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Abstract. In this paper, we introduce and study the localization
of stability and p-frame properties of a finitely generated shift-
invariant system in the Fourier domain, and then provide more
information to that shift invariant system. Especially for a shift-
invariant system generated by finitely many compactly supported
functions, we show that it has p-frame property at almost all fre-
quencies, and that it either has stability property at almost all
frequencies or does not have stability property at all frequencies.

1. Introduction

In this paper, we are interested in the localization of stability and
p-frame properties of the shift invariant system generated by finitely
many functions in the Fourier domain. The localization of stable shifts
and p-frames in the Fourier domain provides us more information to
that shift invariant system, especially when the system is generated by
compactly supported functions. For instance, we show that a vector-
valued compactly supported distribution either has stable shifts at al-
most all frequencies or does not have stable shifts at all frequencies, and
that a vector-valued compactly supported bounded function generates
a p-frame at almost all frequencies.

Let `p, 1 ≤ p ≤ ∞, be the space of all p-summable sequences on
ZZd, and let ‖ · ‖`p denote the usual `p norm. For a linear space X,
we denote its direct sum of r copies by X(r). For compactly supported
bounded functions f1, . . . , fr on IRd, we define the semi-convolution
F∗′ on (`p)(r), 1 ≤ p ≤ ∞, by

F∗′ : (`p)(r) 3 D := {D(k)} 7−→
∑
k∈ZZd

D(k)T F (· − k) := F ∗′ D,

and denote the range of the semi-convolution F∗′ on (`p)(r) by

Vp(F ) :=
{
F ∗′ D : D ∈ (`p)(r)

}
,
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where F = (f1, . . . , fr)
T . The space Vp(F ) is the set of all linear com-

binations of fi(· − k), 1 ≤ i ≤ r, k ∈ ZZd, using `p coefficients. Thus it
is a shift invariant space generated by the shift invariant system

F :=
{
fi(· − k) : 1 ≤ i ≤ r, k ∈ ZZd

}
.

Here we say that a linear space V of functions on IRd is shift invariant
if f ∈ V implies that f(· − k) ∈ V for all k ∈ ZZd. The shift invariant
space Vp(F ) is used in wavelet analysis for the case that the generator
is a scaling function or a mother wavelet ([7, 9, 19]), and is also used as
the model space for sampling, where the sinc function is the generator
(see for instance [1, 5]).

Before starting to discuss localization in the Fourier domain, we re-
call the definition of Fourier series. For any summable sequence D =
{D(k)}, its Fourier series is defined by F(D)(ξ) :=

∑
k∈ZZd D(k)e−ikξ.

The above definition of Fourier series can be extended to any sequence
D with polynomial growth, that is, |D(k)| ≤ p(k), k ∈ ZZd, for some
polynomial p. In this situation, the Fourier series is a periodic tem-
pered distribution, which we still denote by F(D). For any measurable
set E, we let `p

E, 1 ≤ p ≤ ∞, be the set of all `p sequences whose Fourier
series are supported in E + 2πZZd.

The semi-convolution F∗′ from (`∞)(r) to V∞(F ) is the first operator
we want to localize in the Fourier domain. We say that F has stable
shifts if the semi-convolution F∗′ is one-to-one on (`∞)(r). For the case
that F has compact support, it was known that F has stable shifts

if and only if the rank of the r × ZZd matrix (F̂ (ξ + 2kπ))k∈ZZd is r

for all ξ ∈ IRd ([16, 21]). Here we define the Fourier transform f̂ of

an integrable function f by f̂(ξ) =
∫

IRd e−ixξf(x)dx, and understand
the one of a tempered distribution as usual. Moreover, by the Possion

formula, it follows that if the r×ZZd matrix (F̂ (ξ0+2kπ))k∈ZZd has rank
strictly less than r, then F ∗′ (vEξ0) = 0, where Eξ0 := {eikξ0} ∈ `∞

and v is a nonzero vector in ICr so chosen that vT F̂ (ξ0 + 2kπ) = 0 for
all k ∈ ZZd. We observe that the Fourier series of Eξ0 is supported

in ξ0 + 2πZZd. On the other hand, if the r × ZZd matrix (F̂ (ξ0 +
2kπ))k∈ZZd is of full rank, then F ∗′ D 6≡ 0 for any nonzero sequence

D ∈ (`∞)(r) whose Fourier transform is supported in B(ξ0, δ) + 2πZZd

for some small δ > 0, and hence the semi-convolution F∗′ is one-to-one
on (`∞B(ξ0,δ))

(r) for some δ > 0. That property is called stable shifts at
the frequency ξ0 in this paper. Note that F has stable shifts if and only
if it has stable shifts at any frequency (Corollary 2.3). We may then
consider the stable shifts at some frequency as the localization of the
stable shifts in the Fourier domain. In Section 2, we discuss the stable
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shifts of F at a frequency when F is a tempered distribution having `1

decay, while the class of tempered distributions with `1 decay contains
all integrable functions, compactly supported distributions, and also
refinable distributions with smooth symbols (see Section 2 for more
details about that function space). In Theorem 2.2, we characterize
the stable shifts at a frequency and hence generalize the corresponding
result for the stable shifts in [24]. In Theorem 2.4, we discuss the
stable shifts of F at a frequency when F is a compactly supported
distribution, and we show that a compactly supported distribution F
either does not have stable shifts at all frequencies, or has stable shifts
at almost all frequencies (Corollary 2.5).

Let Lp, 1 ≤ p ≤ ∞, be the space of all p-integrable functions on IRd,
and let ‖ · ‖p be the usual Lp norm. The semi-convolution operator F∗′
from (`p)(r) to Vp(F ), 1 ≤ p ≤ ∞, is the second operator we want to
localize in the Fourier domain. We say that F has `p stable shifts if
F∗′ is an isomorphism between (`p)(r) and Vp(F ), that is, there exists
a positive constant C so that

(1.1) C−1‖D‖`p ≤ ‖F ∗′ D‖p ≤ C‖D‖`p ∀ D ∈ (`p)(r).

