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Abstract. We show that a refinable function φ with dilation M ≥ 2 is a ripplet,
i.e., the collocation matrices of its shifts are totally positive, provided that the
symbol p of its refinement mask satisfies certain conditions. The main condition
is that p (of degree n) satisfies what we term condition (I), which requires that
n determinants of the coefficients of p are positive and generalises the conditions
of Hurwitz for a polynomial to have all negative zeros. We also generalise a
result of Kemperman to show that (I) is equivalent to an M -slanted matrix of
the coefficients of p being totally positive. Under condition (I), the ripplet φ
satisfies a generalisation of the Schoenberg-Whitney conditions provided that n
is an integer multiple of M − 1. Moreover (I) implies that polynomials in a
polyphase decomposition of p have interlacing negative zeros, and under these
weaker conditions we show that φ still enjoys certain total positivity properties.

1. Introduction

Take a polynomial

(1.1) p(z) = a0z
n + a1z

n−1 + · · ·+ an

where, without loss of generality, we take a0 > 0. (For a polynomial it is always
assumed that the variable z lies in C). A polynomial is called a Hurwitz polynomial
if all its zeros have strictly negative real part. It was shown by Hurwitz [15] that
p is a Hurwitz polynomial if and only if

(1.2) det(a2j−i : i, j = 1, . . . , k) > 0, k = 1, . . . , n,

where we put aj = 0 for j < 0 and j > n. It is also shown in [11] that p in (1.1) is
a Hurwitz polynomial if and only if the polynomials

∑
j∈Z a2jz

j and
∑

j∈Z a2j+1z
j

have interlacing negative zeros (we discuss this more precisely in Section 2).
A third characterisation of Hurwitz polynomials was given by Kemperman who

showed in [17] that if p as in (1.1) is a Hurwitz polynomial, then the matrix (a2j−i)
is totally positive (i.e., has all its minors non-negative) and any minor is strictly
positive if and only if its diagonal elements are strictly positive. For any Hurwitz
polynomial p as in (1.1), aj > 0, j = 1, . . . , n, and this together with Kemperman’s
result implies (1.2).
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We now turn our attention to refinable functions. It is shown in [13] that if p
as in (1.1) is a Hurwitz polynomial with n ≥ 2 satisfying p(−1) = 0 and p(1) = 2,
such that p(z)/(z + 1) has non-negative coefficients, then there is a continuous
function φ satisfies

(1.3) φ(x) =
n∑

j=0

ajφ(2x− j), x ∈ R,

and ∑
j∈Z

φ(x− j) = 1, x ∈ R.

The equation (1.3) is called a refinement equation and φ is called a refinable func-
tion. It is also shown in [13] that φ is what is termed there a ripplet, i.e., for any
s ≥ 1, x1 < . . . < xs, and integer l1 < . . . < ls,

(1.4) det(φ(xi − lj) : i, j = 1, . . . , s) ≥ 0.

The concept of a ripplet is intermediate between two concepts which have well-
known characterisations. The weaker concept is that (1.4) holds when x1, . . . , xs

are integers, which is equivalent to the polynomial
∑

j∈Z φ(j)zj having negative

zeros [1]. The stronger concept is that (1.4) holds when we allow any real numbers
l1 < . . . < ls. In this case φ is called a Pólya frequency function, and such functions
have been given two further characterisations, see [16]. If φ is a ripplet, then it
has properties which are valuable for the construction of curves in computer-aided
geometric design, see [12]. These properties were also used in [6] in deriving results
about asymptotic normality of refinable functions. It is also shown in [13] that the
ripplet φ gives strict inequality in (1.4) if and only if φ(xj − lj) > 0, j = 1, . . . , s,
which is a generalisation of the Scheonberg-Whitney conditions [18].

