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Abstract. In this paper, we consider spectral properties of Riesz product
measures supported on homogeneous Cantor sets and we show the exis-
tence of spectral measures with arbitrary Hausdorff dimensions, includ-
ing non-atomic zero-dimensional spectral measures and one-dimensional
singular spectral measures.

1. Introduction

Given sequences B := {bn}
∞
n=1 and D := {dn}

∞
n=1 of positive integers that

satisfy

(1.1) 1 < dn < bn, n = 1, 2, · · · ,

we let

(1.2) ρ1 := 1 and ρn :=
n−1∏
j=1

b j for n ≥ 2,

and we define

(1.3) C(B,D) :=
∞∑

n=1

Z/dn ∩ [0, 1)
ρn

.

The set C(B,D) is a homogeneous Cantor set contained in the interval
[0,

∑∞
n=1(dn − 1)(dnρn)−1]. The reader may refer to [12, 13, 29] on homoge-

nous Cantor sets.
Define the Fourier transform µ̂ of a probability measure µ by µ̂(ξ) :=∫
R

e−2πiξxdµ(x). In this paper, we consider the Riesz product measure µB,D
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defined by

(1.4) µ̂D,B(ξ) :=
∞∏

n=1

Hdn

( ξ

dnρn

)
,

where

Hm(ξ) :=
1
m

m−1∑
j=0

e−2πi jξ =
1 − e−2πmiξ

m(1 − e−2πiξ)
, m ≥ 1.

The Riesz product measure µB,D is supported on the homogeneous Cantor
set C(B,D) [12, 13], and it becomes the Cantor measure µb,d when bn = b
and dn = d for all n ≥ 1 [3–5, 9].

A probability measure µ with compact support is said to be a spectral
measure if there exists a countable set Λ of real numbers, called a spec-
trum, such that {e−2πiλx : λ ∈ Λ} forms an orthonormal basis for L2(µ). A
classical example of spectral measures is the Lebesgue measure on [0, 1],
for which the set of integers is a spectrum. Spectral properties for a proba-
bility measure are one of fundamental problems in Fourier analysis and they
have close connection to tiling as formulated in Fuglede’s spectral set con-
jecture [14, 17, 18, 20, 22, 23, 31, 32]. In 1998, Jorgensen and Pedersen [19]
discovered the first families of non-atomic singular spectral measures, par-
ticularly Cantor measures µb,2 with 4 ≤ b ∈ 2Z. Since then, various singu-
lar spectral measures on self-similar/self-affine fractal sets have been found,
see for instance [3–6,9,11,15–17,19,21,22,24,26,27,30,34]. In this paper,
we consider spectral properties of Riesz product measures µB,D supported
on non-self-similar homogenous Cantor sets C(B,D).

Theorem 1.1. Let B := {bn}
∞
n=1 and D := {dn}

∞
n=1 be sequences of positive

integers that satisfy (1.1) and

(1.5) 2 ≤ bn/dn ∈ Z for all n ≥ 1.

Then

(1.6) ΛB,D :=
∞⋃

L=1

( L∑
n=1

(
[0, dn) ∩ Z

)
ρn

)
is a spectrum of the Riesz product measure µB,D in (1.4).

For a probability measure µ, define its Hausdorff dimension dimH(µ) by

dimH(µ) := inf {dimH(E) : µ(E) = 1} ,

where dimH(E) is the Hausdorff dimension of a set E. It is known that Can-
tor measures µb,2 with 4 ≤ b ∈ 2Z have their Hausdorff dimension ln 2/ ln b.
Next we estimate Hausdorff dimension of the Riesz product measure µB,D,
with its proof given in the appendix.



SPECTRAL MEASURES WITH ARBITRARY HAUSDORFF DIMENSIONS 3

Proposition 1.2. Let 0 ≤ α ≤ 1, and let B and D be sequences of positive
integers that satisfy (1.1),

(1.7) lim
n→∞

dn = +∞,

and

(1.8) lim
n→∞

ln dn

ln bn
= α.

Then the Riesz product measure µB,D in (1.4) has Hausdorff dimension α,

dimH(µB,D) = α.

