Multiplier Extension and Sampling Theorem on Hardy Spaces *

Qiyu Sun

Publicacions Matematiques, 38(1994), 441-454

Abstract

Extension by integer translates of compactly supported function for multiplier spaces on periodic Hardy spaces to multiplier spaces on Hardy spaces is given. Shannon sampling theorem is extended to Hardy spaces.

1 Introduction and statement of results

The purpose of this paper is to establish a natural extension from multiplier space $\tilde{M}(p)$ on periodic Hardy space $H^p(T)$ to multiplier space M(p) on Hardy space $H^p(\mathbf{R})$ by integer translates of a function ϕ and to extend Shannon sampling theorem to Hardy spaces. It is the continuation of [13] on stability of integer translates of a function but with different interest. In [13], the following stability problem of integer translates of ϕ

$$C^{-1} \|f\|_{H^p(\mathbf{Z})} \le \left\| \sum_{n \in \mathbf{Z}} f(n)\phi(x-n) \right\|_{H^p(\mathbf{R})} \le C \|f\|_{H^p(\mathbf{Z})}$$
 (1)

was considered which arises in the interpolation of sequences by functions and plays an important role in multiresolution analysis, where $0 , <math>f = \{f(n)\}_{n \in \mathbb{Z}}$ is a tempered sequence, $H^p(\mathbb{Z})$ and $H^p(\mathbb{R})$ denotes Hardy

^{*}This project is partially supported by Postdoctoral Fellowship Foundation of China and Natural Science Foundation of China.

spaces on **Z** and **R** respectively, and **Z** is the set of integers. A natural replacement of the norm in (1) when $p = \infty$ is the norm as multiplier operator on $H^p(T)$ and $H^p(\mathbf{R})$ respectively, which is an original inspiration to consider multiplier extension here. To this end, we introduce some notations.

Let Φ be a smooth function such that supp $\widehat{\Phi} \subset \{\frac{15}{40} \leq |x| \leq \frac{9}{10}\}$, $|\widehat{\Phi}(x)| \geq C_0$ on $\{\frac{7}{20} \leq |x| \leq \frac{4}{5}\}$ and $\sum_{m \in \mathbf{Z}} \widehat{\Phi}(2^m x) = 1$ for $x \neq 0$, where C_0 is a positive constant and the Fourier transform is defined by $\widehat{\Phi}(x) = \int e^{2\pi i x y} \Phi(y) dy$. Denote $\Phi_m(x) = 2^m \Phi(2^m x)$ for $m \in \mathbf{Z}$. Now we define Hardy spaces $H^p(\mathbf{R})$ by

$$H^p(\mathbf{R}) = \left\{ f \in \mathcal{S}'(\mathbf{R}): \ \|f\|_{H^p(\mathbf{R})} = \left\| \left(\sum_{m \in \mathbf{Z}} |\Phi_m * f|^2 \right)^{1/2} \right\|_{L^p(\mathbf{R})} < + \infty \right\}$$

and define Hardy spaces $H^p(T)$ (c.f. [3]) by

$$H^{p}(T) = \left\{ f(x) = \sum_{k \in \mathbf{Z}} f_{k} e^{2\pi i k x} \in \mathcal{S}'(\mathbf{R}) : \\ |f_{0}| + \left\| \left(\sum_{m \geq -1} |\Phi_{m} * f|^{2} \right)^{1/2} \right\|_{L^{p}(T)} < + \infty \right\}$$

$$= \left\{ f(x) = \sum_{k \in \mathbf{Z}} f_{k} e^{2\pi i k x} \in \mathcal{S}'(\mathbf{R}) : \\ ||f||_{H^{p}(T)} = |f_{0}| + \left(\int_{0}^{1} \left(\sum_{m \geq 0} |\sum_{2^{m} \leq |k| \leq 2^{m+1}} f_{k} e^{2\pi i k x}|^{2} \right)^{p/2} dx \right)^{1/p} < + \infty \right\},$$

where we denote the space of tempered distributions by $\mathcal{S}'(\mathbf{R})$, the norm of p-integrable functions on \mathbf{R} and T by $\|\cdot\|_{L^p(\mathbf{R})}$ and $\|\cdot\|_{L^p(T)}$, respectively and $T = \mathbf{R}/\mathbf{Z}$ denotes the torus. For a measurable function m on \mathbf{R} , we say that m is a multiplier on $H^p(\mathbf{R})$ if

$$||F||_{H^p(\mathbf{R})} \le C_m ||f||_{H^p(\mathbf{R})} \tag{2}$$

holds for any Schwartz function f, where $\hat{F} = m\hat{f}$. We denote the infinum C_m in (2) by $||m||_{M(p)}$. For a sequence $\tilde{m} = {\tilde{m}(n)}$, we say that \tilde{m} is a

multiplier on $H^p(T)$ if

$$||G||_{H^{p}(T)} \le C_{\tilde{m}} ||g||_{H^{p}(T)} \tag{3}$$

holds for every trigonometric polynomial $g(x) = \sum_{k \in \mathbb{Z}} g_k e^{2\pi i k x}$, where $G(x) = \sum_{k \in \mathbb{Z}} \tilde{m}(k) g_k e^{2\pi i k x}$. Also we denote $\|\tilde{m}\|_{\tilde{M}(p)}$ the infinum $C_{\tilde{m}}$ in (3).