Many results on refinable functions extend to refinement equations of the form

(1.5) φ(x) =
n∑

j=0

ajφ(Mx− j), x ∈ R,

for an integer M ≥ 3. For example all work in [6] is for general M except that
which depends on φ being a ripplet. However more general dilation factors can
allow situations which are not possible for M = 2. Thus the symmetric orthogonal
wavelets (SOW) and cardinal orthogonal wavelets (COW) for M ≥ 3, which are
not possible for M = 2, are constructed (see [7] for SOW with M = 3, [14] for
SOW with M = 4, [2] for SOW with M ≥ 3, and [3] for COW with M ≥ 3). Also
there are examples of refinable functions whose integer translates are globally but
not locally linearly independent ([10, 8] for M = 3 and [9] for M ≥ 3), a property
which is again not possible for M = 2. (We shall give an example of a refinable
ripplet with this property in Section 3.)

In this paper, we investigate analogues for M ≥ 3 of the results discussed above.
It turns out that there is an interesting mixture of complete generalisations, partial



TOTAL POSITIVITY AND REFINABLE FUNCTIONS WITH GENERAL DILATION 3

generalisations and situations which appear to have no such analogues. In Section
2, we give a natural generalisation of condition (1.2) to n inequalities for M ≥ 3
which we refer to as (I). We show that (I) implies that aj > 0, j = 1, . . . , n, and
that the matrix (aMj−i)i,j∈Z is totally positive with any minor strictly positive if
and only if its diagonal elements are strictly positive. We also show that (I) implies
that the polynomials

∑
j∈Z aMj+kz

r−j, k = 0, . . . ,M − 1, have interlacing negative

zeros, a property we refer to as (II). However, it is not true that (II) implies (I).
Moreover there appears to be no expression for (I) and (II) in terms of zeros of p,
indeed neither (I) nor (II) is closed under multiplication of polynomials.

In Section 3, we show that if p satisfies (I) with n ≥ M and is of the form
p(z) = (zM−1 + zM−2 + · · · + 1)q(z) where the polynomial q has non-negative
coefficients and satisfies q(1) = 1, then (1.5) has a solution which is a ripplet. The
corresponding generalised Scheonberg-Whitney conditions do not hold in general,
but are valid when n is an integer multiple of M − 1. We also show that if p is
as above but satisfying only the weaker condition (II), then for any integer k, the
matrix (φ(i−j+k/(M−1))i,j∈Z is totally positive and any minor is strictly positive
if and only if its diagonal elements are strictly positive.

2. Zeros and Coefficients of Polynomials

Take an integer M ≥ 2. For n ≥ 0, we consider a polynomial of exact degree n,

(2.1) p(z) = a0z
n + a1z

n−1 + · · ·+ an,

where we always assume, without loss of generality, a0 > 0. We shall put aj = 0
for j < 0 and j > n. For k = 1, . . . , n, put k = (M − 1)α + β for integers α, β with
1 ≤ β ≤ M − 1, and define

4k := det(aMj−i+β : i, j = 0, . . . , α)

=

∣∣∣∣∣∣
aβ · · · aβ+Mα
...

. . .
...

aβ−α · · · ak

∣∣∣∣∣∣ .

We consider the conditions on p:
(I) 4k > 0, k = 1, . . . , n.
Note that for k = 1, . . . ,M − 1, we have α = 0 and β = k and so 4k = ak. Also
4n = an4n−M+1 and so the condition 4n > 0 is equivalent to an > 0. We note
that for 1 ≤ n ≤ M , (I) is equivalent to aj > 0, j = 0, . . . , n.

The following result generalizes work of Kemperman in [17], who proved it for
M = 2.

Theorem 2.1. Suppose that p satisfies (I). Then the matrix A = (aMj−i)i,j∈Z is
totally positive, aj > 0, j = 0, . . . , n, and any minor of A is strictly positive if and
only if its diagonal elements are strictly positive.

Our proof follows closely the work in [17]. We shall use two preliminary results.
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Lemma 2.2. If p has exact degree n ≥ 1 and satisfies (I), then there is a unique
polynomial q of exact degree n− 1,

(2.2) q(z) = b0z
n−1 + b1z

n−2 + · · ·+ bn−1,

satisfying (I) and for j ∈ Z,

(2.3) aMj+k = bMj+k−1, k = 1, . . . ,M − 1,

(2.4) aMj = bMj−1 +
a0

a1

bMj,

where bj = 0 for j < 0 and j ≥ n.

