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1 Introduction

A compactly supported distribution f on IR" is said to be refinable if f
satisfies such a refinement equation

fl@)= 3 cjf(2z—j), (1)

jez"

where the sequence {c;} has finite support and 3 ;cz» c; = 2". Define the
symbol of the refinement equation (1), or of refinable distribution f, by

H¢=2" Z cje*ij'f. (2)

JEZ"
Then H (&) is a trigonometric polynomial and satisfies H(0) = 1.

The solution to the refinement equation (1) is unique up to a multiplying
constant. So we only consider the normalized solution to (1), which means
F(0) = 1. Hereafter the Fourier transform f of an integrable function f is
defined by

F&) = e f(a)de.

The Fourier transform of a compactly supported distribution is interpreted
as usual.

Refinable function appears in different setting, most notably in subdivi-
sion schemes for computer aided design, and in the construction of wavelet
bases and multiresolution. The refinable distribution has attracted a lot of
attention in recent years and is well studied, including existence, uniqueness
and regularity etc. The dependence of the regularity of f on the choice of
coefficients ¢, in (1) has been studied by many authors (see [1], [3], [5], [6],
(7], [8], [20], [21] for Holder continuous space, [14], [17], [18] for p-integrable
space and LP-Lipschitz space, [9], [13], [16], [24] for Sobolev space, [25] for
Besov space, and the survey paper [3]). The results are often formulated in
terms of the joint spectral property of operators on a finitely dimensional
space, or obtained by the direct estimate for the corresponding symbol H ().

In this paper, we will characterize compactly supported refinable distri-
butions in Triebel-Lizorkin spaces and Besov spaces via projection operators
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P, and @); of a multiresolution and via operators B, on a finitely dimensional
space V.

The paper is organized as follows. In Section 2, we fix some notations and
state main results. In fact, we give the definitions of Triebel-Lizorkin spaces
and Besov spaces, multiresolution, projection operators P, and ();, operators
B, finitely dimensional space V' and p,(B., V), a number similar to p-norm
joint spectral radius in [14], and state the main results. Section 3 contains
the proof of main theorem. In Section 4, we will give some remarks.

2  Preliminary and Result

The Triebel-Lizorkin spaces and Besov spaces are two important classes of
function spaces, which include spaces of all p-integrable functions for p > 1,
Sobolev spaces and Hardy spaces as well. For the theory of Triebel-Lizorkin
spaces and Besov spaces we refer the reader to [23] and [11].

Let ¢ and ¢ be functions in the Schwarz class such that QASU is supported
in {&; [£] < 2}, ¢ supported in {£;1 < |£| < 4} and

Go(&) + D 0(27¢) =1, VEER"

1>0

Define the convolution f *x g of two square integrable functions f and g by
Frg@) = [, fla =)oy

and the quasi-norm of p-integrable function by || f[l, = (fr~ |f(z)[Pdz)"/? for
0 < p < 0o. The convolution of two compactly supported distributions is
interpreted as usual.

For —o0o < a < 00,0 < p,q < oo, Triebel-Lizorkin space F', is the set of
distribution f such that its quasi-norm || f|| s defined by

£ llrg, = Nbo* fllp + N 2 % £19)Y7],

1>0



is finite, and Besov space B, is the set of distribution f such that its quasi-
norm || f|| g defined by

1£115s, = ldo * Fllp + (3 29|y * £1|2)"

1>0

is finite, where ¢ (z) = 2" (2'x) for I > 0. The topologies of F%, and Bg,
are induced by the quasi-norms [ - [[pe_and [| - [|pa  respectively.

A multiresolution is a family of closed subspaces {V;};cz of L?, the space
of square integrable functions, such that

a) NiezVi = {0} and Uiz V] is dense in L%
b) ViC Vi, Ve Z.

c¢) There exists a function ¢ in Vj such that {¢(- — k); k € ZZ"} is a Riesz
basis of Vj and V; is spanned by {2"/2¢(2! . —k); k € ZZ"}.