The concept of `p stable shifts plays an important role in the approxi-
mation by shift invariant spaces, the regularity of scaling functions, and
the convergence of cascade algorithms (see for instance [13, 14, 25, 27]
and references therein). Comparing the definitions of the stable shifts
and the `p stable shifts of F , we see that (a) the semi-convolution F∗′
is required to be a bounded operator from (`p)(r) to Lp in the definition
of the `p stable shifts of F , but it is only required to be well defined in
the distributional sense in the definition of the stable shifts of F , and
(b) the semi-convolution F∗′ is assumed to be one-to-one and to have
bounded inverse in the definition of the `p stable shifts of F , but it is
assumed to be one-to-one only in the definition of the stable shifts of
F . For a compactly supported Lp function F , the semi-convolution is
a bounded operator from (`p)(r) to Lp because

‖F ∗′ D‖p ≤ ‖F‖p‖D‖p × sup
x∈IRd

( ∑
k∈ZZd

χ[−K,K]d(x− k)
)(p−1)/p

≤ (2K + 2)d(p−1)/p‖F‖p‖D‖p,

where K is so chosen that F is supported in [−K, K]d and χE is the
characteristic function on a measurable set E (see (3.1) for a more
general result). Moreover, it is shown that the `p stable shifts of F
and the stable shifts of F are equivalent to each other ([15]). We
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say that F has `p stable shifts at the frequency ξ0 ∈ IRd if the semi-
convolution F∗′ is an isomorphism between (`p

B(ξ0,δ))
(r) and its image for

some δ > 0, that is, (1.1) holds for all sequences D ∈ (`p
B(ξ0,δ))

(r). Note

that F ∈ (Lp)(r) has `p stable shifts if and only if it has `p stable shifts
at any frequency (Corollary 3.2). Then we may consider the `p stable
shifts at a certain frequency as the localization of the `p stable shifts
in the Fourier domain. In Theorem 3.1 of Section 3, we generalize
the equivalence between the `p stable shifts and the stable shifts in
[15] to the equivalence of their localization in the Fourier domain for
those functions F in (Lp)(r), which contains all compactly supported
Lp functions.

We see from the definition of the `p stable shifts that F = (f1, . . . , fr)
T

has stable shifts if and only if {fi(· − k) : 1 ≤ i ≤ r, k ∈ ZZd} is a Riesz
basis of Vp(F ). This observation inspires us to introduce the concept
of a p-frame of a finitely generated shift invariant space in [3]. We say
that F generates a p-frame if {fi(· − k) : 1 ≤ i ≤ r, k ∈ ZZd} is a
p-frame for Vp(F ), that is, there exist positive constants A and B so
that

(1.2) A‖f‖p ≤
r∑

i=1

‖{〈f, fi(· − k)〉}‖`p ≤ B‖f‖p ∀ f ∈ Vp(F ),

which, in turn, is equivalent to the operator T from Vp(F ) to (`p)(r),

T : Vp(F ) 3 f →
{
(〈f, f1(· − k)〉, . . . , 〈f, fr(· − k)〉)T

}
∈ (`p)(r),

is an isomorphism on Vp(F ). The operator T is called the analysis
operator T . The third operator we want to localize in the Fourier
domain is the analysis operator T . For a shift invariant space V and a
measurable set E, we define

VE =
{
f ∈ V : f̂ is supported in E + 2πZZd

}
.

If V = Vp(F ) for some generator F and p ∈ [1,∞], we use Vp,E(F ) to
denote VE. We say that F generates a p-frame at the frequency ξ0 ∈ IRd

if (1.2) holds for all f ∈ Vp,B(ξ0,δ)(F ), where δ > 0. As we show later
that for those functions F with certain decay at infinity, it generates a
p-frame if and only if it generates a p-frame at any frequency (Corollary
4.4). Then we may consider the p-frame property at some frequency
as the localization of the p-frame property in the Fourier domain. In
[3], it is shown that a function F in (W (L∞, `1))(r), (a function in that
space is locally bounded and globally L1, see Section 4 for the precise
definition), generates a p-frame if and only if the rank of the r × ZZd

matrix (F̂ (ξ + 2kπ))k∈ZZd is independent of ξ ∈ IRd (Proposition 4.1).
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In Section 4, we establish a corresponding result for the p-frame at
any frequency (Theorem 4.2). Applying Theorem 4.2, we show that
any compactly supported bounded function F generates a p-frame for
Vp(F ) at almost all frequencies (Theorem 4.5).

2. Stable Shifts at Certain Frequency

In this section, we consider the localization of the stable shifts of
finitely generated shift invariant system in Fourier domain.

First let us recall a class of function space from which the generators
of the shift invariant system are chosen. Let S to be the space of all
Schwartz functions, and let � ·, · � be the action between a tempered
distribution and a Schwartz function. We say that a tempered distri-
bution f has `1 decay if � f(· − x), h � is continuous about x for any
h ∈ S, and if there exist positive constants C and k0 independent of
h ∈ S such that∑

k∈ZZd

| � f(· − k), h � | ≤ C
∑
|α|≤k0

‖Dαh(·)(1 + | · |)k0‖∞

for any h ∈ S ([24]). The class of tempered distributions with `1

decay contains most of the functions (tempered distributions) we are
interested in for the study of stable shifts. In fact, any integrable
function f on IRd is a tempered distribution with `1 decay because for
any h ∈ S,∑

k∈ZZd

| � f(· − k), h � | =
∑
k∈ZZd

| � f, h(·+ k) � |

≤
∫

IR

|f(x)| ×
( ∑

k∈ZZd

|h(x + k)|
)
dx

≤ ‖h(1 + | · |)d+1‖∞ ×
∫

IRd

|f(x)|
( ∑

k∈ZZd

(1 + |x + k|)−d−1
)
dx

≤ ‖h(1 + | · |)d+1‖∞
(
1 +

∑
0 6=k∈ZZd

|k|−d−1
)
‖f‖1.

The class of tempered distributions with `1 decay also contains all com-
pactly supported distributions and globally supported refinable distri-
butions with smooth symbol ([24]), but it does not contain the sinc
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function sinc(x) := sin πx
πx

on the line because∑
k∈ZZ

| � f(· − k), h � | = 1

2π

∑
k∈ZZd

∣∣∣ ∫ π

−π

e−i(k+1/2)ξdξ
∣∣∣

=
∑
k∈ZZ

∣∣∣sin(k + 1/2)π

(k + 1/2)π

∣∣∣ = +∞

for any Schwartz function h whose Fourier transform satisfies ĥ(ξ) =
e−iξ/2 for |ξ| ≤ π.

