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Abstract

Extension by integer translates of compactly supported function
for multiplier spaces on periodic Hardy spaces to multiplier spaces
on Hardy spaces is given. Shannon sampling theorem is extended to
Hardy spaces.

1 Introduction and statement of results

The purpose of this paper is to establish a natural extension from multi-
plier space M (p) on periodic Hardy space HP(T) to multiplier space M (p)
on Hardy space HP(R) by integer translates of a function ¢ and to extend
Shannon sampling theorem to Hardy spaces. It is the continuation of [13]
on stability of integer translates of a function but with different interest. In
[13], the following stability problem of integer translates of ¢

C U fllar(zy < || D f(m)p(z —n)

nez

< O fllue(z) (1)
H?(R)

was considered which arises in the interpolation of sequences by functions
and plays an important role in multiresolution analysis, where 0 < p < oo,
f = {f(n)}nez is a tempered sequence, H(Z) and HP(R) denotes Hardy
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spaces on Z and R respectively, and Z is the set of integers. A natural
replacement of the norm in (1) when p = oo is the norm as multiplier operator
on H?(T) and H?(R) respectively, which is an original inspiration to consider
multiplier extension here. To this end, we introduce some notations.

_ Let @ be a smooth function such that supp @ C {2 < l|z| < &}
|®(z)] > Co on {5 < |z] < 2} and ¥,,cz ®(2™2) = 1 for x # 0, where
Cy is a positive constant and the Fourier transform is defined by ®(z) =
[e?™@®(y)dy. Denote ®,,(z) = 2m®(2™x) for m € Z. Now we define
Hardy spaces H?(R) by

1/2
H'R)=<feSR): ||fllarw) = (Z |, * f|2) < +00
meZ
Lr(R)

and define Hardy spaces H?(T') (c.f. [3]) by

HY(T) = {f(x) = fie’™ e S'(R):

kEZ

1/2
| fol + (Z |(I)m*f|2) < 400

m>—1
- Lp(T)

— {f(.ﬁb') _ Z fk627rikm c S/(R) .
keZ
1/p

L . p/2
| fllmoery = [fol + /0 (Z| > fk627nkm|2) dr| <40y,

m>0 2m<|k|<gm+!

where we denote the space of tempered distributions by &'(R), the norm of
p-integrable functions on R and T by || - ||z»(r) and || - ||z»(7), respectively
and T'= R/Z denotes the torus. For a measurable function m on R, we say
that m is a multiplier on H?(R) if

| F | zery < Cwallfl e Ry (2)

holds for any Schwartz function f, where F=m f . We denote the infinum
Cp in (2) by ||m||pe). For a sequence m = {m(n)}, we say that m is a
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multiplier on H?(T') if
|G ze(ry < Callgllmsr) (3)

holds for every trigonometric polynomial g(z) = ¥ ez 9x€°™*®, where G(x) =
> kez (k) gpe*™ . Also we denote ||| i, the infinum Cy in (3).

The classical result of de Leeuw [7] on multiplier said the restriction to
the integer lattice of a continuous multiplier of L?(R) is a multiplier on
LP(T),1 < p < co. In 1992, Liu [8] extended the above conclusion to Hardy
spaces. The multiplier extension was considered by Jodeit[6], Berkson and
Gillespie[2]. Let ¢ be a continuous function with compact support. Denote
the space of sequence by S and the linear span of integer translates of ¢ by
S(p) = {>ncz C(n)p(x —n) : {C(n)} € S}. Define a natural map ¢« from
S to S(¢) by

¢+ S>{C(n)} — > C(n)p(xz —n) € S(9).

nez

We say that the integer translates of ¢ are globally linearly independent if
¢+ is one-to-one. Denote the restriction of ¢+’ on M(p) by I. Berkson
and Gillespie [2] proved that I maps M(p) to M(p) boundedly under the
hypothesis 1 < p < oo and ¢ = x[_1/2,1/2] * Ao, Where X[_1/2,1/9) is the
characteristic function of [—1/2,1/2], x denotes the convolution operator and
Ay is a bounded variation function supported in [—1/2,1/2]. In this paper,
we will prove

Theorem 1 Let0 < p < oo and ¢ have compact support. If [ | (2) [P dy <
0o, then I maps M (p) to M(p) boundedly.

We improve Berkson and Gillespie’s result since under their hypotheses,
l6(z)] < C(1 + |z|) 2 and [|p(z)|dz < co. Applying to Bochner-Riesz
summation operator By, we reproved that B; maps H?(R") to H?(R") when
§>n/p—(n+1)/2and 0 < p <1 [11, 12] when we let ¢(x) = (1 — |z]?)5..