Our main contribution of this paper, the existence of spectral measures
with arbitrary Hausdorff dimension in [0, 1], follows immediately from
Theorem 1.1 and Proposition 1.2.

Corollary 1.3. Let 0 ≤ α ≤ 1, and let B and D be sequences of positive
integers that satisfy (1.1), (1.5), (1.7) and (1.8). Then the Riesz product
measure µB,D in (1.4) is a spectral measure with Hausdorff dimension α.

Taking α = 0 and 1 in Corollary 1.3 leads to the existence of zero-
dimensional non-atomic spectral measures and one-dimensional singular
spectral measures respectively, cf. Fuglede’s conjecture that any spectral
set with positive Lebesgue measure is a tile.

2. Maximal orthogonal sets of Riesz product measures

A spectral measure may admit various spectra. Fourier series corre-
sponding to different spectra could have completely different convergence
rate [8, 30]. To study spectra of a probability measure µ, we recall a weak
notation, maximal orthogonal set Λ, which means that {e−2πiλx : λ ∈ Λ}

is a maximal orthogonal set of L2(µ). As Λ is a maximal orthogonal set
(spectrum) of a probability measure µ if and only if its shift Λ + t is for
any real t ∈ R. So in this paper we may normalize maximal orthogonal sets
(spectra) by assuming that they contain the origin. In 2009, Dutkay, Han
and Sun made their first attempt to characterize maximal orthogonal sets of
fractal measures in [9], where a maximal orthogonal set of the one-fourth
Cantor measure µ4,2 is labeled as a binary tree with each vertex having finite
regular lengths, see [5] and references therein for general Cantor measures
µb,d with 2 ≤ b/d ∈ Z. In this section, we first consider labeling a maxi-
mal orthogonal set of the Riesz product µB,D on homogeneous Cantor set
C(B,D).

For labeling a maximal orthogonal set, we introduce some notation. Let
Σd := {0, 1, . . . , d − 1} for d ≥ 1. For a sequence D := {dn}

∞
n=1 of positive

integers, let Σ0
D

:= ϑ, Σn
D

:= Σd1×Σd2×· · ·×Σdn for n ≥ 1, and Σ∗
D

:= ∪∞n=0Σ
n
D
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be the set of all finite words. We say that a tree is a D-adic tree if it has ϑ,
Σn
D

and {δi, i ∈ Σdn+1} as its root, the set of all n-th level nodes, and the set
of offsprings of δ ∈ Σn

D
, n ≥ 1, respectively, where ϑδ := δ and δδ′ is the

concatenation of words δ ∈ Σd1 ×Σd2 × · · · ×Σdn and δ′ ∈ Σdn+1 ×Σdn+2 × · · · ×

Σdn+m . Given sequences B = {bn}
∞
n=1 and D = {dn}

∞
n=1 of positive integers

satisfying (1.1), we say that τ : Σ∗
D
→ R is a maximal tree mapping if

(i) τ(ϑ) = τ(Rn(0∞)) = 0 for all n ≥ 1;
(ii) τ(δ1 · · · δn) ∈ (δn +dnZ)∩{−bbn/2c,−bbn/2c+1, . . . , bn−1−bbn/2c}

for δ1 · · · δn ∈ Σn
D
, n ≥ 1; and

(iii) for any word δ ∈ Σn
D

there exists δ′ ∈ Σdn+1 × Σdn+2 × · · · × Σdn+m of
length m ≥ 1 such that τ(Rk(δδ′0∞)) = 0 for sufficiently large k,

where 0∞ := 000 · · · and Rk(δ) := δ1 · · · δk ∈ Σk
D

for δ = δ1 · · · δkδk+1 · · · ∈

⊗∞n=1Σdn . For a maximal tree mapping τ, define
(2.1)

Λ(τ) :=
{ ∞∑

n=1

τ(Rn(δ0∞))ρn : δ ∈ Σ∗D with τ(Rn(δ0∞)) = 0 for sufficiently large n
}
,

where ρn, n ≥ 1, are given in (1.2). Following the argument used in [4, 5],
we can characterize maximal orthogonal sets of the Riesz product measure
µB,D in (1.4) by maximal tree mappings.