Proof. Let c = a0/a1. Clearly (2.3) and (2.4) are equivalent to

bMj+k = aMj+k+1, k = 0, . . . ,M − 2,

bMj−1 = aMj − caMj+1.

Note that b−1 = a0 − ca1 = 0 and so bj = 0 for j < 0 and j ≥ n. Also b0 = a1 > 0.
It remains only to show that q satisfies (I). For k = 1, . . . , n − 1, let 4′

k =
det(bMj−i+β′ , i, j = 0, . . . , α′), where α′, β′ are defined as for (I). In evaluating 4k

as in (I), for any row with i = β + Ml, l ∈ Z, we subtract c times the previous row
from the i-th row to give, for k = 2, . . . , n,

4k =

{
4′

k−1, 2 ≤ β ≤ M − 1,
a14′

k−1, β = 1,

where β is defined as for (I). Thus 4′
k > 0, k = 1, . . . , n−1, i.e., q satisfies (I). �

Lemma 2.3. Suppose that A = (aij)i,j∈Z and B = (bij)i,j∈Z are matrices and for
some l ∈ Z, c > 0, we have for all integers j,

aij = bij, i 6= l,

alj = blj + cbl−1,j.

If B is totally positive and satisfies the condition that any minor is strictly positive
if and only if its diagonal elements are strictly positive, then the same holds for A.

Proof. We use the usual notation that A

(
i1 · · · ir
j1 · · · jr

)
denotes the determinant

of the matrix comprising rows i1, . . . , ir and columns j1, . . . , jr of A.
Suppose that A and B satisfy the conditions of the Lemma and r ≥ 1, i1 < · · · <

ir, j1 < · · · < jr. If {i1, . . . , ir} does not contain l, or it contains both l and l − 1,
then

A

(
i1 · · · ir
j1 · · · jr

)
= B

(
i1 · · · ir
j1 · · · jr

)
.

Suppose that for some m, 1 ≤ m ≤ r, im = l, im−1 6= l − 1. Then

A

(
i1 · · · ir
j1 · · · jr

)
= B

(
i1 · · · ir
j1 · · · jr

)
+ cB

(
i′1 · · · i′r
j1 · · · jr

)
,
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where (i′1, . . . , i
′
r) denotes (i1, . . . , ir) with im replaced by l − 1. Then we have

A

(
i1 · · · ir
j1 · · · jr

)
≥ 0 with strict inequality if and only if B

(
i1 · · · ir
j1 · · · jr

)
> 0

or B

(
i′1 · · · i′r
j1 · · · jr

)
> 0 if and only if bis,js > 0, 1 ≤ s ≤ r, s 6= m and either

bl,jm > 0 or bl−1,jm > 0, which is equivalent to ais,js > 0, 1 ≤ s ≤ r. The result
follows. �

Proof of Theorem 2.1. The proof is by induction on n. If n ≤ M − 1, then (I)
gives aj > 0, j = 0, . . . , n, and since every row of A contains at most one non-zero
element, the result is clearly true.

Suppose that n ≥ 1 and the result holds when n is replaced by n − 1. By
Lemma 2.2, aj > 0, j = 0, . . . , n. Also by Lemma 2.2 and successive application
of Lemma 2.3 to the matrices A = (aMj−i+1) and B = (bMj−i), we see that A is
totally positive and any minor of A is strictly positive if and only if its diagonal
elements are strictly positive. �

It is well-known, see [11], that for M = 2, p satisfies (I) if and only if it is a
Hurwitz polynomial, i.e., its zeros have strictly negative real part. There appears
to be no corresponding characterisation for M ≥ 3.

To see this, we consider an example for M = 3. Take n = 4 and for α, β ∈ [0, π].
let

p(z) = (z + eiα)(z + e−iα)(z + e−iβ)(z + eiβ)

= z4 + 2(cos α + cos β)z3 + 2(1 + 2 cos α cos β)z2 + 2(cos α + cos β)z + 1.