The classical result of de Leeuw [7] on multiplier said the restriction to the integer lattice of a continuous multiplier of $L^p(\mathbf{R})$ is a multiplier on $L^p(T), 1 . In 1992, Liu [8] extended the above conclusion to Hardy spaces. The multiplier extension was considered by Jodeit[6], Berkson and Gillespie[2]. Let <math>\phi$ be a continuous function with compact support. Denote the space of sequence by S and the linear span of integer translates of ϕ by $S(\phi) = \{\sum_{n \in \mathbf{Z}} C(n)\phi(x-n) : \{C(n)\} \in S\}$. Define a natural map $\phi*'$ from S to $S(\phi)$ by

$$\phi *' : S \ni \{C(n)\} \longmapsto \sum_{n \in \mathbf{Z}} C(n)\phi(x-n) \in S(\phi).$$

We say that the integer translates of ϕ are globally linearly independent if $\phi*'$ is one-to-one. Denote the restriction of $\phi*'$ on $\tilde{M}(p)$ by I. Berkson and Gillespie [2] proved that I maps $\tilde{M}(p)$ to M(p) boundedly under the hypothesis $1 and <math>\phi = \chi_{[-1/2,1/2]} * \Lambda_0$, where $\chi_{[-1/2,1/2]}$ is the characteristic function of [-1/2,1/2], * denotes the convolution operator and Λ_0 is a bounded variation function supported in [-1/2,1/2]. In this paper, we will prove

Theorem 1 Let $0 and <math>\phi$ have compact support. If $\int |\hat{\phi}(x)|^{\min(p,1)} dx < \infty$, then I maps $\tilde{M}(p)$ to M(p) boundedly.

We improve Berkson and Gillespie's result since under their hypotheses, $|\hat{\phi}(x)| \leq C(1+|x|)^{-2}$ and $\int |\hat{\phi}(x)| dx < \infty$. Applying to Bochner-Riesz summation operator B_{δ} , we reproved that B_{δ} maps $H^{p}(\mathbf{R}^{n})$ to $H^{p}(\mathbf{R}^{n})$ when $\delta > n/p - (n+1)/2$ and $0 [11, 12] when we let <math>\phi(x) = (1-|x|^{2})^{\delta}_{+}$.

To consider the inverse of Theorem 1, we introduce the paraproduct P_h and show that P_h maps $H^p(T)$ to $H^p(\mathbf{R})$.

Theorem 2 Let ϕ be a continuous function with compact support. If $\phi*': S \longmapsto S(\phi)$ is one-to-one, then I has bounded inverse $I^{-1}: M(p) \cap S(\phi) \longmapsto \tilde{M}(p)$.

In the proof of Theorem 1 and Theorem 2, Lemma 2 plays an important role. If we assume Lemma 2 is true, or $m(x) = \sum_{n \in \mathbb{Z}} C(n)\phi(x-n) \in L^{\infty}$ implies $\{C(n)\} \in \ell^{\infty}$, then it suffices to assume that I is one-to-one in Theorem 2. In particular Theorem 2 can be written as that I has bounded inverse $I^{-1}: M(p) \cap S(\phi) \longmapsto \tilde{M}(p)$ provided I has bounded inverse $I^{-1}: M(2) \cap S(\phi) \longmapsto \tilde{M}(2)$ and ϕ is a continuous function with compact support, where $0 . The continuity condition on <math>\phi$ can be dropped in one spatial dimension since for any distribution ϕ on \mathbb{R} such that $\phi*'$ is one-to-one there exists a univariate spline B_k such that $\psi = B_k * \phi$ is continuous and $\psi*'$ is one-to-one. But I do not know how to construct this modifier B_k in high spatial dimensions. By Fourier transform characterization of global linear independence in [9], the box spline and Daubechies scaling function satisfy the condition on ϕ in Theorem 2.

Shannon sampling theorem [10] plays an important role in signal analysis. It says that a function with its Fourier transform supported in $[-1/2+\epsilon, 1/2-\epsilon]$ for some $0 < \epsilon < 1/2$ has its $L^p(\mathbf{R})$ norm comparable to its $\ell^p(\mathbf{Z})$ norm of its restriction to integer lattices \mathbf{Z} where $1 . In 1990, R. Torres[14] extended the above conclusion to Besov spaces. Let <math>\{\tilde{\Phi}_m\}_{m\geq 0}$ be a family of sequences such that $\widehat{\Phi}_m(\xi) \subset \{2^{-m-2} \le |\xi| \le 2^{-m}\}, |\widehat{\Phi}_m(\xi)| \ge C_0$ on T_m , where $\widehat{\Phi}_m(\xi) = \sum_{n \in \mathbf{Z}} \tilde{\Phi}_m(n) e^{2\pi i n \xi}, T_0 = \{3/8 \le |\xi| \le 1\}$, and $T_m = \{3 \times 2^{-m-3} \le |\xi| \le \frac{9}{10} 2^{-m}\}$. Define (c.f. [13] or [14])

$$H^{p}(\mathbf{Z}) = \left\{ \{ f(n) \}_{n \in \mathbf{Z}} : \left(\sum_{n \in \mathbf{Z}} \left(\sum_{m \geq 0} |\tilde{\Phi}_{m} * f(n)|^{2} \right)^{p/2} \right)^{1/p} < \infty \right\}.$$

where $f = \{f(n)\}_{n \in \mathbb{Z}}$ is a tempered sequence and $\tilde{\Phi}_m * f(n) = \sum_{k \in \mathbb{Z}} \tilde{\Phi}_m(n - k)f(k)$.