To consider the inverse of Theorem 1, we introduce the paraproduct P,
and show that P, maps H?(T) to H?(R).

Theorem 2 Let ¢ be a continuous function with compact support. If ¢x :
S+ S(¢) is one-to-one, then I has bounded inverse I~": M(p) N S(p) —

M(p).



In the proof of Theorem 1 and Theorem 2, Lemma 2 plays an important
role. If we assume Lemma 2 is true, or m(z) = 3,c2C(n)¢p(x —n) €
L* implies {C'(n)} € £°°, then it suffices to assume that I is one-to-one in
Theorem 2. In particular Theorem 2 can be written as that [ has bounded
inverse 1= : M(p) N S(¢) — M (p) provided I has bounded inverse " :
M(2)NS(¢) — M(2) and ¢ is a continuous function with compact support,
where 0 < p < oo. The continuity condition on ¢ can be dropped in one
spatial dimension since for any distribution ¢ on R such that ¢« is one-to-
one there exists a univariate spline By such that ¢y = By * ¢ is continuous
and ¢x*' is one-to-one. But I do not know how to construct this modifier By,
in high spatial dimensions. By Fourier transform characterization of global
linear independence in [9], the box spline and Daubechies scaling function
satisfy the condition on ¢ in Theorem 2.

Shannon sampling theorem [10] plays an important role in signal analysis.
It says that a function with its Fourier transform supported in [—1/2+¢,1/2—
€] for some 0 < € < 1/2 has its LP(R) norm comparable to its ¢#(Z) norm of
its restriction to integer lattices Z where 1 < p < oo. In 1990, R. Torres[14]
extended the above conclusion to Besov spaces. Let {‘i’m}mzo be a family

of sequences such that ®,,(¢) € {272 < |¢] < 277}, |®n(€)| > Cy on

T, where ém(g) = > ez &)m(n)ezmné,Tg = {3/8 < [¢| < 1}, and T},, =
{3 x27m 3 < |¢| < 227}, Define (c.f. [13] or [14])

1/p

p/2
HP(Z) =S {f(W)}nez : | D (Z D, *f(n)|2) <

n€Z \m>0

where f = {f(n)}nez is a tempered sequence and ®,, % f(1n) = gz Pm(n —
k)f(k).

Theorem 3 Let 0 < p < oo. If f € 8'(R) with supp f C [~1/24¢,1/2—¢]
for some € € (0,1/2), then the inequality

CH{f ) ey < I flmvmy < CI{LF () no(2)

holds for some constant C' dependent of € and p only.

For simplicity in the exposition we restrict ourselves to one spatial dimen-
sion, all results can be extended to high spatial dimensions. The results of
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Theorem 1 and 3 can be extended to spaces of Triebel-Lizorkin type trivially.
The big letter C' will denote different constant at different occurance.

2 Some lemmas
To prove our theorems, we will use the following fundamental lemmas.

Lemma 1 c.f. [15]. Let f € S'(R) have its Fourier transform contained in
a compact set. Therefore

[ * f(2)] < CM(|f])" () (4)

holds for every Schwartz function ¢ and 0 < r < 1, where M denotes Hardy-
Littlewood mazimal operator and the constant C depends on the semi-norm
of ¥, r and the radius R for which f 15 supported in the ball with radius R
and center zero.

Proof of Lemma 1: Without loss of generality we assume that z = 0,
and M (|f]")(0) < oo and supp f C [—1/4,1/4] by dilation invariance. Write

fl@) =3 fn)e(z —n), (5)
neZ
for some Schwartz function ¢ such that ¢ C [-3/8,3/8]. Hence |f x1(0)|" <
C ez |f(n)|"(1+|n|) 3. To prove (4), we first prove that 3,z | f(n)| (1 +
In])™3 < oo. Recall that f € S'(R) and supp f C [—1/4,1/4]. Therefore
|f(n)] < C(1+ |n|)" for some constants C' and N. On the other hand, we
have

[f)" < Af(n+ )"+ Clo]" 3 1f(m)"(1+ [m —n])~"

meZ
by (5) and
I A +[n) ™ < Cs + Cnldl” 32 fF)I"(1+ [nf)™
In|<2k In|<2k+1

by summing over |n| < 2% and integrating over |§| < &y < 1, where §; is cho-
sen later and Cy is independent of dg. Denote Ay = ok—1 <o [ f(0)]"(1 +
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In]) . Therefore 3°5_; A; < 2C5, + 2C N |6o|" Ap41. Conversely, if we assume
that E 1 Aj > 40, for some ko, then Ek°+sA > (1+ 40 ‘5 ‘) Cs,, which
contradicts Zk”s |4;] < OXFe (1 + |5))Y < C2°N provided dy is chosen

small enough. This proves Y ,cz | f(n)["(1 + |n]) ™3 < oco.
Furthermore by (5) we have

f) < If(n+ )" +Clo]" 3 1f(m)["(1+ m —n[)~°

meZ

for some constant C' independent of f and by integrating over [§| < ¢, for
some sufficiently small §; > 0 we get