Then the condition (I) becomes

1 + 2 cos α cos β > 0 and cos α + cos β > 1/2.

But we may assume that cos α > 0, and then cos α + cos β > 1/2 implies that

−1− 2 cos α cos β < −1 + 2 cos α(cos α− 1/2) < 0.

So (I) is satisfied if and only if cos α + cos β > 1/2. Thus there are polynomials
of the above form which are Hurwitz polynomials but do not satisfies (I), and
other such polynomials which satisfies (I) but which are not Hurwitz polynomials.
Moreover, since all quadratic polynomials with positive coefficients satisfies (I), we
see that the set of polynomials satisfying (I) is not closed under multiplication.

Note, however, that for any integer l ≥ 2, the matrix (aMlj−i)i,j∈Z is a submatrix
of (aMj−i)i,j∈Z and so, from Theorem 2.1, if p satisfies (I), then p also satisfies (I)
with M replaced by Ml. In particular, if p is a Hurwitz polynomial, then p satisfies
(I) for all even M . We also have the following result.

Theorem 2.4. Suppose that p has degree n ≤ (M − 1)m + 1 for some integer
m ≥ 1. If p has its roots in the sector {−re−iu : r > 0, |u| < π/(m + 1)}, then p
satisfies (I).
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Proof. Suppose that p has its roots in the above sector. Then by a result of Schoen-
berg ([16, p. 415]), the matrix (aj−i) has all minors up to order m non-negative,
and they are strictly positive if the diagonal elements are strictly positive. If
n − 1 ≤ (M − 1)m, then in condition (I) the order of any determinant 4k is at
most m. Since p is a Hurwitz polynomial, we have aj > 0, j = 0, . . . , n and so (I)
is satisfied. �

It is shown in [11] that condition (I) for M = 2 is satisfied by p if and only if
pe and po have interlacing negative zeros, where pe(z

2) = p(z) + p(−z), zpo(z
2) =

p(z) − p(−z). We shall give a partial generalisation of this result to general M .
First we define what we mean by interlacing negative zeros.

Let p0, . . . , pm be polynomials of exact degree r ≥ 1. By canceling any common
power of z we may assume that at least one of the polynomials is non-zero at z = 0.
We say that p0, . . . , pm have interlacing negative zeros if for k = 0, . . . ,m, pk has
zeros αk

1 < . . . < αk
r ≤ 0 such that

αm
j < α0

j+1, j = 1, . . . , r − 1,

αk
j ≤ αk+1

j , k = 0, . . . ,m− 1, j = 1, . . . , r,

with equality only if j = r, k ≥ 1 and αk
r = 0.

Now take p as in (2.1) and let n = Mr+s, 0 ≤ s ≤ M−1. For k = 0, . . . ,M−1,
we define the polyphase decomposition of p by

(2.5) Akp(z) =
∑
j∈Z

ak+Mjz
r−j,

recalling that aj = 0 for j < 0 and j > n. We note that for ω = e2πi/M ,

(2.6) Akp(zM) =
1

M
zk−s

M−1∑
l=0

ω(k−s)lp(ωlz).

We now consider the conditions on p:
(II) A0p, · · · , AM−1p have interlacing negative zeros.

Theorem 2.5. If p satisfies (I), then p satisfies (II).

In order to prove Theorem 2.5 we first recall Lemma 2.2 and show the following.

Lemma 2.6. Suppose that p is given by (2.1) with n ≥ M + 1, a0, . . . , aM−1 > 0,
and q is given by (2.2), (2.3), (2.4) (where bj = 0 for j < 0 and j ≥ n). If
A0q, . . . , AM−1q have interlacing negative zeros then so do A0p, . . . , AM−1p.