Theorem 3 Let $0 . If <math>f \in \mathcal{S}'(\mathbf{R})$ with supp $\hat{f} \subset [-1/2 + \epsilon, 1/2 - \epsilon]$ for some $\epsilon \in (0, 1/2)$, then the inequality

$$C^{-1} \| \{ f(n) \} \|_{H^p(\mathbf{Z})} \le \| f \|_{H^p(\mathbf{R})} \le C \| \{ f(n) \} \|_{H^p(\mathbf{Z})}$$

holds for some constant C dependent of ϵ and p only.

For simplicity in the exposition we restrict ourselves to one spatial dimension, all results can be extended to high spatial dimensions. The results of

Theorem 1 and 3 can be extended to spaces of Triebel-Lizorkin type trivially. The big letter C will denote different constant at different occurance.

2 Some lemmas

To prove our theorems, we will use the following fundamental lemmas.

Lemma 1 c.f. [15]. Let $f \in \mathcal{S}'(\mathbf{R})$ have its Fourier transform contained in a compact set. Therefore

$$|\psi * f(x)| \le CM(|f|^r)^{1/r}(x)$$
 (4)

holds for every Schwartz function ψ and 0 < r < 1, where M denotes Hardy-Littlewood maximal operator and the constant C depends on the semi-norm of ψ , r and the radius R for which \hat{f} is supported in the ball with radius R and center zero.

Proof of Lemma 1: Without loss of generality we assume that x = 0, and $M(|f|^r)(0) < \infty$ and supp $\hat{f} \subset [-1/4, 1/4]$ by dilation invariance. Write

$$f(x) = \sum_{n \in \mathbf{Z}} f(n)\varphi(x - n), \tag{5}$$

for some Schwartz function φ such that $\hat{\varphi} \subset [-3/8, 3/8]$. Hence $|f * \psi(0)|^r \leq C \sum_{n \in \mathbb{Z}} |f(n)|^r (1+|n|)^{-3}$. To prove (4), we first prove that $\sum_{n \in \mathbb{Z}} |f(n)|^r (1+|n|)^{-3} < \infty$. Recall that $f \in \mathcal{S}'(\mathbb{R})$ and supp $\hat{f} \subset [-1/4, 1/4]$. Therefore $|f(n)| \leq C(1+|n|)^N$ for some constants C and N. On the other hand, we have

$$|f(n)|^r \le |f(n+\delta)|^r + C|\delta|^r \sum_{m \in \mathbf{Z}} |f(m)|^r (1+|m-n|)^{-N-3}$$

by (5) and

$$\sum_{|n| \le 2^k} |f(n)|^r (1+|n|)^{-3} \le C_{\delta_0} + C_N |\delta_0|^r \sum_{|n| \le 2^{k+1}} |f(n)|^r (1+|n|)^{-3}$$

by summing over $|n| \leq 2^k$ and integrating over $|\delta| \leq \delta_0 < 1$, where δ_0 is chosen later and C_N is independent of δ_0 . Denote $A_k = \sum_{2^{k-1} < |n| < 2^k} |f(n)|^r (1 + |n|)^r$

 $|n|)^{-3}$. Therefore $\sum_{j=1}^{k} A_j \leq 2C_{\delta_0} + 2C_N |\delta_0|^r A_{k+1}$. Conversely, if we assume that $\sum_{j=1}^{k_0} A_j \geq 4C_{\delta_0}$ for some k_0 , then $\sum_{j=1}^{k_0+s} A_j \geq (1 + \frac{1}{4C_N |\delta_0|})^s C_{\delta_0}$, which contradicts $\sum_{j=1}^{k_0+s} |A_j| \leq C \sum_{j=1}^{k_0+s} (1 + |j|)^N \leq C 2^{sN}$ provided δ_0 is chosen small enough. This proves $\sum_{n \in \mathbf{Z}} |f(n)|^r (1 + |n|)^{-3} < \infty$.

Furthermore by (5) we have

$$|f(n)|^r \le |f(n+\delta)|^r + C|\delta|^r \sum_{m \in \mathbf{Z}} |f(m)|^r (1+|m-n|)^{-3}$$

for some constant C independent of f and by integrating over $|\delta| \leq \delta_0$ for some sufficiently small $\delta_0 > 0$ we get

$$\sum_{n \in \mathbf{Z}} |f(n)|^r (1+|n|)^{-3} \le C \int_{\mathbf{R}} |f(x)|^r (1+|x|)^{-3} dx \le CM(|f|^r)(0).$$

Therefore Lemma 1 is proved. \Box

Lemma 2 Let the integer translates of the continuous function ϕ be globally linearly independent. If $m(x) = \sum_{n \in \mathbf{Z}} C(n)\phi(x-n) \in M(p)$, then $\{C(n)\} \in \ell^{\infty}$ and $\|\{C(n)\}\|_{\ell^{\infty}(\mathbf{Z})} \leq C\|m\|_{M(p)}$.