For F = (f1, . . . , fr)
T having `1 decay, {� F (· − k), h �} ∈ `1 for

any h ∈ S, and hence the sum
∑

k∈ZZd D(k)T � F (· − k), h � is well
defined for any bounded sequence D = {D(k)}. So we may define the
semi-convolution F ∗′D of a vector-valued tempered distribution F and
a bounded sequence D = {D(k)} by

(2.1) � F ∗′D, h � :=
∑
k∈ZZd

D(k)T � F (·−k), h � for any h ∈ S.

Thus the semi-convolution F ∗′ D is a tempered distribution ([24]).
We define the stable shifts of a tempered distribution F = (f1, . . . , fr)

T

with `1 decay and its localization in Fourier domain as follows.

Definition 2.1. Let F = (f1, . . . , fr)
T be a vector-valued tempered

distribution with `1 decay.

• We say that F has stable shifts if F∗′ is one-to-one on (`∞)(r),
that is, the only bounded sequence D such that F ∗′ D = 0 is
the zero sequence ([24]).

• We say that F has stable shifts at frequency ξ0 ∈ IRd if there
exists δ > 0 so that the only sequence D ∈ (`∞B(ξ0,δ))

(r) so that

F ∗′ D = 0 is the zero sequence.

For the stable shifts, there is a long list of publications on the charac-
terizations and applications, especially for compactly supported distri-
butions and refinable distributions, (see, for instance, [12, 16, 21, 23, 26]
for compactly supported distributions, [8, 10, 11, 18, 22, 28] for com-
pactly supported refinable distributions, [15] for globally supported
functions in Lp, and [24] for tempered distributions with `1 decay).

We say that a function f is a C∞ function with `1 decay if∑
k∈ZZd

‖Dnf‖L∞(k+[0,1)d) < ∞ for any n ∈ (ZZ+)d.

We may understand that C∞ functions with `1 decay are functions
locally C∞ and globally `1. Thus a Schwartz function is a C∞ function
with `1 decay, and so is a linear combination of the integer shifts of a
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Schwartz function using `1 coefficients. In [24], the author established
the following result for the stable shifts of a tempered distribution with
`1 decay (The original result is slightly different from the one stated
below).

Proposition 2.1. Let F = (f1, . . . , fr)
T be a tempered distribution

with `1 decay. Then the following statements are equivalent:

(i) F has stable shifts.

(ii) The matrix (F̂ (ξ + 2kπ))k∈ZZd is of full rank for any ξ ∈ IRd.
(iii) There exist C∞ functions h1, . . . , hr with `1 decay so that

di(k) = � F ∗′ D, hi(· − k) �, 1 ≤ i ≤ r, k ∈ ZZd

for all bounded sequences D = {(d1(k), . . . , dr(k))T}.

We remark that the equivalence between the first and second state-
ment is established in [21] for a compactly supported function F with
r = 1 and in [16] with r ≥ 1, and in [15] for an integrable function F .

In this section, we establish a corresponding version of Proposition
2.1 for the stable shifts at a frequency.

Theorem 2.2. Let ξ0 ∈ IRd, and let F = (f1, . . . , fr)
T be a tempered

distribution with `1 decay. Then the following three statements are
equivalent to each other.

(i) F has stable shifts at the frequency ξ0 ∈ IRd.

(ii) The r × ZZd matrix (F̂ (ξ0 + 2kπ))k∈ZZd is of full rank.
(iii) There exist C∞ functions h1, . . . , hr with `1 decay and a positive

constant δ so that

(2.2) di(k) =� F ∗′ D, hi(· − k) �, 1 ≤ i ≤ r, k ∈ ZZd

for any bounded sequences D := {(d1(k), . . . , dr(k))T} whose
Fourier series F(D) are supported in B(ξ0, δ) + 2πZZd.

We may understand the above theorem as the equivalence among
stable shifts at a certain frequency, full dimension of the Fourier fiber
bundle in the neighborhood of that frequency, and the inverse process
of the semi-convolution at that frequency. Combining Theorem 2.2 and
Proposition 2.1, we have:

Corollary 2.3. A tempered distribution with `1 decay has stable shifts
if and only if it has stable shifts at any frequency.

Then Theorem 2.2 can be thought as the localization version of Propo-
sition 2.1 in the Fourier domain.

For a compactly supported distribution F = (f1, . . . , fr)
T , we say

that F has finitely linearly independent shifts if there does not exist a
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nonzero sequence D with finite support so that F ∗′ D ≡ 0 ([28]). In
other words, there does not exist a linear dependent finite subsystem
of F :=

{
fi(·−k) : 1 ≤ i ≤ r, k ∈ ZZd

}
. In the Fourier domain, we may

interpret the finitely linearly independent shifts as the nonexistence of
a nonzero vector Q(ξ) = (q1(ξ), . . . , qr(ξ))

T so that all entries of Q(ξ)

are trigonometric polynomials and that Q(ξ)T F̂ (ξ) ≡ 0. Applying
Theorem 2.2, we have the following result about the stable shifts of a
compactly supported distribution at a frequency.

Theorem 2.4. Let F = (f1, . . . , fr)
T be a compactly supported nonzero

distribution. Then:

(i) F has finitely linearly dependent shifts if and only if F does not
have stable shifts at all frequencies.

(ii) F has finitely linearly independent shifts if and only if F has
stable shifts at almost all frequencies.

As an easy consequence of Theorem 2.4, we have:

Corollary 2.5. Let F = (f1, . . . , fr)
T be a compactly supported nonzero

distribution. Then either F does not have stable shifts at all frequencies,
or F has stable shifts at almost all frequencies. Especially if r = 1 then
F has stable shifts at almost all frequencies.

2.1. Proof of Theorem 2.2. We recall some properties of a tempered
distribution with `1 decay in [24].

Lemma 2.6. Let F be a vector-valued tempered distribution on IRd

with `1 decay. Then:

(i) F̂ is continuous.

(ii) F̂ has polynomial increase at infinity, i.e., there exists a poly-

nomial Q(ξ) such that |F̂ (ξ)| ≤ Q(ξ) for all ξ ∈ IRd.
(iii) For any g ∈ S, the following Poisson summation formula holds∑

k∈ZZd

F̂ (ξ + 2kπ)ĝ(ξ + 2kπ) =
∑
j∈ZZd

� F (·+ j), g � e−ijξ.