S @I+ [n) 7 < C [ 1f@)) (@ +|al) e < CMf])(0).

nez

Therefore Lemma 1 is proved. O

Lemma 2 Let the integer translates of the continuous function ¢ be globally
linearly independent. If m(z) = ZnEZ C(n)p(z —n) € M(p), then {C(n)} €
0> and [{C(n)}le=(z) < Cllmllae)

Proof of Lemma 2. First we prove
[ml| ooy < Cllmllase)- (6)

Obviously (6) is true when 1 < p < oo since Marcinkiewicz real interpo-
lation, [mllyie = Imllzzy and [milugy = [mllvgy where p' = p/(p -
1). Hence the matter reduces to proving (6) for 0 < p < 1. For any
f € HP(R), we have the atomic decomposition f(z) = Y ,cz Apar(x) with
CH A llmrm) < (20 Mef?)? < Cllfllmow), where ap are (p,2,s) atoms
and s > % — 1. We recall that a is an (p, 2, s) atom if there exists an inter-
val I such that supp a C I, |a||z2w) < [I|V?7'7 and [2%a(z)dz = 0 for
0 < o < 5. It is easy to show that a(z) is continuous, |a(x)] < CI|'='/P
and |a(z)] < Cla|**'[I]***~'/7. Hence ja(@)] < Clz|” 4y and f(2)] <
Yo [Allar(@)] < C(72g [Akl?)!/?12[/?~1. Denote fy(z) = t~'/7f(x/t).
Therefore fi(z) = Y520 Ak(ar)i(z) and C (52, [Me?)Y? < || fill ey <
C(X2, |AeP)'/P. Recall that m € M(p) for 0 < p < 1. Hence

I(mf) Y[l wy < Cll fell oy < Cll fllmowy
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and R
m(a)t' =7 f(t)| < Ol fll oy 2|7

for all t > 0. Therefore |m(z)f(z/|z|)| < C||f||zr(wr) for every x # 0 when
we let t = |z|~! and (6) is proved for 0 < p < 1 by choosing f € H?(R) such
that f(x/|z|) = 1 on the unit sphere.

Second we prove

RE M) Hlee(z) < Cllmllzew) (7)

By [1, Theorem 1.3], there exists a local algebraic dual A,, of {¢(x — n)},
which says A,é(z — k) = d, and there exists a bounded set K such that
A,f = 0 when f € S(¢) and supp f N (K +n) = (), where we define
the Kronecker symbol ¢, by 0,, = 1 and d,, = 0 when n # k. Recall
that ¢ is continuous. Hence there exist finite points z; € K and weights
C(x;) such that A, f = ¥, C(z;) f(z; + n) for every f € S(¢). This shows
|C(n)] = |Aym| < C||m||L~ for every n € Z. Therefore (7) holds and Lemma
2 is proved by combining (6) and (7).

Lemma 3 ([4] or [5, Theorem A.1]) Let 1 < p < oo and 1 < ¢ < oo.
Therefore the following Fefferman-Stein vector-valued mazimal inequality

1/q 1/q
(Z |Mfk|q> <C (Z |fk|q>

kEZ keZ
L?(R) Lr(R)

holds, where M denotes the Hardy-Littlewood maximal operator on R as
usual.

Let h and 1 be two Schwartz functions such that supp 7 C {|z| < 55}
and 7j(z) = 1 on {|z| < ;}. Let ®,, be as in the definition of H?(R). For
f € H?(T) we introduce a new type of paraproduct operator P, defined by

Puf(x) = 3 (1hn * h)(2) (@ * f)(2) (8)

m>0
where n,,(x) = 2™n(2™z).

Lemma 4 Let P, be defined by (8) and h be a Schwartz function. Then P,
maps HP(T) to HP(R),

| Prfllar®y < C|lfllav(r)-



Proof of Lemma 4. Observe that |, x h(z)| < Cy(1+ |z|) Y for every
N > 0 and some Cy independent of m. Also observe that supp ((7m, *
h)(®, * )" C {152™ < |z| < 32™} and @,  f(x + k) = Dy, + f(2) for all
k € Z. Therefore

m>0

p/2
1Pnf gy < C/R<Z|(nm*h)(x)(<1>m*f)(x)|2) dz

IN

kEZ m2>0
< ClAle)

and Lemma 4 is proved.