The function ¢ in ¢) is called a scaling function of the multiresolution.
The multiresolution was introduced by Mallat and Meyer(see [4], [19]). In one
dimension, it is well known that for any integer 7 there exists multiresolutions
{Vi} and {V;} such that the corresponding scaling functions ¢ and ¢ are
compactly supported, in Holder class C™ and biorthogonal (see [5], [2]). Here
we denote the Holder space with Holder exponent 7 by C7, and we say that
¢ and ¢ are biorthogonal if

it . _ 17 ]207
I e Y

A compactly supported distribution ¢ is said to be locally linearly inde-
pendent if for any open set A

JEZ™

where j € K(A) means g(-—j) is not identically zero on A. In [22], the second
author proved in one dimension case that biorthogonal scaling functions ¢
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and ¢ are locally linearly independent. Then for any integer 7 > 1, we
can construct scaling functions ¢ and ¢ in higher dimensions by the tensor
product method in [19] such that ¢ and ¢ are compactly supported, in Holder
space C7, biorthogonal and locally linearly independent.

For these multiresolutions {V;},cz and {‘N/}}le 7 let wavelet spaces W, be
the biorthogonal complement of V; in V1. Define projection operators P, >
0 to V; by

Pif(z) =2™ > (f, 62" - —)))o(2'z — j), (3)

jez"

and projection operators ¢); on W, by

Quf = P f — B f (4)

for square integrable function f. Here for two functions f and ¢ in L2, their
inner product is defined by

(fy9) = /]R" f(x)mdx

Now we extend the domain of definitions of P, and ;. Obviously it
suffices to extend the domain of definition of inner product. By Parseval
identity, we have

(f.9) = (2m) " [ FO7(E)de

Then we may define the inner product of two distributions f and g by the
formula above when f(£)g(&) is integrable.

Denote the class of compactly supported distributions f which satisfy

~

FOI<CA+[E), VEeR"

by D* Set B = Insup, g~ [H(£)|/In2. Then f € DP for the refinable
distribution f in (1). By integration by parts, we have

~

fO|<CA+ e, VEeR"

when f € C7. Thus the inner product between f € D? and g € C7 is well
defined when 7 > B+n. This shows that the inner product between refinable
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distribution f in (1) and ¢(- —7), the scaling functions of the multiresolution
{V;}, is well defined when 7 > Insup, g [H({)|/In2 + n and hence the
projection operators P, and (); are well defined.

In this paper, unless otherwise stated we assume that the multiresolutions
{Vi} and {V;} are chosen such that their corresponding scaling functions
¢ and qz are compactly supported, biorthogonal, in Hélder space C7 with
7 >Insup, g~ [H({)|/In2 + n and locally linearly independent.

To characterize the refinable distribution, we also need a finitely dimen-
sional space V and operators B, on V', which are very similar to the transfer
operators in [6], [9], [24] etc.

For e € E = {0,1}" and the symbol H () of the refinement equation (1),
define operators B, by

B.P(&) =) H(§ + G'W)e’if'(gJ“e’”)P(g +€'m) (5)
e€crE 2 2
for every trigonometric polynomial P. Let
Fo(&) = Y (f.o(-—j))e™%,
ez
and R,, e € E be defined by
H(§)Fy(€) — Fo(26)G(€) = Y e “*R(2¢€), (6)

eck

where G(£) is the symbol of the scaling function ¢. Then R., e € E are
trigonometric polynomials.

Let V' be the minimal space containing R,, € € E such that it is invariant
under operators B, ¢ € E. Then

V' is spanned by {Be, ---BqReej,e€ E,1<j<1[ and [>0}.

It is easy to see that V is of finite dimension (see [14]). For simplicity, we
still denote by B, the restriction of operators B, on V.
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For 0 < p < oo, define the p-quasinorm || P[5 for trigonometric polynomial
P(§) = Yjezn dje? ¢ by

1Pl = (32 ld;1)".