Proof of Lemma 2. First we prove

$$||m||_{L^{\infty}(\mathbf{R})} \le C||m||_{M(p)}. \tag{6}$$

Obviously (6) is true when $1 since Marcinkiewicz real interpolation, <math>||m||_{M(2)} = ||m||_{L^2(\mathbf{R})}$ and $||m||_{M(p)} = ||m||_{M(p')}$ where p' = p/(p-1). Hence the matter reduces to proving (6) for $0 . For any <math>f \in H^p(\mathbf{R})$, we have the atomic decomposition $f(x) = \sum_{k \in \mathbf{Z}} \lambda_k a_k(x)$ with $C^{-1}||f||_{H^p(\mathbf{R})} \le (\sum_{k=0}^{\infty} |\lambda_k|^p)^{1/p} \le C||f||_{H^p(\mathbf{R})}$, where a_k are (p, 2, s) atoms and $s \ge \frac{1}{p} - 1$. We recall that a is an (p, 2, s) atom if there exists an interval I such that supp $a \subset I$, $||a||_{L^2(\mathbf{R})} \le |I|^{1/2-1/p}$ and $\int x^{\alpha}a(x)dx = 0$ for $0 \le \alpha \le s$. It is easy to show that $\hat{a}(x)$ is continuous, $|\hat{a}(x)| \le C|I|^{1-1/p}$ and $|\hat{a}(x)| \le C|x|^{s+1}|I|^{s+2-1/p}$. Hence $|\hat{a}(x)| \le C|x|^{-1+1/p}$ and $|\hat{f}(x)| \le \sum_{k=0}^{\infty} |\lambda_k||\hat{a}_k(x)| \le C(\sum_{k=0}^{\infty} |\lambda_k|^p)^{1/p}|x|^{1/p-1}$. Denote $f_t(x) = t^{-1/p}f(x/t)$. Therefore $f_t(x) = \sum_{k=0}^{\infty} \lambda_k (a_k)_t(x)$ and $C^{-1}(\sum_{k=0}^{\infty} |\lambda_k|^p)^{1/p} \le ||f_t||_{H^p(\mathbf{R})} \le C(\sum_{k=0}^{\infty} |\lambda_k|^p)^{1/p}$. Recall that $m \in M(p)$ for 0 . Hence

$$||(m\hat{f}_t)^{\vee}||_{H^p(\mathbf{R})} \le C||f_t||_{H^p(\mathbf{R})} \le C||f||_{H^p(\mathbf{R})}$$

and

$$|m(x)t^{1-1/p}\hat{f}(tx)| \le C||f||_{H^p(\mathbf{R})}|x|^{1/p-1}$$

for all t > 0. Therefore $|m(x)\hat{f}(x/|x|)| \leq C||f||_{H^p(\mathbf{R})}$ for every $x \neq 0$ when we let $t = |x|^{-1}$ and (6) is proved for $0 by choosing <math>f \in H^p(\mathbf{R})$ such that $\hat{f}(x/|x|) = 1$ on the unit sphere.

Second we prove

$$\|\{C(n)\}\|_{\ell^{\infty}(\mathbf{Z})} \le C\|m\|_{L^{\infty}(\mathbf{R})} \tag{7}$$

By [1, Theorem 1.3], there exists a local algebraic dual Λ_n of $\{\phi(x-n)\}$, which says $\Lambda_n\phi(x-k)=\delta_{nk}$ and there exists a bounded set K such that $\Lambda_n f=0$ when $f\in S(\phi)$ and supp $f\cap (K+n)=\emptyset$, where we define the Kronecker symbol δ_{nk} by $\delta_{nn}=1$ and $\delta_{nk}=0$ when $n\neq k$. Recall that ϕ is continuous. Hence there exist finite points $x_i\in K$ and weights $C(x_i)$ such that $\Lambda_n f=\sum_i C(x_i)f(x_i+n)$ for every $f\in S(\phi)$. This shows $|C(n)|=|\Lambda_n m|\leq C||m||_{L^{\infty}}$ for every $n\in \mathbb{Z}$. Therefore (7) holds and Lemma 2 is proved by combining (6) and (7).

Lemma 3 ([4] or [5, Theorem A.1]) Let $1 and <math>1 < q \leq \infty$. Therefore the following Fefferman-Stein vector-valued maximal inequality

$$\left\| \left(\sum_{k \in \mathbf{Z}} |M f_k|^q \right)^{1/q} \right\|_{L^p(\mathbf{R})} \le C \left\| \left(\sum_{k \in \mathbf{Z}} |f_k|^q \right)^{1/q} \right\|_{L^p(\mathbf{R})}$$

holds, where M denotes the Hardy-Littlewood maximal operator on ${\bf R}$ as usual.