. p/2
cy [ (Z(H |k|>m“<4’4/p>|<1>m*f(x>|2) &

3 Proof of theorems

Proof of Theorem 1. Let {C'(n)} be a multiplier on H?(T) and supp ¢ C
[—M /4, M /4] for some M > 1. Denote m(z) =3 C(n)¢(z—n). Let §f be as
in the definition of H?(R). Write f = fo+ fi + f2, where fo = X pcon, @i * f
and f; = >y Popqi * f for 2 = 1,2, where M, is a positive integer such
that 2 > 20M. Observe that

m(z) (@ f)(x) = 3o C)dlz = 1)(Dk* )" (2)

[]<22M1 4

for k < 2M,;. Write ¢¥(z) = X ,cz ¢"(n/M)ip(x — n/M) for some ¢ € S(R)
with supp ¢ C {|z| < 3/8}, where ¢" denotes the inverse Fourier transform.
Therefore

p/2
/R( > |(m(‘bk*f)A)v(x)|2) dr

k<2M,

max(p,1)
<) |C(l)|p(Z|¢V(N/M)|mm(”’1)>

[1|<22M1+ M neZz

p/2
X/R( 2 |“/’*|(‘1>k*f)|(x)|2> dz

k<2M;
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p/2
< CHOWH e /R( > (M(@k*fy"(x))?/’) s

k<2M;

< Cllmly, 1 By

where 0 < r < min(p, 1). The first inequality follows from Hélder inequality
and Yz |an] < (Zhez |an|?)? for 0 < p < 1, the second inequality follows
from Lemma 1 and

sup 3 [ (y + n)[" P <0/|¢ )| da

1y1<2 ncz

(see [13, Lemma 6]), and the third inequality follows from Lemma 2 and
Lemma 3. For k > 2M, write ¢(2)(Ppxf)(z4n) = Xjez Crn(D)e>™ /M j(2x /M)
for some Schwartz function n with supp 7 C {|z| < 3/8}. Therefore we get

(m(®y * )" Z Z C(n )C’k,n(l)e_%mxn(Mx —1)

I€Z 2k—2Ln|<2k

since 2M1 > 20M and

Z Ck,n(l)e—%rinx

2k=2<Jn|<2*

1/2 A —2min —2mil
= [ 6) [ T @)y e ) ey

—1/2 nez

= Y @)@+ n)dle+n— /M)

nez

by Possion summation formula. Hence

p/2
I(mf)"] <c/(z| <1>2k+z*f>>(>|) s

k>M

lez

2 p/2
S CZ/ ( Z C(n)c2k+i,n(l)e—27rinx )
leZ k>My |22k+i—2<|pn|<22k+i
x (14 |Mz — 1) 2dz
2 p/2
<oy / S O)Csin(le | | da
1/2 Ic>M1

22k+i— 2<|n‘<22k+z



2 P/2
< OO, X [ S Cuine| | da
leZ 1/2 k:>M1 22k +i—2< |p|<22k+i
< Cl{C(n }||p Z/ ( (Z |f * Popri(z +n)|
ZEZ k>M, \n€Z
~ 9\ P/2
% |a+n —1/1)]) ) dz
P in max(p,1)
< CIHC Iy, ([ 166V

k> M,

< CIHCEy 17 oy

p/2
(%:z/l/? ( > |f*q’2k+i(x+n)|2) dx)

and Theorem 1 is proved. O

Proof of Theorem 2. Let m(z) = ¥,,cz C(n)¢(z — n) be a multiplier
of H?(R) and f = ¥,z f(1)e?™ is a trigonometric polynomial. Observe
that |f(k)] < Ck|| f|le(ry- Therefore we assume that £(0) = 0 without loss
of generality. Write

(m(-)(Puf)()" ) () (9)

/\

= X X Co+ RIS R [ (©h(€)(E —n)e g

n,k€Z m>0
e )
= 22 Pux (Tnf)(fc)/ M S Gy + k) (i % b — h)(z — y — k)dy
neZ m>0 —-1/2 keZ
2 - ~
FX ) [ S b+ k(e kydy
nez 1/2 kEZ

where (7,f)(2) = Sgez C(n + k) f(k)e2™* and the second equality follows

from Poisson summation formula ¥,z f(n) = ¥,z f(n) and X m>0 ®,, =1
on {|¢] > 1}. Let hy be a smooth function with compact support such that