JEZ™
Set
1
(B V) =inf sup (27" 3 (|IBy - Baullp))™

21 |ufjs=1ueV 1 e€E

The number p, (B, V') is essentially the p-norm joint spectral radius of oper-
ators B, on finite dimensional space V' (see [14] and [12]). The authors would
thank one anonymous referee to point out this fact to us.

The number p,(B,, V') may be also computed by

1
pp(BoV)=lim sup (27" 3 (|[By - Baullp))™

=00 ||u||s =1,ueV sy

The assertion above is proved by [14] for p > 1. Now we give the proof of
the assertion above for 0 < p < 1.

Set 1
Di= sw (2" 3 (IBy--Baulp))".

full;=1ueV €1, e €EE

Then it suffices to prove that
limsup,_, . D; = p(B., V).
For any 6 > 0, by the definition of p(B., V'), there exists [y such that
Dy, < p(B., V) + 6.
Hence we have

> (1B Beullp)” < 27°(p(Be, V) + 8y ([ull)", YueV

€1, €1y EE



and for all [ = klp + 5,0 < s <lyand k > 1,

> (IBe - Beullp)

617"'7516E
> X % (IBae By

€klg+1,EEE €(k71)10+1,“',5k106E €1,€1 0 EE
< 2nl0 (P(Be, V) + 5)plo X

Z Z Z (||szo+1 "'szuH;)p
€rigr1r €€ E €(_1)1g+15€k1n EE €ly+1> €215 EE
< gnklo (p(Be, V) 4 5)pklo Z (||B€klo+1 ce BquH;)p
€klg+1:EIEE

< (B V) + O ()

where C'is a constant independent of £ > 1. This shows that
limsup; Dy < p(Be, V) +6
for any 6 > 0. The assertion is proved.

Fix [y > 1. Let V;} be the minimal space invariant under operator B, € €
E and containing B, - - B, R with ¢, € E,1 <11 <ly+ 1. Define

€lg+1

1
pp(Bea W:) = lim sup (2—nl Z (||BE1 te 'szuH;)p) "

=00l =1ue vy €1,ne EE
From the definition of V;7, we have V;* C V" and hence
p(Be,Viy) < p(Be, V).
Observe that for [ > [y,

sup 27" 30 (||Be - Baully)”

||u||;;§1,u€V €1, EE
< C sup sup 2™ Z (“Bfl T szfzo (Bfl—lo+1 o 'Bflu)H;)p
6E€E,I—lo+1<i<l [jul[y<1ueV €1, €61y EE
< C sup 9 n(i—lo) > (IBe - -qulou'“;‘,)p,
HUIH;SI:U’GVlB 61,---,61,106E
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where the last inequality follows from the facts that B
and ||B

€—ig+1 Belu S l:
-+« Boul| < C for all u satisfying |lu||; < 1. Then we have

€l—lg+1
P(Ba V) S p(Bea l:)-
Hence p(B., V') can be computed by p(B, V).

Now let’s state our main results.

Theorem 1 Let —o0 < o < 400, 0 < p, ¢ < 00 and f be the normalized
solution to (1). Set J = n/min(p,q,1) and denote the integral part of a
real number z by [x]. Suppose that {V}} and {V}} are multiresolutions such
that their corresponding scaling functions ¢ and ¢ are compactly supported,
biorthogonal, in Holder space C™ and locally linearly independent, where T is
chosen such that

7> max(lnsup |H(§)|/In2+n,[J —n —al,|a|).
¢elR

Then the following statements are equivalent to each other.
1) feF,
2) feBg,
3) 29 Qufll, — 0 as | — oo.
4) There exist constants C' and 0 < r < 1 independent of | > 0 such that

2Quf|l, < Cr', Y 1>0.

