities were proved in [6, p.222]. We use Lemma
3 to prove (12): for |¢] € [0, % — ], there exists 0 < r < 1 such that

IA
5
E
=
d
=
A
Q
2
Q
-
_=
Q
o]

@ (&I < g(©)Y

We pick ry so that 0 < 7 < r9 < 1. Hence (12) holds for N large enough.
The proof of (13) is similar by using Lemma 4. O

In regard to the above lemma, we include the graphs of Qy(§) and
QAn(E)QN(28), N =2,3,4,5 for the convenience of the reader.
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For any 0 < 6 < 7/6 and £ € R, we define

2—7T+5,2—7r—6]+2m7r}

L(§8)={j: 1<j<k, 2¢e€ U[—3 3

meZ

and let i (&, 6) be the number of elements of I;(&, ).

Lemma 6 Let Ny be as in Lemma 5. Then there exists a constant Cy and
a constant 0 < rg < 1 depending on 0 < § < 7/6 only such that for k > 2

and N > Ny,
k

[[1o~ (28| < Cn Téwk(g’&)@N(

j=1

2

O (14

Proof. We use 75(6) to denote the 7, in Lemma 5, and choose r3(8) so that
r9(6),12(6/2) < r3(6) < 1. It is easy to see that by letting Cy large enough,
the lemma holds for £ =1 and k = 2. We assume that (14) holds for k < [
with [ > 3. For k = [, we divide the proof in four cases:

(i) If 26 € [-2 + 6,2 — 6] 4 2mm, then (€, 6) = ip1(26,6) + 1. We

can write
k k—1

I1 lQn(2)] = |@n(26)] l:[1 QN (27(29)],

J=1

and (14) follows from (12) with r5(6) < r3(6) < 1 and the induction hypoth-
esis.



(ii) If 26 € ([—%, =2 +6)U(3E—6, Z])+2mm , then i (€, 6) = ix_1(2€, )

3'7 3
and the same induction hypothesis together with (10) implies (14).

(iii) If 2¢ € ([-& — 3, =2) U (&, %2 + &) + 2mm, then 2¢,4¢ ¢

UmeZ[_%r + (5, 2% — 5] + 2mm, hence ’Lk(g, 5) = 7:]9_2(4€, 5) Write

k

IT 128 (276)] = [Qn (200@x ()| TT [Q(2/(46))|

j=1
and (14) follows from (11).

(iv) If 2¢ € ([-m,—ZF — H U (ZF + %, 7]) + 2mm, then i4(&,6) <
ir_2(4€,6) + 1. by using the above product,rs(6/2) < r3(6) < 1 and (13), we
have
k , ) i 2T i 2T
[T 1Qw(27€)] < ra()V O™ SV |Qu ()1 < Oy ™V Qu (I
j=1

The induction step follows from these four cases. O

For any integer M > 2, k > 1 and € = (e, €3, -+, €xpr) With ¢ = 0 or 1,
let agprr(€) be the cardinality of the set

Apm(e) ={l: 1 <1<k, (€g=1)m+1, -+, €m) hastwoconsecutiveOorl}.
Then agar(e) = X7 anr(e') where € = (€ari1, -+, €g1ym) and
k-1 k=1 _
Z rorm(€) — Z Z H rom(e)
e=(e1, €50 )€{0,1}EM 1=0 el=(eprit1,€ara41))€{0,1}M =0
e D D ) R RG-S (15)

e=(€e1,-,enr)€{0,1} M

where 7 > 0 and the last equality follows from the fact that aps(€) = 1 for any
e € {0,1}M except e = (0,1,0,1,---) € {0,1}* or (1,0,1,0,---) € {0,1}M.

Lemma 7 Let 0 < 6 < w/6. For & € [m,2m), write £ = QW(Z;“?% €277 4+ 1)
with 0 < n < 27FM_ Then

OékM(E) —1 S ikM(f, (S) (16)

10



Proof.  Suppose | € Agp(€) and [ > 2, then there exists an index j > 2
such that (I —1)M +1 < j <IM —1 and €¢; = €¢;;,. Hence
2071¢ = omm + 2%(2 + 9L
2 4
for some integer m and 0 <7’ < 1/4. For ¢; = €11 =0,

+ 1)

(L + T ) e -5, 5
and for ¢; =€, = 1,

m% + G{T“ o —1) € [—g, g].
Hence 277'¢ € Upez[—27/3 + 6,27/3 — 6] + 2mm, ie., 5 — 1 € L(&,6).
What we have just shown is that each [ € Agp(€) corresponds to at least
one distinct j € I (€, 6) provided that [ > 2. The lemma follows from this
assertion. O

Proof of Proposition 2. Recall that
1—e¥
i€
Let r = r3(7/6). Then for & € [2"M~1x 2#M7] and N > Ny, Lemma 6 implies

that

GSN(O :(

Nﬁ@mw%'

kM-—1

lon(€)] < C27"MN T |Qu (2 *Ye)|

J=1
< 012—kMNTNikM(2*’“M§,7r/6)|QN(2_7T)|IcM
— 3 )

where C" depends on N only. It now follows from (3), (16) and (15) that

2(k+1)M71 2kM+l 2kM,/T
" R
Lo Iow(©) s = z /kM L lon@pde <2V [ |on(©)pde
< C/2—NkMp|Q (2_”)|kMp/2kM7r TNpikM(T’“M&ﬂr/G)dg
- N 3 kM =17
< OIIQ_NkMp|QN(2§)|kMp Z T,NpakM(e)

e;€{0,1},1<j<kM

2
7T)|l~ch(2 + QMT,Np)k‘

S OIIQ—NkMp|QN(§

11



This completes the proof. O
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