Proof. As before we write n = Mr + s, 0 ≤ s ≤ M − 1. Then n − 1 = Mr′ + s′,
where r′ = r − α and

α =

{
1, s = 0,
0, 1 ≤ s ≤ M − 1.
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Now for k = 1, . . . ,M − 1,

Akp(z) =
∑
j∈Z

ak+Mjz
r−j =

∑
j∈Z

bk−1+Mjz
r′+α−j = zαAk−1q(z)

Also for c = a0/a1,

A0p(z) =
∑
j∈Z

aMjz
r−j =

∑
j∈Z

bMj−1z
r′+α−j + c

∑
j∈Z

bMjz
r′+α−j

= zα−1AM−1q(z) + czαA0q(z).

Suppose that A0q, . . . , AM−1q have interlacing negative zeros. For k = 0, . . . ,M−
1, let Akq have zeros βk

1 < . . . < βk
r′ . First suppose α = 0. For k = 1, . . . ,M − 1,

Akp = Ak−1q and so Akp has zeros αk
j = βk−1

j , j = 1, . . . , r. Now for j = 1, . . . , r,

(−1)j+rA0p(β0
j ) = (−1)j+r(β0

j )
−1AM−1q(β

0
j ) > 0.

Also for j = 2, . . . , r,

(−1)j+rA0p(βM−2
j−1 ) = (−1)j+r(βM−2

j−1 )−1AM−1q(β
M−2
j−1 ) + (−1)j+rcA0q(β

M−2
j−1 ) < 0

since

(−1)j+rAM−1q(β
M−2
j−1 ) > 0, (−1)j+rA0q(β

M−2
j−1 ) < 0.

So A0p has a zero α0
j in (βM−2

j−1 , β0
j ) = (αM−1

j−1 , α1
j ), j = 2, . . . , r. Also we have

limx→−∞(−1)rA0p(x) > 0 and so A0p has a zero α0
1 in (−∞, β0

1) = (−∞, α1
1). So

A0p, . . . , AM−1p have interlacing negative zeros.
Next take α = 1. For k = 1, . . . ,M − 1, Akp(z) = zAk−1q(z) and so Akp has

zeros αk
j = βk+1

j , j = 1, . . . , r − 1, αk
r = 0. For j = 2, . . . , r,

(−1)j+rA0p(β0
j ) = (−1)j+rAM−1q(β

0
j ) > 0,

(where we put β0
r = 0) and

(−1)j+rA0p(βM−1
j−1 ) = (−1)j+rcβM−1

j−1 A0q(β
M−1
j−1 ) < 0,

and so A0p has a zero α0
j in (βM−1

j−1 , β0
j ) ⊂ (βM−2

j−1 , β0
j ) = (αM−1

j−1 , α1
j ). Also, as before,

A0p has a zero α0
1 in (−∞, β0

1) = (−∞, α1
1). So again A0p, A1p, . . . , AM−1p have

interlacing negative zeros. �

Proof of Theorem 2.5. Suppose that p satisfies (I). For n ≤ M − 1, Akp, k =
1, . . . ,M−1, have degree 0 and (II) follows trivially. For n = M , A0p(z) = a0z+aM ,
Akp(z) = akz, k = 1, . . . ,M − 1, and since aj > 0, j = 0, . . . ,M , (II) holds.

We now prove the result by induction on n. Take n ≥ M + 1 and suppose the
result is true with n replaced by n − 1. By Lemma 2.2, q satisfies (I) and so, by
our inductive hypothesis, A0q, . . . , AM−1q have interlacing negative zeros. So, by
Lemma 2.6, A0p, . . . , AM−1p have interlacing negative zeros, i.e., p satisfies (II). �



8 T. N. T. GOODMAN AND QIYU SUN

The converse of Theorem 2.5 is not true in general for M ≥ 3, as the following
example shows.

Take M = 3 and p(z) = z6 + z5 + 2z4 + 3z3 + 2z2 + z + 1. Then p does not
satisfies (I) since ∣∣∣∣∣∣

a1 a4 0
a0 a3 a6

0 a2 a5

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 2 0
1 3 1
0 2 1

∣∣∣∣∣∣ = −1.

However

A0p(z) = z2 + 3z + 1, A1p(z) = z2 + 2z, A2p(z) = 2z2 + z,

and a simple calculation shows that these have interlacing negative zeros.
By symmetry we can see that if p as in (2.1) satisfies (I), respectively (II), then

the polynomial q(z) = znp(z−1) also satisfies (I), respectively (II). Our final two
results give further information about which polynomials satisfies (I) or (II).