5) pp(Bey V) < 270,

From the results above, a compactly supported refinable distribution
in Triebel-Lizorkin spaces F* is also in Besov spaces B . Comparing
with the subdivision scheme in [14], we introduce an appropriate space V,
which we use to characterize refinable distributions in Triebel-Lizorkin spaces
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and Besov spaces via p,(Be, V). Comparing with the characterization of p-
integrable refinable functions in [17], we use biorthogonal scaling functions
¢ and ¢ with higher regularity instead of the characteristic function on [0, 1]
as the initial, which also makes it possible to consider more general func-
tion spaces, Triebel-Lizorkin spaces and Besov spaces instead of p-integrable
function spaces.

3 Proof of Theorem 1

We begin with a characterization of Triebel-Lizorkin spaces and Besov spaces.

Lemma 3.1 Suppose 0 < p,q < 00, —00 < @ < +00 and 7 > max(J —n —
a,|al). Let P, and @, be defined by (3) and (4) respectively, and let f be a
compactly supported distribution. Then f € FJ, if and only if

1Pofllp + 11032 2'91Quf 194l < oo,

1>0

and f € By, if and only if

1Pof[lp + (3 2| Quf 1[5 < oo.

1>0

A similar result can be found in [10] and [11]. For the perfection of this
paper, we include the proof in the appendix. Now we start to prove Theorem
1.

1) = 3):  Let f € F,. Then (X5 [2Quf()]?)"/* < oo for almost
every € IR" and is p-integrable. Hence 2!*Q;f(z) — 0 for almost every
x € R" as [ — oo. By the Lebesgue dominated convergence theorem, we
have 2!%/|Q;f||, — 0 as [ — oo.

2) = 3): By Lemma 3.1, the sequence 2'*||Q; f||,, is g-summable when
f € BI?ilI' Hence 2la||Qlf||p — 0asl — o0.
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4) = 2):  Obviously,
S @Sl < CYr' < oo

1>0 1>0

Observe that P,f is compactly supported function in C7 by its definition.
Hence ||y f[l, < oo and f is in Besov space By, for all 0 < ¢' < oo by
Lemma 3.1.

4) = 1):  Observe that F*,, D By, when ¢’ > p. Hence f € F, when
q' > p, since f € BY . For 0 < ¢’ < p, we have

IOZ 2 @A) < Gl 12 Quf )Py

1>0 1>0

< Gy (2'r)7 < oo,

1>0

where 6 is chosen such that 2°7 < 1, and the second inequality follows from

(Z |2lanf(x)|q’)p/q’ < (Z |2l(a+5)Qlf(m)|p) > (Z2—lpq'6/(p—q'))p/(l7*q,)‘

1>0 1>0 1>0
Therefore f € F',, and 1) follows.
3) = 4): To prove 4) from 3), we need two lemmas.

Lemma 3.2 Let ¢ be as in Theorem 1 and p > 0. Then there exists a
constant C' independent of sequence {d;} with finite support such that

CHUS G < S dio =il CCE 4 (@)

JEeZ™ JEZ™ JEeZ™
In [15], Jia proved a similar result under weak restriction on ¢. For the
perfection of this paper, we include the proof here.

Proof of Lemma 3.2 The right hand side inequality of (7) follows
from the fact that ¢ has compact support and is bounded.

Now we consider the left hand side of (7). By the local linear independence
of integer translates of ¢, we have

Jo| o didle =Pz = O3 P

jez JEK((0,1)m)

12



for any sequence {d;} and a constant C independent of sequence {d;}, where
for open set A, j € K(A) means ¢(- — j) is not identically zero on A. Hence

Jor | S dpla—iPde=C Y Y 4P =G Y (4P
JEZ keEZ™ jeK((0,1)"+k) JEZ™

and Lemma 3.2 follows. &

Lemma 3.3 Let [ satisfy the refinement equation (1) and H be the corre-
sponding symbol. Set

F(&) = Y (f,0(2' - —j)e V% (8)

JEZ"
Then we have

F(€) = HQT'OFR(9), (9)
H(PE) = 27" e“*B.P(26), (10)

eeE

and

ﬁH(2i‘1€)P(£)=2‘”l S dX=mtUetp g p2e)  (11)

i=1 (617"'7€l)eEl

for any trigonometric polynomial P, where we denote by E' the [-th Cartesian
power of E.