Theorem 2.1. Let sequences B andD of positive integers satisfy (1.1) and
(1.5), µB,D be the Riesz product measure in (1.4), and for a maximal tree
mapping τ let Λ(τ) be the set given in (2.1). Then Λ is a maximal orthogonal
set of the Riesz product measure µB,D that contains the origin if and only if
Λ = Λ(τ) for some maximal tree mapping τ.

Denote by #(E) the cardinality of a finite set E, and define the upper
Beurling dimension dim+(Λ) of a discrete set Λ of real numbers by

dim+(Λ) := inf
{

r > 0 : lim sup
h→∞

sup
x∈R

#(Λ ∩ [x − h, x + h])
(2h)r < ∞

}
.

Given sequences B and D satisfying (1.1), (1.5), (1.7) and (1.8), one may
verify that the set Λ(τ) associated with a maximal tree mapping τ has upper
Beurling dimension being less than or equal to Hausdorff dimension of the
homogeneous Cantor set C(B,D),

(2.2) dim+(Λ(τ)) ≤ dimH(C(B,D)).

The above result is established in [10] for maximal orthogonal sets of Can-
tor measures µb,d with 2 ≤ b/d ∈ Z. We remark that unlike Fourier frames
on the unit interval [25], spectra of Cantor measures with zero upper Beurl-
ing dimension has been constructed by Dai, He and Lai in [5]. The reader
may refer to [3–6, 8–11, 15–17, 19, 21, 22, 24–27, 29, 30, 34] and references
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therein for additional information on self-similar/self-affine spectral mea-
sures.

By (2.2) and Theorem 2.1, a necessary condition for a countable set to
be a spectrum of the Riesz product measure µB,D is that its upper Beurling
dimension is less than or equal to the Hausdorff dimension of the measure
µB,D. The above necessary condition is far from being sufficient. In fact,
it is a very challenging problem to find appropriate sufficient conditions,
see [4, 5, 9] and references therein for recent advances. In this paper, we
provide a simple sufficient condition for spectra of Riesz product measures.

Theorem 2.2. Let B := {b j}
∞
j=1 and D := {d j}

∞
j=1 be sequences of positive

integers that satisfy (1.1) and (1.5), τ be a maximal tree mapping and let
Λ = Λ(τ) be as in (2.1). Assume that

(2.3) #
{
n ≥ 1, τ(Rn(δ0∞)) , 0

}
< ∞ for all δ ∈ Σ∗D

and

(2.4) sup
n≥1

sup
δ∈Σn

D

∞∑
j=1

(
|τ(Rn+ j(δ0∞))|

bn+ j

)2

< ∞,

then Λ is a spectrum of the Riesz product measure µB,D in (1.4).

As an application, we have the following immediately:

Corollary 2.3. Let B,D, τ and Λ(τ) be as in Theorem 2.2. If

(2.5) sup
n≥1

sup
δ∈Σn

D

#
{
j ≥ 1, τ(Rn+ j(δ0∞)) , 0

}
< ∞,

then Λ(τ) is a spectrum of the Riesz product measure µB,D in (1.4).

The requirements (2.3) and (2.4) are clearly weaker than the one in (2.5),
since

dn+ j ≤ |τ(Rn+ j(δ0∞))| ≤ bn+ j/2 for all δ ∈ Σn
D and j ≥ 1.

We remark that those requirements are not equivalent in general when B
andD satisfy (1.7) and (1.8) for some 0 ≤ α < 1.

For sequences B andD satisfying (1.1) and (1.5), one may verify that the
map defined by

τB,D(δ1 · · · δn) := δn for δ1 . . . δn ∈ Σn
D and n ≥ 0,

is a maximal tree mapping satisfying (2.5), and that the corresponding set
Λ(τB,D) is same as the spectral set ΛB,D in (1.6),

Λ(τB,D) = ΛB,D.