Proof of Theorem 2.2. The implication (iii)=⇒(i) is obvious. Then it
suffices to prove (i) =⇒ (ii)=⇒ (iii). First we prove (i) =⇒ (ii). Sup-

pose, on the contrary, that the rank of r×ZZd matrix (F̂ (ξ0+2kπ))k∈ZZd

is strictly less than r. Then there exists a (complex-valued) nonzero
vector v = (v1, . . . , vr)

T so that the function g := vT F satisfies ĝ(ξ0 +
2kπ) = 0 for all k ∈ ZZd. The sequence Eξ0 = (eijξ0)j∈ZZd belongs to `∞,

has its Fourier series supported in ξ0 +2πZZd, and satisfies g ∗′Eξ0 = 0.
This contradicts the assumption (i).
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Next we prove (ii)=⇒(iii). By (ii), there exist k1, . . . , kr ∈ ZZd such
that

(2.3) A :=
(
F̂ (ξ0 + 2k1π), . . . , F̂ (ξ0 + 2krπ)

)
is nonsingular.

Let ei, 1 ≤ i ≤ r, be vectors with i-th component one and other com-
ponent zero. By (2.3), Avi = ei for some vi = (vi(k1), . . . , vi(kr))

T ∈
ICr, 1 ≤ i ≤ r. Let wi be a C∞ function so that wi is supported in
∪l

i′=1B(ξ0, δ) + 2ki′π and wi(ξ) = vi(ki′) for all ξ ∈ B(ξ0, δ/2) + 2ki′π,
where δ > 0 is a sufficiently small positive number chosen later. Recall

that f̂i, 1 ≤ i ≤ r, are continuous on IRd by Lemma 2.6. Then for
sufficiently small δ > 0, the matrix

A(ξ) :=
( ∑

k∈ZZd

f̂i(ξ + 2kπ)wi′(ξ + 2kπ)
)

1≤i,i′≤r

has its entries in the Wiener class, and is nonsingular in a neighborhood
of B(ξ0, δ) + 2πZZd. Hence there exists another matrix B(ξ) whose
entries belong to the Wiener class so that

(2.4) A(ξ)B(ξ) = Ir

on a smaller neighborhood of ξ +2πZZd, say B(ξ0, δ1)+2πZZd for some
0 < δ1 < δ/2. Define h1, . . . , hr by

(2.5)
(
ĥ1(ξ), . . . , ĥr(ξ)

)T
= B(ξ)

T
(w1(ξ), . . . , wr(ξ))

T .

Then h1, . . . , hr are linear combinations of the integer shifts of some
Schwartz functions using `1 sequences, and hence are C∞ functions
with `1 decay. By (2.4) and (2.5),

(2.6)
∑
k∈ZZd

f̂i(ξ + 2kπ)ĥi′(ξ + 2kπ) = δii′ , 1 ≤ i, i′ ≤ r

for all ξ ∈ B(ξ0, δ1) + 2πZZd, where δii′ is the usual Kronecker sym-
bol. Let D = {(d1(k), . . . , dr(k))T} be any bounded sequence with its
Fourier series F(D) supported in B(ξ0, δ1)+2πZZd. Multiplying F(Di)
at both sides of the equation (2.6) and then summing up for i from 1
to r, we obtain

F(Di′) =
∑
k∈ZZd

F̂ ∗′ D(·+ 2kπ)ĥi′(·+ 2kπ), 1 ≤ i′ ≤ r,

where Di = {di(k)}, 1 ≤ i ≤ r. Then the assertion (iii) follows. �
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2.2. Proof of Theorem 2.4. To prove Theorem 2.4, we need a charac-
terization of finitely linearly dependent shifts of a compactly supported
distribution, which is essentially given in [28] for the one dimensional
case.

Lemma 2.7. Let F = (f1, . . . , fr)
T be a compactly supported distribu-

tion. Then F has finitely linearly dependent shifts if and only if the

matrix (F̂ (ξ + 2kπ))k∈ZZd has rank less than or equal to r − 1 for all

ξ ∈ IRd.

To prove Lemma 2.7, we recall a result in [2].

Lemma 2.8. Let F = (f1, . . . , fr)
T be a compactly supported distri-

bution. Then there exists a compactly supported distribution G =
(g1, . . . , gs)

T so that G has stable shifts, and such that f1, . . . , fr are
finite linear combinations of {gi(· − k) : 1 ≤ i ≤ s, k ∈ ZZd}.

Proof of Lemma 2.7. First the sufficiency. Let Q(ξ) = (q1(ξ), . . . , qr(ξ))
T

be a nonzero vector with polynomial entries so that Q(ξ)T F̂ (ξ) = 0 for
all ξ ∈ IRd. Therefore

(2.7) Q(ξ)T A(ξ) = 0 ∀ ξ ∈ IRd,

where A(ξ) = (F̂ (ξ + 2kπ))k∈ZZd . By our assumption, Q(ξ) 6= 0 for

almost all ξ ∈ IRd, which together with (2.7) implies that the matrix
A(ξ) has rank less than or equals to r − 1 for almost all ξ ∈ IRd. On

the other hand, F̂ is an analytic function by the assumption on F , and

hence either the rank of (F̂ (ξ + 2kπ))k∈ZZd is strictly less than r for all

ξ ∈ IRd, or is equal to r for almost all ξ ∈ IRd. Then the assertion
follows.

Then the necessity. Let G be the function as in Lemma 2.8, and

P (ξ) be the trigonometric polynomial matrix so chosen that F̂ (ξ) =

P (ξ)Ĝ(ξ). By the stable shifts of G, (Ĝ(ξ + 2kπ))k∈ZZd has rank s

for all ξ ∈ IRd ([16, 21]). This together with our assumption on F
implies that the matrix P (ξ) has rank less than or equal to r−1 for all
ξ ∈ IRd. Thus there exists a nonzero trigonometric polynomial vector
Q(ξ) = (q1(ξ), . . . , qr(ξ))

T so that Q(ξ)T P (ξ) = 0 for all ξ ∈ IRd. Hence

Q(ξ)T F̂ (ξ) = 0 for all ξ ∈ IRd and the assertion follows. �

Proof of Theorem 2.4. By the assumption on F , the Fourier transform

F̂ (ξ) of F is an analytic function. Hence either the rank of (F̂ (ξ +
2kπ))k∈ZZd is strictly less than r for all ξ ∈ IRd, or is equal to r for

almost all ξ ∈ IRd. The assertion then follows from Theorem 2.2 and
Lemma 2.7. �
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3. `p stable Shifts at Certain Frequencies

In this section, we consider `p stable shifts at some frequency for
the finitely generated shift invariant system, and show the equivalence
between the stable shifts at some frequency and `p stable shifts at that
frequency when the generators have a certain decay property at infinity.