Proof. From (1) and (8), we have

F&) = > (f, 02" —j))e ¢

JjEZ™
- ZZ(;S f(2-—=s) q?( ))*”5
JEZ™ sEH™
= 27" 5 N (f, (27 —j + 217 s))e
JEZ™ SEZ™

= H27OF 1(6).

Hence (9) is proved.
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Observe that the right hand side of (10) equals to
2711, Z H(§—|— 6’7T)P(€—|— 6,7T) Z efz'e.ewr.

e'erE eck

Hence (10) follows from the formula above since Y, e ™™ = 0 when 0 #
¢ € F and the cardinality of E is 2".

The formula (11) follows from repeating (10) for I times. &

Now let’s start to prove 4) from 3). Recall that ¢ is a scaling function.
Hence ¢ is refinable. Denote its symbol by

GE)=2"" > gje’t.

jezn
Then R R
¢(§) = G(£/2)¢(&/2) (12)
by taking Fourier transform at both sides of (1).

From the definitions of P, F; and (9), we obtain
(Pf)(€) = F(27'€)9(27'¢)

and

@HE) = (Fal e - Re OG0
= [[HE Q) x (HE QR - RE'OGERE))d ).

Recall that
H(&)Fy(€) — Fo(26)G(€) = D “* Re(2€).

el
Then by Lemma 3.2, (10) and (11), we conclude that

lQurlly > c2@ (I TLH (2 x (HEOF(€) - B&OGO)];)"

=1
—In i(e- b I=jtle;. *
= (2 : (“ Z Z € ( £+ZJ:1 ? ! g)B€1 T BEIRG(QZJFIS)Hp)p

€EL (e1,-,€/)EE!

= 2"Y Y (1Ba- BRI

€EE (e1,,6)EE!

14



Hence
eSS ([Bo BaRdP — 0

el (617"'7€l)eEl

as [ — oo because 2'%||Q;f], — 0 as | — .

Furthermore we have

Lemma 3.4 Let R,V be defined by (5) and (6), and let V' be the minimal
space invariant under the operators B, and containing R.,e € E. If

lim Ql(apfn) Z Z (“Bel T BEZRGH;)I’ = 07

l
o €€ (1, re1) €L

then there exists an integer ly such that

) S (B Bl <

(e1,+610)EET0

(ullp)r, YueV. (1)

DN =

Proof. Set

V*={R., B, - B,Re; €€, -, e, € B k=1,2,---}.
It is easy to see that V is the finite dimensional space spanned by V*. Thus
there exists finite elements ey, --,e; € V* such that e, -+, ¢ is a basis of
V', and for any v € V there exist real numbers uy, - - -, u; uniquely satisfying

U= uie; + - -+ wey.

Obviously,

CH Jual” + -+ Jwl?) < (Jull)” < C(lw P + -+ + )
when p < 1 and

CH Jual + -+ ) < Jlully < Cllua] + -+ + |wl)

when p > 1 hold for some constant C' independent of u € V.
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Let e; = Bgi - 'BEZ.RGS’ in which ¢; = R, when k; = 0. Then

€,

gier=m 37 (|Be -+ Beeilly)”

(€1,,€1)EE

< 9 (l+ki)(ap—n) Z Z (||B., - - .BEH—ki R€||;)p2—ki(a—n) =0

eel (517"'751+ki)eEl+ki
as [ tends to infinity. Hence there exists an integer [y such that

1
olo(ap—n) Z (|| B., - - 'BEzoeiH;)p < 5c—max(1,p), 1<i<l.