Therefore the spectral conclusion in Theorem 1.1 follows from Corollary
2.3.
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3. Spectra of Riesz product measures

In this section, we prove Theorems 2.2. For that purpose, we recall a
characterization about spectra of a probability measure µwith compact sup-
port, given by Jorgensen and Pederson in [19], which states that a countable
set Λ containing zero is a spectrum for L2(µ) if and only if

(3.1) Q(ξ) :=
∑
λ∈Λ

|µ̂(ξ + λ)|2 ≡ 1 for all ξ ∈ R.

Denote by deg(G) the degree of a trigonometric polynomial G. Recall that
Q(ξ) in (3.1) is a real analytic function. Then the proof of Theorem 2.2
reduces to establishing the following general theorem.

Theorem 3.1. Let sequences B := {bn}
∞
n=1 and D := {dn}

∞
n=1 of positive

integers satisfy (1.1) and (1.5), τ be a maximal tree mapping satisfying (2.3)
and (2.4), and let Λ(τ) be as in (2.1). Assume that {Gn}

∞
n=1 is a family of

trigonometric polynomials satisfying Gn(0) = 1,

(3.2)
dn−1∑
l=0

|Gn(ξ + l/dn)|2 = 1, ξ ∈ R,

(3.3) deg(Gn) ≤ D0dn,

and

(3.4) inf
dnξ∈[−2/3,1/2]

|Gn(ξ)| ≥ D1,

where D0,D1 are positive constants independent of n ≥ 1. Define a com-
pactly supported distribution φ with help of its Fourier transform by

(3.5) φ̂(ξ) :=
∞∏

n=1

Gn

( ξ

dnρn

)
,

where {ρn}
∞
n=1 is given in (1.2). Then

(3.6)
∑
λ∈Λ(τ)

|φ̂(ξ + λ)|2 = 1 for all ξ ∈ [0, 1/2].

Proof. Observe from (3.2) that

(3.7) ‖Gn‖∞ := sup
ξ∈R

|Gn(ξ)| ≤ 1

for all n ≥ 1. By (3.3), (3.7) and Bernstein inequality for trigonometric
polynomials, we obtain that

(3.8) |Gn(η/dn) − 1| ≤ ‖G′n‖∞|η/dn| ≤ D0‖Gn‖∞|η| ≤ D0|η|
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and

0 ≤ 1 − |Gn(η/dn)| ≤ 1 − |Gn(η/dn)|2

≤
(
‖G′′n ‖∞‖Gn‖∞ + ‖G′n‖

2
∞

)
|η/dn|

2 ≤ 2D2
0|η|

2(3.9)

for all η ∈ [−1, 1] and n ≥ 1. Thus
∞∑

n=1

∣∣∣∣Gn

( ξ

dnρn

)
− 1

∣∣∣∣ ≤ D0

∞∑
n=1

ρ−1
n ≤ D0

∞∑
n=1

41−n =
4D0

3

by (1.1), (1.5) and (3.8). Therefore the infinite product in (3.5) is well-
defined and φ is a compactly supported distribution.

Let C0 > 0 be so chosen that

(3.10) max(D1, 1 − 2D2
0t2) ≥ exp(−C0t2) for all 0 ≤ t ≤ 2/3.

Then for L ≥ 1 and η ∈ [−2ρL/3, ρL/2], we obtain from (1.1), (1.5), (3.4),
(3.9) and (3.10) that

(3.11)
∣∣∣∣GL

( η

dLρL

)∣∣∣∣ ≥ max
(
D1, 1 − 2D2

0(|η|/ρL)2) ≥ exp
(
−C0

(
|η|/ρL

)2)
and
∞∏

n=L

∣∣∣∣Gn

( η

dnρn

)∣∣∣∣ ≥ ∞∏
n=L

exp
(
−C0

(
|η|/ρn

)2)
≥

∞∏
n=L

exp
(
−C0(|η|/ρL)2 × 42(n−L)) ≥ exp

(
− 2C0(|η|/ρL)2).(3.12)

For ξ ∈ [0, 1/2] and δ ∈ ΣL
D

, we obtained from (1.1), (1.2), (1.5) and the
definition of a maximal tree mapping that

(3.13) ξ +

L∑
k=1

τ(Rk(δ0∞))ρk ≥ −

L∑
k=1

bbk/2cρk ≥ −

L∑
k=1

ρk+1

2
≥ −

2
3
ρL+1

and
(3.14)

ξ+

L∑
k=1

τ(Rk(δ0∞))ρk ≤
1
2

+

L∑
k=1

(bk−1−bbk/2c)ρk ≤
1
2

+

L∑
k=1

ρk+1 − ρk

2
≤

1
2
ρL+1.