The generators of the finitely generated shift invariant system are
chosen from the function space Lp, 1 ≤ p ≤ ∞, which contains all
functions f with finite ‖f‖Lp , where ‖f‖Lp =

∥∥∑
j∈ZZd |f(·+j)|

∥∥
Lp([0,1)d)

([15]). Here Lp(K), 1 ≤ p ≤ ∞, is the space of all p-integrable functions
on a measurable set K, and ‖ · ‖Lp(K) is the usual Lp(K) norm. Clearly
for 1 ≤ p ≤ ∞, a compactly supported Lp belongs to Lp, and an Lp

function is integrable. Thus a function in Lp is a tempered distribution
with `1 decay.

For any F = (f1, . . . , fr)
T ∈ (Lp)(r), we have

‖F ∗′ D‖∞ ≤ sup
x∈IRd

∑
j∈ZZd

|D(j)||F (x− j)|

≤ ‖D‖`∞ sup
x∈IRd

∑
j∈ZZd

|F (x− j)| = ‖D‖`∞‖F‖L∞

when p = ∞, and

‖F ∗′ D‖p
p ≤

∫
IRd

( ∑
j∈ZZd

|D(j)||F (x− j)|
)p

dx

≤
∫

IRd

( ∑
j∈ZZd

|D(j)|p|F (x− j)|
)
×

( ∑
j∈ZZd

|F (x− j)|
)p−1

dx

= ‖D‖p
`p

∫
[0,1]d

( ∑
j∈ZZd

|F (x− j)|
)p

dx = ‖D‖p
`p‖F‖p

Lp

when 1 ≤ p < ∞. Therefore

(3.1) ‖F ∗′ D‖p ≤ ‖D‖`p‖F‖Lp for all D ∈ (`p)(r)

([15]). Thus we may consider the semi-convolution F∗′ as a bounded
operator from (`p)(r) to Lp, 1 ≤ p ≤ ∞.

For any function F = (f1, . . . , fr)
T ∈ (Lp)(r) and 1 ≤ p ≤ ∞, it

is known that F has `p stable shifts if and only if F has stable shifts
([15]). In this section, we show the equivalence between the `p stable
shifts at a certain frequency and the stable shifts at that frequency.

Theorem 3.1. Let F = (f1, . . . , fr)
T ∈ (Lp)(r), 1 ≤ p ≤ ∞, and

ξ0 ∈ IRd. Then F has `p stable shifts at the frequency ξ0 if and only if
F has stable shifts at the frequency ξ0.
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Combining Corollary 2.3 and Theorem 3.1, we have

Corollary 3.2. A function in (Lp)(r) has `p stable shifts if and only if
it has `p stable shifts at any frequency.

To prove Theorem 3.1, we recall a lemma in [3].

Lemma 3.3. Let f ∈ Lp for some 1 ≤ p < ∞. Assume that
∑

j∈ZZd f(·−
j) = 0. Then for any Schwartz function h on IRd,

lim
δ→0

δd
∥∥∥ ∑

j∈ZZd

h(δj)f(· − j)
∥∥∥
Lp

= 0.

Note that the Fourier transform of δd
∑

j∈ZZd h(δj)f(· − j) is f̂(ξ)×∑
k∈ZZd ĥ(δ−1(ξ + 2kπ)), which can be considered as a periodic smooth

cutoff of f̂ at the origin. Then the result in Lemma 3.3 can be un-
derstood as: if f̂(2kπ) = 0 for all k ∈ ZZd, then the Lp norm of the
periodic smooth cutoff of a function f ∈ Lp at the δ neighborhood of
the origin tends to zero as δ tends to zero. A periodic smooth cutoff is
crucial when we consider the shift invariant problem in Lp, 1 ≤ p ≤ ∞,
instead of in L2, where a bounded periodic cutoff is usually used. The
limit result in Lemma 3.3 is not true for p = ∞ and a counterexample
is given in [3].

Proof of Theorem 3.1. First we prove the necessity, which is essentially
given in [15]. Suppose, on the contrary, that F does not have stable

shifts at the frequency ξ0. Then the matrix (F̂ (ξ0 + 2kπ))k∈ZZd is not
of full rank by Theorem 2.2, and hence there exists a (complex-valued)
nonzero vector v = (v1, . . . , vr)

T so that the function g := vT F satisfies

(3.2) ĝ(ξ0 + 2kπ) = 0 ∀ k ∈ ZZd.

If g ≡ 0, then the proof is done since
∑r

i=1 fi ∗′ Di = 0 for sequences
Di, 1 ≤ i ≤ r, chosen so that Di = viD for some D ∈ `p, which
contradicts the stable assumption on F . Now we suppose g 6≡ 0. Set
Eξ0 = (e−ijξ0)j∈ZZd ∈ `∞. For p = ∞, it follows from (3.2) that

(3.3) g ∗′ Eξ0 = 0,

which contradicts the stable shifts at the frequency ξ0 since the Fourier
series of Eξ0 is supported in ξ0 + 2πZZd. Let h0 be a Schwartz function

so chosen that ĥ0 is supported in B(0, 1) and ĥ0(x) = 1 for all x ∈
B(0, 1/2). For 1 ≤ p < ∞, it follows from (3.3) and Lemma 3.3 that

(3.4) lim
δ→0

δd
∥∥∥ ∑

j∈ZZd

h0(δj)e
−i(·−j)ξ0g(· − j)

∥∥∥
Lp

= 0.
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Note that the Fourier transform of δd
∑

j∈ZZd h0(δj)e
−i(·−j)ξ0g(· − j) is

ĝ(ξ + ξ0)
∑

k∈ZZd ĥ0(δ
−1(ξ + 2kπ)),which equals ĝ(ξ + ξ0) on B(0, δ/2).