Let h and η be two Schwartz functions such that supp $\hat{\eta} \subset \{|x| \leq \frac{1}{20}\}$ and $\hat{\eta}(x) = 1$ on $\{|x| \leq \frac{1}{40}\}$. Let Φ_m be as in the definition of $H^p(\mathbf{R})$. For $f \in H^p(T)$ we introduce a new type of paraproduct operator P_h defined by

$$P_h f(x) = \sum_{m>0} (\eta_m * h)(x) (\Phi_m * f)(x)$$
 (8)

where $\eta_m(x) = 2^m \eta(2^m x)$.

Lemma 4 Let P_h be defined by (8) and h be a Schwartz function. Then P_h maps $H^p(T)$ to $H^p(\mathbf{R})$,

$$||P_h f||_{H^p(\mathbf{R})} \le C||f||_{H^p(T)}.$$

Proof of Lemma 4. Observe that $|\eta_m * h(x)| \leq C_N (1+|x|)^{-N}$ for every N > 0 and some C_N independent of m. Also observe that supp $((\eta_m * h)(\Phi_m * f))^{\wedge} \subset \{\frac{11}{40}2^m \leq |x| \leq \frac{19}{20}2^m\}$ and $\Phi_m * f(x+k) = \Phi_m * f(x)$ for all $k \in \mathbb{Z}$. Therefore

$$||P_h f||_{H^p(\mathbf{R})}^p \leq C \int_{\mathbf{R}} \left(\sum_{m \geq 0} |(\eta_m * h)(x)(\Phi_m * f)(x)|^2 \right)^{p/2} dx$$

$$\leq C \sum_{k \in \mathbf{Z}} \int_0^1 \left(\sum_{m \geq 0} (1 + |k|)^{-\max(4, 4/p)} |\Phi_m * f(x)|^2 \right)^{p/2} dx$$

$$\leq C ||f||_{H^p(T)}^p$$

and Lemma 4 is proved.

3 Proof of theorems

Proof of Theorem 1. Let $\{C(n)\}$ be a multiplier on $H^p(T)$ and supp $\phi \subset [-M/4, M/4]$ for some M > 1. Denote $m(x) = \sum C(n)\phi(x-n)$. Let Φ_k be as in the definition of $H^p(\mathbf{R})$. Write $f = f_0 + f_1 + f_2$, where $f_0 = \sum_{k \leq 2M_1} \Phi_k * f$ and $f_i = \sum_{k \geq M_1} \Phi_{2k+i} * f$ for i = 1, 2, where M_1 is a positive integer such that $2^{M_1} \geq 20M$. Observe that

$$m(x)(\Phi_k * f)^{\hat{}}(x) = \sum_{|l| < 2^{2M_1} + M} C(l)\phi(x - l)(\Phi_k * f)^{\hat{}}(x)$$

for $k \leq 2M_l$. Write $\phi^{\vee}(x) = \sum_{n \in \mathbf{Z}} \phi^{\wedge}(n/M)\psi(x - n/M)$ for some $\psi \in \mathcal{S}(\mathbf{R})$ with supp $\hat{\psi} \subset \{|x| \leq 3/8\}$, where ϕ^{\vee} denotes the inverse Fourier transform. Therefore

$$\int_{\mathbf{R}} \left(\sum_{k \leq 2M_1} |(m(\Phi_k * f)^{\wedge})^{\vee}(x)|^2 \right)^{p/2} dx$$

$$\leq C \sum_{|l| \leq 2^{2M_1} + M} |C(l)|^p \left(\sum_{n \in \mathbf{Z}} |\phi^{\vee}(n/M)|^{\min(p,1)} \right)^{\max(p,1)}$$

$$\times \int_{\mathbf{R}} \left(\sum_{k \leq 2M_1} |\psi * |(\Phi_k * f)|(x)|^2 \right)^{p/2} dx$$

$$\leq C \|\{C(l)\}\|_{\ell^{\infty}(\mathbf{Z})}^{p} \int_{\mathbf{R}} \left(\sum_{k \leq 2M_{1}} (M(\Phi_{k} * f)^{r}(x))^{2/r} \right)^{p/2} dx$$

$$\leq C \|m\|_{\tilde{M}(p)}^{p} \|f\|_{H^{p}(\mathbf{R})}^{p},$$

where $0 < r < \min(p, 1)$. The first inequality follows from Hölder inequality and $\sum_{n \in \mathbb{Z}} |a_n| \le (\sum_{n \in \mathbb{Z}} |a_n|^p)^{1/p}$ for 0 , the second inequality follows from Lemma 1 and

$$\sup_{|y| \le 2} \sum_{n \in \mathbf{Z}} |\phi^{\vee}(y+n)|^{\min(p,1)} \le C \int |\hat{\phi}(x)|^{\min(p,1)} dx$$