(e1,610)EET0

For any v = uje; + -+ + uje; € V, we have

9lo(ap—n) Z (||BEl .. -B510u||;‘,)p
(61,---,610)€E10
l

oerm Sl 30 (1B Baelly)”

i=1 (61,...,610)€E10

R Lo
< SO Yl < S(llully
i=1

IN

when p < 1 and

9lo(ap—n) Z (||B61 .. -B%u”;)p

(517"'7510)€E10

l
< (Xlul@er 3 (B Byelp))")’
=1

(€1,161)E B0

1 < .
< 5(0 U ual)? < s (fully)?
=1

when p > 1. Hence (13) and Lemma 3.4 is proved. #
Set

Ap=21r 7 3T (1Be - Be Rl

€EE (e1,,6)EE!
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Then by Lemma 3.4, we have

A = 9l(ap—n) Z Z Z (| Be, - -B% B€l0+1 .. -BqR€||;)p

(51,---,510)EE10 4 (610+1,"',€1)€E1710
1, _ . 1
< 520 lo)(ap—n) Z Z (||B%Jr1 .. 'BqRer)p = 5/11—10
€€E (e141,e)€E 10
when [ > ;. Hence by Lemma 3.2, we obtain

A, < c27Mb

and
2Quf|b < CA < C2710,

This is the desired result.

4) = 5):  From the proof of 4) from 3), we obtain
c2my 3 (B BoRellp)” < |QufIl.

€€EE (e1,,6)EE!
Recall that V' is the minimal space invariant under B, and containing R, for

all € € E. Then by (13) there exists an integer [y such that

« -n * 1/p 1 *
(2 3 (1B Bo,ullp)?) < Sl we V.

(517"'7510)€E10
Hence 5) follows by the definition of p, (B, V).

5) = 4): By the definition of p,(B,, V'), there exists an integer [y such
that

9—nlo Z Z (|| B, - - -Bqu||;)” < 2—P(alo+1)(||u||;)1), wevV

el (517"'751)€El

Hence we may prove (4) by the estimate of @;f in the procedure used in the
proof of 4) from 3).

Theorem 1 is proved. #
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4 Remarks

The finitely dimensional space V' is very important to compute p,(B, V).
From the definition of V| we see that it needs to compute (f, qNS( — 7)) for all
j € ZZ" at first. Our first remark is whether the space V' can be replaced by
a finitely dimensional space which is easy to compute.

Theorem 2. Let a,p,q, o, é, B, be as in Theorem 1, and let G and G
be the corresponding symbol of biorthogonal scaling functions ¢ and ¢. Then
the refinement equation (1) has a solution in By, or F7' . if and only if there

exists a trigonometric polynomial Fy such that Fy(0) # 0,

=> H(z —|— er) (—§ - EW)Fg(g + emr) (14)

eck 2

and py(Be, f{) < 27%, where V is the minimal space invariant under B, and
containing R., and where R, is defined by

H(&)EFy (&) — Fy(26)G 26“53 (26).
eeE
Proof. From the proof of Theorem 1, the necessity reduces to Fj

satisfying (14) and Fy(0) # 0. Write

G =273 ge vt

JeZ"

By the definition of Fy(&), we have

ZH + em) (—é—ew)Fo(ngmr)

3

— 9 Z Z Z 0]19]2 , _j Zeﬂ(ﬁ/ﬂﬂr) (4+j1—32)

JIEZ™ joEXZ™ jEXZ™ eck

= > 3 Y anlf2 =) 62 =25 — fa))e VE

NEZ" jo€Z™ jEZ™

= Y {f(),0(- = Ne ¢ = Ry (€).

jez"
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On the other hand, Fy(0) = f(0) = 1 by the facts that f(&) = [I°, H(£/2)
and H(0) = 1. The necessity is proved.

To prove the sufficiency, we define g;(x) in terms of Fourier transform by

a(&) =TI H2 *¢) x K(27'€)s(27"¢).

s=1
Then §,(€) converges to [152, H(£/2')Fy(0), which we denote by f. Therefore
o) = 1(5H7E
flo=m)i)

and f, the inverse Fourier transform of f , is a compactly supported solution
of the refinement equation (1).