This together with (3.4) shows that for any ε > 0 there exists δ0 > 0
so that

‖g ∗′ D‖p ≤ δd
∥∥∥ ∑

j∈ZZd

h0(δj)e
−i(·−j)ξ0g(· − j)

∥∥∥
Lp
× ‖D‖`p ≤ ε‖D‖`p

for any `p sequence D whose Fourier series is supported in B(ξ0, δ/2)+
2πZZd and δ ∈ (0, δ0). This is a contradiction since ε > 0 can be chosen
arbitrarily.

Now we prove the sufficiency. By Theorem 2.2, there exist C∞ func-
tions h1, . . . , hr with `1 decay and δ > 0 so that

(3.5) di(k) = � F ∗′ D, hi(· − k) �, 1 ≤ i ≤ r, k ∈ ZZd,

where D = {(d1(k), . . . , dr(k))T} ∈ (`p)(r) and F(D) is supported in
B(ξ0, δ) + 2πZZd. Therefore

‖D‖`∞ ≤
r∑

i=1

‖F ∗′ D‖∞‖hi‖1 ≤ C0‖F ∗′ D‖∞

for p = ∞, and

‖D‖p
`p ≤ C1

r∑
i=1

‖hi‖p−1
1

∑
k∈ZZd

∫
IRd

|F ∗′D(x)|p|hi(x−k)|dx ≤ C2‖F ∗D‖p
p

for 1 ≤ p < ∞, where C0, C1, C2 are positive constants independent of
D ∈ `p. Hence the sufficiency follows. �

4. p-frame at Certain Frequency

In this section, we consider localization of a p-frame in the finitely
generated shift invariant system in the Fourier domain. The genera-
tors of the shift invariant system are chosen from the function space
W (Lp, `q), 1 ≤ p, q ≤ ∞, which contains all functions f whose norm
‖f‖W (Lp,`q) is finite, where

‖f‖W (Lp,`q) := ‖{‖f‖Lp(k+[0,1)d)}‖`q .

For any 1 ≤ p, q ≤ ∞, we have

W (L∞, `q) ⊂ W (Lp, `q)

since ‖f‖Lp(k+[0,1)d) ≤ ‖f‖L∞(k+[0,1)d) for all k ∈ ZZd, and

W (Lp, `1) ⊂ Lp ⊂ W (Lp, `p) = Lp
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because

‖f‖Lp =
∥∥∥ ∑

k∈ZZd

|f(k+·)|
∥∥∥

Lp([0,1)d)
≤

∑
k∈ZZd

‖f(k+·)‖Lp([0,1)d) = ‖f‖W (Lp,`1).

Let F = (f1, . . . , fr)
T ∈ (W (Lp/(p−1), `1))(r). Then for any f ∈ Lp,

r∑
i=1

‖{〈f, fi(· − k)〉}‖`p ≤
∑
l∈ZZd

r∑
i=1

‖{〈f, fi,l(· − k)〉}‖`p

≤
r∑

i=1

∑
l∈ZZd

‖f‖p‖fi,l‖p/(p−1) ≤
r∑

i=1

‖fi‖W (Lp/(p−1),`1)‖f‖p,(4.1)

where fi,l = fiχl+[0,1)d , l ∈ ZZd. Thus {fi(· − k) : 1 ≤ i ≤ r, k ∈
ZZd} is the Bessel sequence for the shift invariant space Vp(F ) when
F = (f1, . . . , fr)

T ∈ (Lp)(r) ∩ (W (Lp/(p−1), `1))(r), and the analysis op-
erator T is a bounded operator from Lp to (`p)(r). So it is good to
assume that the generators of the shift invariant system belong to
Lp∩W (Lp/(p−1), `1) when we consider the corresponding p-frame prop-
erty.

When the generators are assumed to be in the class W (L∞, `1), which
is a subspace of Lp and also of W (Lp/(p−1), `1) for 1 ≤ p ≤ ∞, the
following characterization of the p-frame property was established in
[3].

Proposition 4.1. Let F = (f1, . . . , fr)
T ∈ (W (L∞, `1))(r) and 1 ≤ p ≤

∞. Then the following statements are equivalent to each other.

(i) Vp(F ) is a closed subspace of Lp.
(ii) F generates a p-frame for Vp(F ).

(iii) The rank of the r×ZZd matrix (F̂ (ξ +2kπ))k∈ZZd is independent

of ξ ∈ IRd.
(iv) There exist sequences {aii′(k)} ∈ `1, 1 ≤ i, i′ ≤ r, so that

f =
r∑

i,i′=1

∑
k,k′∈ZZd

aii′(k − k′)〈f, fi′(· − k′)〉fi(· − k)

for all f ∈ Vp(F ).

For any F = (f1, . . . , fr)
T ∈ (W (L∞, `1))(r), it was pointed out in [3]

that if F has `p stable shifts, then it generates a p-frame for Vp(F ), 1 ≤
p ≤ ∞. In fact, when F has `p stable shifts, the shift invariant space
Vp(F ) is closed in Lp since it is isomorphic to the sequence space `p,
and hence F generates a p-frame for Vp(F ), 1 ≤ p ≤ ∞, by Proposition
4.1. The above assertion is known for p = 2 under the weak assumption
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k∈ZZd |F̂ (· + 2kπ)|2 ∈ L∞ in [6]. So the frame property of the shift

invariant system is a generalization of the stability (Riesz) property.
The p-frame was introduced in [3] as a class of Banach frames related
to the finitely generated shift invariant system, which preserves most
of the frame properties in Hilbert space (see [4, 20] for more properties
of p-frames).

In this section, we establish the corresponding version of Proposition
4.1 for a p-frame at a certain frequency.

Theorem 4.2. Let ξ0 ∈ IRd, and let F = (f1, . . . , fr)
T ∈ (Lp)(r) ∩

(W (Lp/(p−1), `1))(r) for 1 ≤ p < ∞ and F ∈ (W (L∞, `1))(r) for p = ∞.
Then the following statements are equivalent:

(i) F generates a p-frame for Vp(F ) at the frequency ξ0.

(ii) The rank of the r×ZZd matrix (F̂ (ξ +2kπ))k∈ZZd is independent
of ξ at a small neighborhood of ξ0.