> oy +kho(r —y—k)=1 on [-1/2,1/2],

keZ
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since for every y € [—1/2,1/2] there exists k € Z for which ¢(y+k) # 0 by the
Fourier transform characterization of global linear independence of integer
translates of ¢ ([9]). Denote h;(x) = ho(z — 27Vi) and the characteristic
function on [27V4, 27V (i 4+ 1)) by x;, where N is chosen later and —2V~! <
i < 2N=1 — 1. Therefore multiplying y; on the two sides of (9), we get

Xi(@) 7o f (2)] < [xi() (m (P, f)")" ()] _
+C 3 Ixi(@) [ f (@)[ 272 (1 + [n]) 72/ mineD

nez

1/2

+C A IXi(2)] D (L + )2/ mineD) (Z [P * (T f) ()] ) :
nez m>0

Where: Ay (h) = SUP_oN-1¢j<oN-1 Z\k|g2+2/p(zmzmo ||77m*(a%)khi_(%)khi||%oo)1/2

and f(k) = 0 for |k] < 2™0. Tt is easy to prove A, (h) < C27™. Recall that

(8), m € M(p) and |f(k)| < C||f|laeer) for |k| < 2™°. Hence

170/ [Enry < Cnomollm3so) | 112y
+CQ@ 2 +27m) 3 1 f oy (1 + Inl)

nez

holds for some constant C' independent of N and mgy by Lemma 4. Define
the Hilbert transform H by

IL‘) — Z fk€27rikx o Z fk€27rikx

k>0 k<0
for f(z) = Xez fre?™*@. Therefore H maps HP(T) to HP(T), and

1 oy < H Fllzoay + Cllf o)

In high spatial dimensions, we can use Riesz transform to replace Hilbert
transform [8]. Hence we have

170 f oy < Cnmol Mgl o (r
C(2 N/2+2 o) Z 7 f oy (14 [n]) 2
nez

Observe that sup,,cz ||7,f||zr(r) < 0o when f is a trigonometric polynomial
and {C(n)} € ¢~ by Lemma 2 Therefore by choosing N and my large
enough we get

sup (|7 fllmecry < Cllmllaig|f o)
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for every trigonometric polynomial f. Theorem 2 is proved. O

Proof of Theorem 3. First the right inequality. Since supp f C [-1/2+
€,1/2 — ¢ for some 0 < € < 1/2. Write f(z) = >,z f(n)¥(x — n) where
1) is a Schwartz function such that ¢(z) =1 on [-1/2 + €/4,1/2 — €¢/4] and
supp ¢ C [-1/2 +¢€/8,1/2 — ¢/8]. Observe that

Qo x fr) =

S f(n) [ @@ b(e)em kg

neZ

= [ e e,

where we denote (¢, f)(€) = ®(2"€)$(€)f(€) for m € Zand f(€) = Tyez f(n)e*™™™.

O # f(2) = 3 " m(f)(n)g(z —n)

Observe that

nez

where g is a Schwartz function with supp § C [—1/2+¢€/16,1/2—¢/16] when
m <0, ®,, x f =0 when m > 1 and ® is chosen appropriately. Therefore by

Lemma 1, we get

1/2
(ZZ | P ¢ f(fL“)IQ)

Lr(R)

IN

<

<

o\ 1/2
(2;0 (Zzsoa(f)(n)g(x—m) )

1/2
{ (ZZ I%(f)(nﬂz) }

Cl{f ()} arz)-

LP(R)

LP(Z)

Now the left inequality. By the procedure used as in the proof of Lemma,
1, it suffices to show that 5.(3,,<0 |®m * £ (k)[?)?/? < +00. Since f € S'(R),
we get |®,, * f(k)] < Onm(27™ + |k|)N for some N and all m > 0. As
in the proof of Lemma 1, we get Y \cz |~<i>m * f(k)|(1+ |k])™™ < oo and
Skez [P # f(R)|(1+ [K))™ < C ez |Par * f(k +0)[(1 + |k + 0])~™ for
some C' independent of f and m, where Ny are chosen later. Therefore

m>0

p/2 p/2
(Z |(i)m*f(k)|2> SC/ (Z |(i>m*f(gj)|2) dg;(1_|_|k|)—N1

m>0
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for some Ny < 2+2/p. Still by the procedure used as in the proof of Lemma 2,

we get Y gez (Xm0 | B f(K)|2)P/? < 400 and Ykez (Xm0 | f (K)[2)P/2 <
C|| f[I»w)- Hence the left inequality and Theorem 3 is proved. O
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