Hence the sufficiency of Theorem 2 is reduced to proving that P f = g
for all [ > 0 by the proof of Theorem 1 and

lgier =gl <C27 37 37 (B -+ BoRely)P.

€EE (e1,,61)EE!
By (14), we have for k € Z"
(G141 — g1, ¢;(2l - —k))

= Jo ITHE™O x (HETTORE™9 - RT96E™ )

X G271 7E)p(2-1E)e 2 g
§

= o fo ML x HEQRGES) - AOGEES)
xB(5)0(~5)e e

_ / f[H 23 (2}; S em B+ en@(-S - em)
—Fy(¢ ZG +em)G —g—mr)) ik e

eck



where the third equality follows from

S B(E + 2%m)p(—€ — 2%km) =1, VEER"

kez™

by the biorthogonality between ¢ and é, and the last equality from
Y GE+en)G(—€—em) =1

eck

and (14). Thus g;4; — ¢; is in the wavelet space W, the orthogonal comple-
ment of V; in Vi1, and Pg; = g; when s > [. Hence P,f = g, and Theorem
2 is proved. &

Our second remark is on the index « of Triebel-Lizorkin spaces and Besov
spaces of refinable distribution. From 1) and 2) of Theorem 1, we show that
[ € F,and f € BJ are equivalent. From 4) of Theorem 1 we can get more.

Theorem 3. Suppose —o0 < a < +00 and 0 < p,q < oo. For an
arbitrary compactly supported refinable distribution ¢ in a Triebel-Lizorkin

space FJ' or By, there exists a positive number 6 > 0 such that the refinable

distribution ¢ is also in Triebel-Lizorkin space Fpof;r,‘s and Besov space B;‘:IC‘S
for all 0 < ¢’ < .

The last remark is on integrable function space L'. In Theorem 1, we
characterize refinable function in the local Hardy space Flo,z, a subspace of
integrable function space. In [17], Lau and Wang characterized the refinable
function in integrable function space L'. For an integrable function f, it is
easy to see that ||Q,f|[y — 0 asl — oo. Then f isin F}, when f is integrable
and refinable by Theorem 1.

Define the Riesz transform R;,1 < j < n, in terms of Fourier transform
by

_ il -
R;f(€) = ﬁ (),

where ; denotes the j-th component of £ € R". Let Hardy space H' be

the set of all integrable functions f such that R;f are still integrable for all

1 < j < n. Then Hardy space H' is a subspace of local Hardy space Flo,2

(see [23]).
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Theorem 4. If a function f is compactly supported, refinable and in-
tegrable, then there exist a compactly supported bounded function g and a
function h in Hardy space H' such that

f=g+h

Proof. Let f be compactly supported, refinable and integrable. Ob-
serve that ||Pf — f|li — 0 as [ — oco. Then ||Q;f|y — 0 as | — oco. By
Theorem 1 there exist a constant C' and a positive number 0 < r < 1 such
that

Qi f]l1 < Crl.

On the other hand, it is easy to check that
|R;Quf|s <Cr!, ¥V 1<j<n.

Hence R;(Y;50 Qif) is integrable. By the definition of Hardy space H', we
obtain

f=PRf=> QfeH.

>0

Hence Theorem 4 follows when we let g = Py f and h = 32,50 Qif. #
Appendix: Proof of Lemma 3.1

Because the assertion for Besov spaces can be proved by similar procedure
as the one of Triebel-Lizorkin spaces, we only give the proof for Triebel-
Lizorkin spaces here.