(see [13, Lemma 6]), and the third inequality follows from Lemma 2 and Lemma 3. For $k \geq 2M_1$, write $\phi(x)(\Phi_k * f)^{\wedge}(x+n) = \sum_{l \in \mathbb{Z}} C_{k,n}(l) e^{2\pi i l x/M} \hat{\eta}(x/M)$ for some Schwartz function η with supp $\hat{\eta} \subset \{|x| \leq 3/8\}$. Therefore we get

$$(m(\Phi_k * f)^{\wedge})^{\vee}(x) = \sum_{l \in \mathbf{Z}} \sum_{2^{k-2} < |n| < 2^k} C(n) C_{k,n}(l) e^{-2\pi i n x} \eta(Mx - l)$$

since $2^{M_1} \geq 20M$ and

$$\sum_{2^{k-2} \le |n| < 2^k} C_{k,n}(l) e^{-2\pi i n x}$$

$$= \int_{-1/2}^{1/2} \phi(y) \left(\sum_{n \in \mathbf{Z}} (f * \Phi_k)^{\wedge} (y+n) e^{-2\pi i n x} \right) e^{-2\pi i l y} dy$$

$$= \sum_{n \in \mathbf{Z}} (f * \Phi_k) (x+n) \hat{\phi}(x+n-l/M)$$

by Possion summation formula. Hence

$$\|(m\widehat{f}_{i})^{\vee}\|_{H^{p}(\mathbf{R})}^{p} \leq C \int_{\mathbf{R}} \left(\sum_{k \geq M_{1}} |(m(\Phi_{2k+i} * f)^{\wedge})^{\vee}(x)|^{2} \right)^{p/2} dx$$

$$\leq C \sum_{l \in \mathbf{Z}} \int_{\mathbf{R}} \left(\sum_{k \geq M_{1}} \left| \sum_{2^{2k+i-2} \leq |n| \leq 2^{2k+i}} C(n)C_{2k+i,n}(l)e^{-2\pi i n x} \right|^{2} \right)^{p/2}$$

$$\times (1 + |Mx - l|)^{-2} dx$$

$$\leq C \sum_{l \in \mathbf{Z}} \int_{-1/2}^{1/2} \left(\sum_{k \geq M_{1}} \left| \sum_{2^{2k+i-2} \leq |n| \leq 2^{2k+i}} C(n)C_{2k+i,n}(l)e^{-2\pi i n x} \right|^{2} \right)^{p/2} dx$$

$$\leq C \|\{C(n)\}\|_{\tilde{M}(p)}^{p} \sum_{l \in \mathbf{Z}} \int_{-1/2}^{1/2} \left(\sum_{k \geq M_{1}} \left| \sum_{2^{2k+i-2} \leq |n| \leq 2^{2k+i}} C_{2k+i,n}(l) e^{-2\pi i n x} \right|^{2} \right)^{p/2} dx$$

$$\leq C \|\{C(n)\}\|_{\tilde{M}(p)}^{p} \sum_{l \in \mathbf{Z}} \int_{-1/2}^{1/2} \left(\sum_{k \geq M_{1}} \left(\sum_{n \in \mathbf{Z}} |f * \Phi_{2k+i}(x+n)| \right) \right)^{p/2} dx$$

$$\leq C \|\{C(n)\}\|_{\tilde{M}(p)}^{p} \left(\int |\hat{\phi}(x)|^{\min(p,1)} dx \right)^{\max(p,1)}$$

$$\times \left(\sum_{n \in \mathbf{Z}} \int_{-1/2}^{1/2} \left(\sum_{k \geq M_{1}} |f * \Phi_{2k+i}(x+n)|^{2} \right)^{p/2} dx \right)$$

$$\leq C \|\{C(n)\}\|_{\tilde{M}(p)}^{p} \|f\|_{H^{p}(\mathbf{R})}^{p},$$

and Theorem 1 is proved. \Box

Proof of Theorem 2. Let $m(x) = \sum_{n \in \mathbb{Z}} C(n)\phi(x-n)$ be a multiplier of $H^p(\mathbb{R})$ and $f = \sum_{l \in \mathbb{Z}} \hat{f}(l)e^{2\pi i l x}$ is a trigonometric polynomial. Observe that $|\hat{f}(k)| \leq C_k ||f||_{H^p(T)}$. Therefore we assume that $\hat{f}(0) = 0$ without loss of generality. Write

$$(m(\cdot)(P_h f)(\cdot)^{\wedge})^{\vee}(x)$$

$$= \sum_{n,k \in \mathbf{Z}} \sum_{m \geq 0} C(n+k) \hat{f}(k) \hat{\Phi}(2^{-m}k) e^{2\pi i k x} \int \hat{\eta}_m(\xi) \hat{h}(\xi) \phi(\xi-n) e^{-2\pi i x \xi} d\xi$$

$$= \sum_{n \in \mathbf{Z}} \sum_{m \geq 0} \Phi_m * (\tau_n f)(x) \int_{-1/2}^{1/2} e^{2\pi i n y} \sum_{k \in \mathbf{Z}} \hat{\phi}(y+k) (\eta_m * h - h)(x-y-k) dy$$

$$+ \sum_{n \in \mathbf{Z}} (\tau_n f)(x) \int_{-1/2}^{1/2} e^{2\pi i n y} \sum_{k \in \mathbf{Z}} \hat{\phi}(y+k) h(x-y-k) dy$$
(9)

where $(\tau_n f)(x) = \sum_{k \in \mathbf{Z}} C(n+k) \hat{f}(k) e^{2\pi i k x}$ and the second equality follows from Poisson summation formula $\sum_{n \in \mathbf{Z}} f(n) = \sum_{n \in \mathbf{Z}} \hat{f}(n)$ and $\sum_{m \geq 0} \widehat{\Phi}_m = 1$ on $\{|\xi| \geq 1\}$. Let h_0 be a smooth function with compact support such that