(iii) There exist a positive constant δ and sequences {aii′(k)} ∈ `1, 1 ≤
i, i′ ≤ r, so that

(4.2) f =
r∑

i,i′=1

∑
k,k′∈ZZd

aii′(k − k′)〈f, fi′(· − k′)〉fi(· − k)

for all f ∈ Vp,B(ξ0,δ)(F ).

and

Theorem 4.3. Let ξ0 ∈ IRd, and let F = (f1, . . . , fr)
T ∈ (Lp)(r) for

1 ≤ p < ∞ and F ∈ (W (L∞, `1))(r) for p = ∞. Then the space
Vp,B(ξ0,δ)(F ) is a closed subspace of Lp for sufficiently small δ > 0 if and

only if the rank of the r×ZZd matrix (F̂ (ξ + 2kπ))k∈ZZd is independent
of ξ at a small neighborhood of ξ0.

We may understand the above two theorems as the equivalence
among p-frame at certain frequency, the constant dimension of Fourier
fiber bundle at a neighborhood of that frequency, inverse process of the
semi-convolution at that frequency, and closedness of the shift invariant
space at that frequency.

Combining Theorem 4.2 and Proposition 4.1, we have

Corollary 4.4. A function in (Lp)(r) ∩ (W (Lp/(p−1), `1))(r) generates a
p-frame if and only if it generates a p-frame at all frequencies.

Then Theorems 4.2 and 4.3 can be considered as the localization version
of Proposition 4.1 in the Fourier domain. Moreover, we see that the
conditions on the generators in Theorem 4.2 are weaker than the ones
in Proposition 4.1. For instance, a compactly supported function F ∈
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Lmax(p,p/(p−1)) satisfies the conditions in Theorem 4.2, but does not
satisfy the conditions in Proposition 4.1.

Note that the Fourier transform of the function h = χ[0,1] − χ[1,2] is
(e−2iξ − 2e−iξ + 1)/(iξ). Then h generates a p-frame at any frequency
ξ0 ∈ IR\(2πZZ) by Theorem 4.2. Moreover, applying Theorem 4.2
yields the following interesting result for compactly supported bounded
function.

Theorem 4.5. Let 1 ≤ p ≤ ∞, f1, . . . , fr be compactly supported and
bounded, and set F = (f1, . . . , fr)

T . Then F generates a p-frame at
almost all frequencies.

4.1. Proof of Theorem 4.2. To prove Theorem 4.2, we need two
lemmas.

Lemma 4.6. Let ξ0 ∈ IRd, F = (f1, . . . , fr)
T be a tempered distribution

with `1 decay. Then there exists a nonsingular matrix Pξ0(ξ) so that all
entries are periodic functions in the Wiener class, and the functions
F1,ξ0 and F2,ξ0 defined by

(4.3) Pξ0(ξ)F̂ (ξ) =

(
F̂1,ξ0(ξ)

F̂2,ξ0(ξ)

)
satisfy (i) F1,ξ0 has stable shifts at the frequency ξ0, and (ii) F̂2,ξ0(ξ0 +
2kπ) = 0 for all k ∈ ZZd. Furthermore, F2,ξ0 can be chosen so that

F̂2,ξ0(ξ + 2kπ) = 0 for all ξ ∈ B(ξ0, δ0) and k ∈ ZZd if the rank of

(F̂ (ξ + 2kπ))k∈ZZd is a constant at a neighborhood of ξ0, where δ0 > 0.

The proof of the above lemma under the assumption that F ∈
(W (L∞, `1))(r) was given in [3, Lemma 2]. We omit the details of
the proof here since it can be done similarly.

Lemma 4.7. Let f ∈ W (Lp, `1) for some 1 ≤ p ≤ ∞. Assume that∑
j∈ZZd f(· − j) = 0. Then for any function h on IRd satisfying

(4.4) |h(x)| ≤ C(1 + |x|)−d−1 for all x ∈ IRd,

and
(4.5)

|h(x)− h(y)| ≤ C|x− y| (1 + min(|x|, |y|))−d−1 for all x, y ∈ IRd,

we have

(4.6) lim
δ→0

δd
∥∥∥ ∑

j∈ZZd

h(δj)f(· − j)
∥∥∥

W (Lp,`1)
= 0.
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Proof. Given a positive number ε, there exists N0 ≥ 2 such that

(4.7)
∑
|k|≥N0

‖f‖Lp(k+[0,1)d) ≤ ε.

Set
f1(x) = f(x)χON0

(x) +
∑
|k|≥N0

f(x + k)χ[0,1]d(x),

where ON0 = ∪|k|<N0(k + [0, 1]d). Then

(4.8) ‖f1 − f‖W (Lp,`1) ≤ 2
∑
|k|≥N0

‖f‖Lp(k+[0,1)d) ≤ 2ε

by (4.7), and

(4.9)
∑
k∈ZZd

f1(x− k) =
∑
k∈ZZd

f(x− k) = 0 ∀ x ∈ IRd

by the definition of f1. By (4.4) and (4.8), we have∥∥∥δd
∑
k∈ZZd

h(δk)(f(· − k)− f1(· − k))
∥∥∥

W (Lp,`1)

≤ δd
∑
k∈ZZd

|h(δk)| ‖f − f1‖W (Lp,`1) ≤ Cε,(4.10)

where C is a positive constant independent of δ ∈ (0, 1). From (4.5)
and (4.9) it follows that∑

k∈ZZd

δd
∥∥∥ ∑

j∈ZZd

h(δj)f1(· − j)
∥∥∥

Lp(k+[0,1)d)

≤ δd
∑
k∈ZZd

∥∥∥ ∑
j∈ZZd

(h(δj)− h(δk))f1(· − j)
∥∥∥

Lp(k+[0,1)d)

≤ C1(N0)δ
d+1

×
∑
k∈ZZd

∥∥∥ ∑
|j−k|≤N0+1

|f1(· − j)|
(1 + δ min(|j|, |k|))d+1

∥∥∥
Lp(k+[0,1)d)

≤ C2(N0)δ‖f1‖W (Lp,`1) ≤ C3(N0)δ(‖f‖W (Lp,`1) + 2ε),(4.11)

where C1(N0), C2(N0), C3(N0) are positive constants depending only
on N0, d and the constant C in (4.5). Therefore the estimate (4.6)
follows from (4.10) and (4.11) when δ is chosen sufficiently small. �

Proof of Theorem 4.2. We divide the proof into the following steps: (i)
=⇒ (ii) =⇒ (iii) =⇒ (i). The implication of (i) =⇒ (ii) can be done by
using the same technique in [3, Section 5.6] except the estimate (5.18)
and the limit following the estimate (5.18) there being replaced by the
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estimate (4.1) and the limit in Lemma 4.7. We omit the details of the
proof here.