Let 1, and 1[35, s=1,---,2" — 1 be the compactly supported biorthogo-
nal mother wavelets corresponding to the multiresolutions {V;} and {V;} in
Section 2. Then for 0 < || < max([J —n —al,[¢]) and s = 1,---,2" — 1,
we have

/]R" Py (z)dr = /]R" 259,(z)dx = 0.
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Therefore

(a2 =)2"% 5=0,---,2" = 1,1 > 0,5 € Z"} U{g(- — j); j € Z"}
and

{0, (2" —j)2"/% s =0, 2" = 1,1 > 0,j € Z"YU{d(- — j); j € Z"}

are inhomogeneous smooth molecules of F (see [10, p. 56 and p. 132]).
Recall that

[ = B+ Of

2n—1

= > bio(—g)+ 3 32 ST (2 =)

jezn s=0 >0 jezn

in distributional sense, where b; = (f, ¢(-—7)) and a;y, = 2"/2(f, (2" —5)).
Then by the inhomogeneous analogue of Theorem 3.5 in [10, p.132] we have

2n—1

aT+n 1/
£ lrg, < CCS )7 +C 3 [(32 32 (a2 Do (2-—5))7) |
jezn s=0 = [>0jeZ" p
and by the inhomogeneous analogue of Theorem 3.7 in [10, p.132] we obtain
2n 1 Y
1£llrg, = CCX 107740 3 (X X2 (largsl2 ™ xoap (24=3)7)

jezn s=0  [>0jE€Z"

where xpo,1» denotes the characteristic function on the unit cube [0,1]".
Hence it remains to prove that there exist constants C'; and C5 such that

2n—1

Y (S S a2 2002 —i)) |

s=0 (>0 jeZ"

< NG 2 1Qu 19l
1>0
2n—1

G Y (XX (s

s=0 >0 jez"

IN

22y (2 =) |

p

22



Recall that i¢,,s = 1,---,2" — 1 are compactly supported and bounded.
Hence

2 —1
Qufl < C 3 Y Jarsl2" X —cnean (2 =)
JEZ™ s=0
2n 1
< O YYD Jans 2™ x oy ogn (28 —9))M,
s=0 jezn

where Cj is chosen such that ¢s, s =1,---,2" — 1 are supported in [—C3, C3]
and the second inequality follows from the equivalence between the different
quasi-norms on finite dimensional space.

Fix 0 < A < min(p,q,1). Let Maf be the Hardy-Littlewood maximal
operator defined by

Maf(w) = sup (oo [ £ 1),

where the supremum is taken oven all cubes ) containing x. Hence

2n—1

X2 < Y (X (Ma(Y lavss

A\ 2\ /e
212y (2 —J))) )
1>0 s=0 >0 jezr

and

13- 2 Quf 1) ],

1>0
on_1
< ¢ Z H( (MA Z |a, |21(a+n/2 X[o,l]n(gl . —j)))q)l/qu
5=0 >0 jezr
on 1
s=0 >0 jez"

by Theorem A.1 in [10, p. 141].

For s =1,---,2" — 1, let K, be the set of j € ZZ" such that ¥, Z 0 on
j +[0,1]". Then

2" —1

/ | Z Z d] sws _] |Ady)1/A

s=1 jeK;
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is a quasi-norm on the finitely dimensional space R*X, where #K is the sum
of the cardinality of K, over s = 1,2,---,2" — 1 (see Lemma 3.2). By the
equivalence between different quasi-norm on R*¥ there exists a constant C'
such that

2" —1 2" —1
([ 3 diataly =) ) 2 € 3 (5 Il
s=1 jeK;s s=1 jeKs

Let D be an integer chosen that ¢y # 0 on [—-D, D]" for all s = 1,---,2" — 1.
Then we have

2r—1 2" —1
d; s (y—75)[Ady)/4 > C d; o|x70.1m (2—14)) 7.
(/:z;+[—D—1,D+1}n| ;::1 jezz%n & Y (y ‘7)| y) = ;::1 (j§n| Js | X0,1] ( J))
Therefore
2" —1 Y
> (X (a2 xp e 2e—)) " < (X 20(Ma(Quf D))
s=1 >0 jeZz” >0
and
— l(a+n/2) ! g e
> H(Z > (lasl2 X112 (2" - —J)) ) Hp
s=1 >0 jeZ™
< 0||<z2laq<MA<|sz|>>q>1/Q||,, < Ol 2Quf 1),
1>0 >0

by Theorem A.1 in [10, p.147]. &
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