For δ ∈ ΣL
D

, let

K(δ) = {k ≥ 1, RL+k(δ0∞) , 0}.

For the nontrivial case that K(δ) , ∅, there exist finitely many positive
integers n1 < n2 < . . . < nK by (2.3) such that

K(δ) = {n1, n2, . . . , nK}.
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Set nK+1 = +∞ and λ =
∑∞

k=1 τ(Rk(δ0∞))ρk. Write

∣∣∣∣ L∏
n=1

Gn

(ξ + λ

dnρn

)∣∣∣∣ = |φ̂(ξ + λ)| ×

L+n1−1∏
n=L+1

∣∣∣∣Gn

(ξ +
∑L

k=1 τ(Rk(δ0∞))ρk

dnρn

)∣∣∣∣−1

×

∣∣∣∣GL+n1

(ξ +
∑L

k=1 τ(Rk(δ0∞))ρk

dL+n1ρL+n1

)∣∣∣∣−1

×

 K∏
i=2

∣∣∣∣GL+ni

(ξ +
∑L+ni−1

k=1 τ(Rk(δ0∞))ρk

dL+niρL+ni

)∣∣∣∣−1

×

 K∏
i=1

 L+ni+1−1∏
n=L+ni+1

∣∣∣∣Gn

(ξ +
∑L+ni

k=1 τ(Rk(δ0∞))ρk

dnρn

)∣∣∣∣
−1

Then by (3.7), (3.11)–(3.14) and the definition of a maximal tree mapping,
we get ∣∣∣∣ L∏

n=1

Gn

(ξ + λ

dnρn

)∣∣∣∣
≤ exp

C0

(
2ρL+1

3ρL+n1

)2

+ C0

K∑
i=2

(
(|τ(RL+ni−1(δ0

∞))| + 2/3)ρL+ni−1

ρL+ni

)2
×

 K∏
i=1

 ∞∏
n=L+ni+1

∣∣∣∣Gn

(ξ +
∑L+ni

k=1 τ(Rk(δ0∞))ρk

dnρn

)∣∣∣∣
−1

×

 ∞∏
n=L+1

∣∣∣∣Gn

(ξ +
∑L

k=1 τ(Rk(δ0∞))ρk

dnρn

)∣∣∣∣−1
 × |φ̂(ξ + λ)|

≤ exp

C0 + 4C0

K∑
i=2

(
|τ(RL+ni−1(δ0

∞))|
bL+ni−1

)2
× exp

2C0 + 2C0

K∑
i=2

(
(|τ(RL+ni(δ0

∞)| + 2/3)ρL+ni

ρL+ni+1

)2 × |φ̂(ξ + λ)|

≤ exp

3C0 + 12C0

∞∑
j=1

(
|τ(R j+L(δ0∞)|

b j+L

)2
 × |φ̂(ξ + λ)|, ξ ∈ [0, 1/2].(3.15)

For the trivial case that K(δ) = ∅,

λ :=
∞∑

k=1

τ(Rk(δ0∞))ρk =

L∑
k=1

τ(Rk(δ0∞))ρk
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and for ξ ∈ [0, 1/2],∣∣∣∣ L∏
n=1

Gn

(ξ + λ

dnρn

)∣∣∣∣ =

 ∞∏
n=L+1

∣∣∣∣Gn

(ξ +
∑L

k=1 τ(Rk(δ0∞))ρk

dnρn

)∣∣∣∣−1

× |φ̂(ξ + λ)|

≤ exp(8C0/9)|φ̂(ξ + λ)|,(3.16)

where the last inequality follows from (3.12), (3.13) and (3.14).
Define

ΛL =
{ ∞∑

k=1

τ(Rk(δ0∞))ρk : δ ∈ ΣL
D

}
, L ≥ 1.