$$\sum_{k \in \mathbf{Z}} \hat{\phi}(y+k) h_0(x-y-k) = 1 \quad \text{on} \quad [-1/2, 1/2],$$

since for every $y \in [-1/2, 1/2]$ there exists $k \in \mathbf{Z}$ for which $\hat{\phi}(y+k) \neq 0$ by the Fourier transform characterization of global linear independence of integer translates of ϕ ([9]). Denote $h_i(x) = h_0(x - 2^{-N}i)$ and the characteristic function on $[2^{-N}i, 2^{-N}(i+1))$ by χ_i , where N is chosen later and $-2^{N-1} \leq i \leq 2^{N-1} - 1$. Therefore multiplying χ_i on the two sides of (9), we get

$$|\chi_i(x)|\tau_0 f(x)| \le |\chi_i(x)(m(P_{h_i}f)^{\wedge})^{\vee}(x)| + C \sum_{n \in \mathbf{Z}} |\chi_i(x)| |\tau_n f(x)| 2^{-N/2} (1+|n|)^{-2/\min(p,1)}$$

$$+CA_{m_0}|\chi_i(x)|\sum_{n\in\mathbf{Z}}(1+|n|)^{-2/\min(p,1)}\left(\sum_{m\geq 0}|\Phi_m*(\tau_n f)(x)|^2\right)^{1/2},$$

where $A_{m_0}(h) = \sup_{-2^{N-1} \le i \le 2^{N-1}} \sum_{|k| \le 2+2/p} (\sum_{m \ge m_0} \|\eta_m * (\frac{\partial}{\partial x})^k h_i - (\frac{\partial}{\partial x})^k h_i\|_{L^{\infty}}^2)^{1/2}$ and $\hat{f}(k) = 0$ for $|k| \le 2^{m_0}$. It is easy to prove $A_{m_0}(h) \le C2^{-m_0}$. Recall that (8), $m \in M(p)$ and $|\hat{f}(k)| \le C_k \|f\|_{H^p(T)}$ for $|k| \le 2^{m_0}$. Hence

$$||\tau_0 f||_{H^p(T)}^p \leq C_{N,m_0} ||m||_{M(p)}^p ||f||_{H^p(T)}^p + C(2^{-N/2} + 2^{-m_0}) \sum_{n \in \mathbf{Z}} ||\tau_n f||_{H^p(T)}^p (1 + |n|)^{-2},$$

holds for some constant C independent of N and m_0 by Lemma 4. Define the Hilbert transform H by

$$Hf(x) = \sum_{k>0} f_k e^{2\pi i kx} - \sum_{k<0} f_k e^{2\pi i kx}$$

for $f(x) = \sum_{k \in \mathbb{Z}} f_k e^{2\pi i k x}$. Therefore H maps $H^p(T)$ to $H^p(T)$, and

$$||f||_{H^p(T)}^p \le ||Hf||_{L^p(T)} + C||f||_{L^p(T)}.$$

In high spatial dimensions, we can use Riesz transform to replace Hilbert transform [8]. Hence we have

$$||\tau_0 f||_{H^p(T)}^p \leq C_{N,m_0} ||m||_{M(p)}^p ||f||_{H^p(T)}^p$$

$$C(2^{-N/2} + 2^{-m_0}) \sum_{n \in \mathbf{Z}} ||\tau_n f||_{H^p(T)}^p (1 + |n|)^{-2}.$$

Observe that $\sup_{n\in\mathbb{Z}} \|\tau_n f\|_{H^p(T)} < \infty$ when f is a trigonometric polynomial and $\{C(n)\} \in \ell^{\infty}$ by Lemma 2. Therefore by choosing N and m_0 large enough we get

$$\sup_{n \in \mathbf{Z}} \|\tau_n f\|_{H^p(T)} \le C \|m\|_{M(p)} \|f\|_{H^p(T)}$$

for every trigonometric polynomial f. Theorem 2 is proved. \square

Proof of Theorem 3. First the right inequality. Since supp $\hat{f} \subset [-1/2 + \epsilon, 1/2 - \epsilon]$ for some $0 < \epsilon < 1/2$. Write $f(x) = \sum_{n \in \mathbb{Z}} f(n)\psi(x - n)$ where ψ is a Schwartz function such that $\psi(x) = 1$ on $[-1/2 + \epsilon/4, 1/2 - \epsilon/4]$ and supp $\psi \subset [-1/2 + \epsilon/8, 1/2 - \epsilon/8]$. Observe that

$$\Phi_M * f(x) = \sum_{n \in \mathbf{Z}} f(n) \int \hat{\Phi}(2^{-m}\xi) \overline{\hat{\psi}(\xi)} e^{-i2\pi(x-n)\xi} d\xi$$

$$= \int (\varphi_{-m}^* f)^{(\xi)} e^{-2\pi i x \xi},$$

where we denote $(\varphi_m^* f)^{(\xi)} = \hat{\Phi}(2^m \xi) \hat{\psi}(\xi) \hat{f}(\xi)$ for $m \in \mathbf{Z}$ and $\hat{f}(\xi) = \sum_{n \in \mathbf{Z}} f(n) e^{2\pi i n \xi}$. Observe that