Now we prove (ii) =⇒ (iii). Let functions F1,ξ0 and F2,ξ0 , matrix
Pξ0(ξ), and the positive number δ0 be as in Lemma 4.6. Then the rank

of (F̂1,ξ0(ξ +2kπ))k∈ZZd is k0 for all ξ ∈ B(ξ0, δ1) for some δ1 ≤ δ0. Note
that for f ∈ Lp and g ∈ W (Lp/(p−1), `1),

∑
k∈ZZd

∣∣∣ ∫
IRd

f(x− k)g(x)dx
∣∣∣

≤
∑
l∈ZZd

∫
[0,1)d

|g(x− l)| ×
( ∑

k∈ZZd

|f(x− k)|
)
dx

≤
∑
l∈ZZd

‖g‖Lp/(p−1)(l+[0,1)d)‖f‖Lp ≤ ‖f‖Lp‖g‖W (Lp/(p−1),`1).(4.12)

Then the matrix A(ξ) :=
∑

k∈ZZd F̂1,ξ0(ξ + 2kπ)F̂1,ξ0(ξ + 2kπ)
T

has all
entries in the Wiener class. From the rank properties of the matrix

(F̂ (ξ+2kπ))k∈ZZd it follows that A(ξ) is nonsingular in B(ξ0, δ1)+2πZZd,
which implies that there exists an inverse B(ξ) of A(ξ) in B(ξ0, δ1/2)+
2πZZd so that its entries are still in the Wiener class. For any f ∈
Vp,B(ξ0,δ1/2)(F1,ξ0), f̂(ξ) = F(D)(ξ)T F̂1,ξ0(ξ) for some sequence D ∈
(`p)(r) with F(D) supported in B(ξ0, δ1/2) + 2πZZd. Thus the Fourier
transforms of the sequences Wi := {〈f, fi,ξ0(·−k)〉}, 1 ≤ i ≤ k0, satisfies

(F(W1)(ξ), . . . ,F(Wk0)(ξ)) = F(D)(ξ)T A(ξ).

Therefore

F(D)(ξ)T = (F(W1)(ξ), . . . ,F(Wk0)(ξ))B(ξ).

Substituting the above equation into f̂(ξ) = F(D)(ξ)T F̂1,ξ0(ξ) and us-

ing F̂1,ξ0(ξ) = C1(ξ)F̂ (ξ) for some k0 × r matrix C1(ξ) with entries in
the Wiener class, we obtain

f =
r∑

i,i′=1

∑
k,k′∈ZZd

aii′(k − k′)〈f, fi′(· − k′)〉fi(· − k)

for any f ∈ Vp(F ) with its Fourier transform supported in B(ξ0, δ1/2)+
2πZZd, where {aii′(k)} ∈ `1, 1 ≤ i, i′ ≤ r. This proves the assertion (iii).
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Finally we prove (iii) =⇒ (i). By (4.2), we have

‖f‖p ≤
r∑

i=1

∥∥∥{ r∑
i′=1

∑
k′∈ZZd

aii′(k − k′)〈f, fi′(· − k′)〉
}∥∥∥

`p

≤
r∑

i,i′=1

‖{aii′(k)}‖`1‖{〈f, fi(· − k)〉}‖`p ≤ C‖{〈f, fi(· − k)〉}‖`p

for some positive constant C independent of f . Hence the implication
(iii) =⇒ (i) follows. �

4.2. Proof of Theorem 4.3.

Proof. First the sufficiency. By the continuity of F̂ , the rank of (F̂ (ξ +

2kπ))k∈ZZd is at least that of (F̂ (ξ0 + 2kπ))k∈ZZd for all ξ in a small
neighborhood of ξ0. Therefore if (ii) does not hold, then the set of all

ξ ∈ B(ξ0, δ) such that the rank of (F̂ (ξ + 2kπ))k∈ZZd is strictly larger

than the one of (F̂ (ξ0 + 2kπ))k∈ZZd is not empty for any positive δ.
Using the same technique in [3, Section 5.2], the implication of (i) =⇒
(ii) follows.

Then the necessity. Let functions F1,ξ0 and F2,ξ0 , matrix Pξ0(ξ) and

the positive number δ0 be as chosen in Lemma 4.6. Then F̂2,ξ0(ξ) = 0
for all ξ ∈ B(ξ0, δ) + 2πZZd, which together with the nonsingularity of
the matrix Pξ0 imply that

Vp,B(ξ0,δ)(F ) = Vp,B(ξ0,δ)(F1,ξ0)

for all δ ∈ (0, δ0). Recall that F1,ξ0 has stable shifts at the frequency
ξ0, and hence it has `p stable shifts at the frequency ξ0 by Theorem
3.1. Therefore there exists δ1 ∈ (0, δ0) so that Vp,B(ξ0,δ)(F1,ξ0) is a closed
subspace of Lp for all δ < δ1, and hence the assertion (i) follows. �

4.3. Proof of Theorem 4.5.

Proof. For a compactly supported bounded function F = (f1, . . . , fr)
T ,

let k0 be maximum of the rank of the r×ZZd matrix (F̂ (ξ+2kπ))k∈ZZd , ξ ∈
IRd. Then there exist 1 ≤ i1 < i2 < . . . < ik0 ≤ r and j1, . . . , jk0 ∈ ZZd

so that the matrix
(
f̂is(ξ0 + 2jtπ)

)
1≤s,t≤k0

has nonzero determinant for

some ξ0 ∈ IRd. Recall that F̂ is an analytic function. Then the de-
terminant of the above matrix is a nonzero analytic function, which
implies that the set E of all ξ ∈ IRd with nonzero determinant is an
open set and the complement IRd\E has zero Lebesgue measure. Thus
F generates a frame for Vp(F ) at any frequency in E. The assertion
follows. �
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