The sets ΛL, L ≥ 1, are well-defined and satisfy

(3.17) Λ1 ⊂ Λ2 ⊂ · · · ⊂ ΛL → Λ(τ) as L→ +∞

by (2.3). Combining (2.4), (3.15) and (3.16) leads to the existence of an
absolute constant C such that

(3.18)
∣∣∣∣ L∏

n=1

Gn

(ξ + λ

dnρn

)∣∣∣∣ ≤ C|φ̂(ξ + λ)|

for all ξ ∈ [0, 1/2) and λ ∈ ΛL.
By (1.2), (1.5), (3.2) and the definition of a maximal tree mapping, we

can prove ∑
λ∈ΛL

∣∣∣∣ L∏
n=1

Gn

(ξ + λ

dnρn

)∣∣∣∣2 =
∑
δ∈ΣL

D

∣∣∣∣ L∏
n=1

Gn

(ξ +
∑∞

k=1 τ(Rk(δ0∞))ρk

dnρn

)∣∣∣∣2
=

∑
δ1∈Σd1−1

· · ·
∑

δL∈ΣdL−1

L∏
n=1

∣∣∣∣Gn

(ξ +
∑n−1

k=1 τ(δ1δ2 · · · δk)ρk + δnρn

dnρn

)∣∣∣∣2
=

∑
δ1∈Σd1−1

· · ·
∑

δL−1∈ΣdL−1−1

L−1∏
n=1

∣∣∣∣Gn

(ξ +
∑n−1

k=1 τ(δ1δ2 · · · δk)ρk + δnρn

dnρn

)∣∣∣∣2
×

 ∑
δL∈ΣdL−1

∣∣∣∣GL

(ξ +
∑L−1

k=1 τ(δ1δ2 · · · δk)ρk

dLρL
+
δL

dL

)∣∣∣∣2


=
∑

δ1∈Σd1−1

· · ·
∑

δL−1∈ΣdL−1−1

L−1∏
n=1

∣∣∣∣Gn

(ξ +
∑n−1

k=1 τ(δ1δ2 · · · δk)ρk + δnρn

dnρn

)∣∣∣∣2
= · · · = 1(3.19)

by induction on L ≥ 1. By (3.5), (3.7) and (3.19), we conclude that∑
λ∈ΛL

|φ̂(ξ + λ)|2 ≤
∑
λ∈ΛL

∣∣∣∣ L∏
n=1

Gn

(ξ + λ

dnρn

)∣∣∣∣2 = 1.
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Then taking limit L→ ∞ in the above inequality and using (3.17) yield

(3.20)
∑
λ∈Λ(τ)

|φ̂(ξ + λ)|2 ≤ 1.

Given an arbitrary ε > 0 and L ≥ 1, there exist an integer M ≥ L by (1.1),
(1.5), (3.5) and (3.8) such that

(3.21)
∣∣∣∣ M∏

n=1

Gn

(ξ + λ

dnρn

)∣∣∣∣ ≤ (1 + ε)|φ̂(ξ + λ)|

for all ξ ∈ [0, 1/2) and λ ∈ ΛL. By (3.18), (3.19) and (3.21), we obtain that

1 =
∑
λ∈ΛM

∣∣∣∣ M∏
n=1

Gn

(ξ + λ

dnρn

)∣∣∣∣2
=

∑
λ∈ΛL

+
∑

λ∈ΛM\ΛL

 ∣∣∣∣ M∏
n=1

Gn

(ξ + λ

dnρn

)∣∣∣∣2
≤ (1 + ε)

∑
λ∈ΛL

|φ̂(ξ + λ)|2 + C
∑

λ∈ΛM\ΛL

|φ̂(ξ + λ)|2

≤ (1 + ε)
∑
λ∈ΛL

|φ̂(ξ + λ)|2 + C
∑

λ∈Λ(τ)\ΛL

|φ̂(ξ + λ)|2.