$$\Phi_m * f(x) = \sum_{n \in \mathbf{Z}} \varphi_{-m}^*(f)(n)g(x-n)$$

where g is a Schwartz function with supp $\hat{g} \subset [-1/2 + \epsilon/16, 1/2 - \epsilon/16]$ when $m \leq 0$, $\Phi_m * f = 0$ when $m \geq 1$ and Φ is chosen appropriately. Therefore by Lemma 1, we get

$$\left\| \left(\sum_{m \in \mathbf{Z}} |\Phi_m * f(x)|^2 \right)^{1/2} \right\|_{L^p(\mathbf{R})} \leq \left\| \left(\sum_{m \geq 0} \left(\sum_{n \in \mathbf{Z}} \varphi_m^*(f)(n) g(x - n) \right)^2 \right)^{1/2} \right\|_{L^p(\mathbf{R})}$$

$$\leq \left\| \left\{ \left(\sum_{m \in \mathbf{Z}} |\varphi_m^*(f)(n)|^2 \right)^{1/2} \right\} \right\|_{L^p(\mathbf{Z})}$$

$$\leq C \| \{ f(n) \} \|_{H^p(\mathbf{Z})}.$$

Now the left inequality. By the procedure used as in the proof of Lemma 1, it suffices to show that $\sum_{k} (\sum_{m \leq 0} |\tilde{\Phi}_m * f(k)|^2)^{p/2} < +\infty$. Since $f \in \mathcal{S}'(\mathbf{R})$, we get $|\tilde{\Phi}_m * f(k)| \leq C_{N,m} (2^{-m} + |k|)^N$ for some N and all $m \geq 0$. As in the proof of Lemma 1, we get $\sum_{k \in \mathbf{Z}} |\tilde{\Phi}_m * f(k)| (1 + |k|)^{-N_1} < \infty$ and $\sum_{k \in \mathbf{Z}} |\tilde{\Phi}_m * f(k)| (1 + |k|)^{-N_1} \leq C \sum_{k \in \mathbf{Z}} |\tilde{\Phi}_M * f(k + \delta)| (1 + |k + \delta|)^{-N_1}$ for some C independent of f and m, where N_1 are chosen later. Therefore

$$\left(\sum_{m\geq 0} |\tilde{\Phi}_m * f(k)|^2\right)^{p/2} \leq C \int \left(\sum_{m\geq 0} |\tilde{\Phi}_m * f(x)|^2\right)^{p/2} dx (1+|k|)^{-N_1}$$

for some $N_1 \leq 2+2/p$. Still by the procedure used as in the proof of Lemma 2, we get $\sum_{k \in \mathbf{Z}} (\sum_{m \geq 0} |\tilde{\Phi}_m * f(k)|^2)^{p/2} < +\infty$ and $\sum_{k \in \mathbf{Z}} (\sum_{m \geq 0} |\tilde{\Phi}_m * f(k)|^2)^{p/2} \leq C ||f||_{H^p(\mathbf{R})}^p$. Hence the left inequality and Theorem 3 is proved. \square

References

- [1] A. Ben-Artzi and A. Ron, On the integer translates of a compactly supported function: dual bases and linear projections, *SIAM J. Math. Anal.*, **21**(1990), 1550-1562.
- [2] E. Berkson and T. A. Gillespie, Transference and extension of Fourier multipliers for $L^p(T)$, J. London Math. Soc., **41**(1990), 472-488.
- [3] R. E. Edwards and G. I. Gundry, "Littlewood-Paley and Multiplier Theory", Springer-Verlag, Berlin, 1977.
- [4] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93(1971), 107-115.
- [5] M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Funct. Anal., 93(1990), 34-170.
- [6] M. Jodeit, Restriction and extension of Fourier multiplier, Studia Math., 34(1970), 215-226.
- [7] K. de Leeuw, On L^p multiplier, Ann. of Math., 81(1965), 364-379.
- [8] Z.-X. Liu, Multipliers on real Hardy spaces, Sci. Sinica, **35**(1992), 55-69.
- [9] A. Ron, A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution, *Constr. Approx.*, **5**(1989), 297-308.
- [10] C. E. Shannon, Communication in the presence of noise, Proc. of the IRE, 37(1949), 10-21.
- [11] P. Sjölin, Convolution with oscillating kernels in H^p spaces, J. London Math. Soc., **23**(1981), 442-454.

- [12] E. M. Stein, M. H. Taibleson and G. Weiss, Weak type estimates for maximal operators on certain H^p spaces, Rend. Circ. Mat. Palermo, supplemente 1 (1981), 81-97.
- [13] Q. Sun, Sequence spaces and stability of integer translates, Zeit. Anal. Anwendungen, 12(1993), 567-584.
- [14] R. Torres, Space of sequences, sampling theorem and functions of exponential type, *Studia Math.*, **100**(1991), 51-74.
- [15] H. Triebel, "Theory of Function Spaces", Akad. Verlagsges, Leipzig, 1983.

Center for Mathematical Sciences Zhejiang University Hangzhou, Zhejiang 310027 P. R. China