Taking limit L→ +∞ and using (3.17) and (3.20), we have that

1 ≤ (1 + ε)
∑
λ∈Λ(τ)

|φ̂(ξ + λ)|2 ≤ 1 + ε.

This completes the proof of the desired equation (3.6) as ε > 0 is chosen
arbitrarily. �

We remark that trigonometric polynomials satisfying (3.2), known as
multi-channel quadrature mirror filters, are important for the construction
of multiband orthonormal wavelets [1, 33]. The requirement (3.4) could be
thought as a weak version of Mallat’s condition for a scaling function to
have orthonormal shifts, cf. [2, 7, 28].

Trigonometric polynomials Gn(ξ), n ≥ 1, in Theorem 3.1 have factors
Hdn(ξ) =

∑dn−1
j=0 e−2πi jξ/dn by (3.2). If Gn(ξ), n ≥ 1, are further assumed

to have factors (Hdn(ξ))
N for some N ≥ 2 [1, 33], then one may establish

the conclusion in Theorem 3.1 with the requirement (2.4) replaced by the
following weaker assumption:

sup
n≥1

sup
δ∈Σn

D

∞∑
j=1

(
|τ(Rn+ j(δ0∞))|

bn+ j

)2N

< ∞.
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Appendix A. Homogeneous Cantor sets

In this appendix, we evaluate Hausdorff dimensions of homogeneous
Cantor sets and prove Proposition 1.2.

Given sequences D := {dn}
∞
n=1 and R := {rn}

∞
n=1 of positive numbers that

satisfy 2 ≤ dn ∈ Z and rndn ≤ 1 for all n ≥ 1, define the homogeneous
Cantor set E(R,D) by

(A.1) E(R,D) := ∩∞n=0 ∪δ∈Σn
D

Jδ,

where {Jδ : δ ∈ Σ∗
D
} is the family of closed intervals contained in Jϑ := [0, 1]

such that for each δ ∈ Σn
D
, n ≥ 0, subintervals Jδk, k ∈ Σdn+1 , of Jδ satisfy the

following: (i) Jδk has same length rn+1|Jδ| for every k ∈ Σdn+1; (ii) the gaps
between Jδk and Jδ(k+1) have same length for all 0 ≤ k < dn+1 − 2; and (iii)
the left endpoint of Jδ0 is the same as the left endpoint of Jδ, and the right
endpoint of Jδ(dn+1−1) is the same as the right endpoint of Jδ [12,13,29]. The
above homogeneous Cantor set E(R,D) has its Hausdorff dimension

(A.2) dimH(E(R,D)) = lim inf
n→∞

∑n
j=1 ln q j∑n

j=1 ln 1/r j
,

see for instance [13].
The set C(B,D) in (1.3) can be obtained from rescaling the homogeneous

Cantor set E(R,D) in (A.1). In particular,

(A.3) C(B,D) =
( ∞∑

n=1

dn − 1
dnρn

)
E(R,D)

with R = {rn}
∞
n=1 given by

rn =

∑∞
j=n+1(d j − 1)/(d jρ j)∑∞

j=n(d j − 1)/(d jρ j)
, n ≥ 1.

For sequences B andD of positive integers satisfying (1.7) and (1.8),∣∣∣∣ρn

∞∑
j=n

d j − 1
d jρ j

− 1
∣∣∣∣ ≤ 1

dn
+

∞∑
j=n+1

(
max

i≥n

1
bi

) j−n

→ 0 as n→ ∞,

which implies that limn→∞ rnbn = 1. Combining the above limit with (1.8)
and (A.2) leads to

(A.4) dimH(C(B,D)) = lim
n→∞

∑n
j=1 ln d j∑n

j=1 ln 1/r j
= lim

n→∞

ln dn

ln bn
= α.

Recall that the Riesz product measure µB,D in (1.4) is the natural measure
on C(B,D). Then the Hausdorff dimension of the Riesz product measure
µB,D in Proposition 1.2 follows from (A.4).
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