Theorem 2.7. Take λ > 0 and let q(z) = p(λz) and Q(z) = (z + λ)p(z). If p
satisfies (I), then q and Q satisfy (I). If p satisfies (II), then q and Q satisfy (II).

Proof. Suppose that p satisfies (I), i.e., 4k > 0, k = 1, . . . , n. The determinant

corresponding to 4k for q is 4̃k := det(λn−Mj+i−βaMj−i+β : i, j = 0, . . . , α) and so

4̃k > 0, k = 1, . . . , n, i.e., q satisfies (I).
Now for

Q(z) =
∑
j∈Z

cjz
n+1−j,

where

cj = aj + λaj−1, j ∈ Z.

Let A = (aij)i,j∈Z, C = (cij)i,j∈Z, where

aij = aMj−i, cij = cMj−i, i, j ∈ Z.

By Theorem 2.1, A is totally positive, aj > 0, j = 0, . . . , n, and any minor of A
is strictly positive if and only if its diagonal elements are strictly positive. Thus
cj > 0, j = 0, . . . , n + 1, and since

cij = aij + λai+1,j, i, j ∈ Z,

it follows as in Lemma 2.3 that C is totally positive, cj > 0, j = 0, . . . , n, and
any minor of C is strictly positive if and only if its diagonal elements are strictly
positive. Thus Q satisfies (I).

Next suppose that p satisfies (II). For k = 0, . . . ,M − 1,

Akq(z) = λn−k−MrAkp(λMz).
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Thus A0q, · · · , AM−1q have interlacing negative zeros, and hence q satisfies (II).
Now

Q(z) =
n+1∑
j=0

(aj + λaj−1)z
n+1−j.

Note that n + 1 = Mr′ + s′, 0 ≤ s′ ≤ M − 1, where r′ = r + α,

α =

{
0, 0 ≤ s ≤ M − 2,
1, s = M − 1.

Then for k = 0, . . . ,M − 1,

AkQ(z) =
∑
j∈Z

(ak+Mj + λak+Mj−1)z
r′−j

= zα
∑
j∈Z

ak+Mjz
r−j + λzα

∑
j∈Z

ak−1+Mjz
r−j,

and so

AkQ(z) = zαAkp(z) + λzαAk−1p(z), k = 1, . . . ,M − 1,

A0Q(z) = zαA0p(z) + λzα−1AM−1p(z).

First suppose α = 0. Then

AkQ(0)

{
> 0, 0 ≤ k ≤ s + 1,
= 0, s + 2 ≤ k ≤ M − 1.

For k = 1, . . . ,M − 1, suppose that Akp has zeros αk
1 < . . . < αk

r . Take 1 ≤ j ≤
r, 1 ≤ k ≤ M with αk−1

j < αk
j . Now

(−1)j+rAkQ(αk−1
j ) = (−1)j+rAkp(αk−1

j ) < 0,

(−1)j+rAkQ(αk
j ) = (−1)j+rλAk−1p(αk

j ) > 0,

and so AkQ has a zero βk
j in (αk−1

j , αk
j ). Also for 2 ≤ j ≤ r,

(−1)j+rA0Q(αM−1
j−1 ) = (−1)j+rA0p(αM−1

j−1 ) < 0,

(−1)j+rA0Q(α0
j ) = (−1)j+rλ(α0

j )
−1AM−1p(α0

j ) > 0,

and so A0q has a zero β0
j in (αM−1

j−1 , α0
j ). Since

(−1)1+rA0Q(α0
1) = (−1)1+rλ(α0

1)
−1AM−1p(α0

1) > 0,

lim
x→−∞

(−1)rA0Q(x) > 0,

A0Q also has a zero β0
1 in (−∞, α0

1). Thus A0Q, . . . , AM−1Q have interlacing neg-
ative zeros for the case α = 0.

Next take α = 1. Then

AkQ(0)

{
> 0, k = 0,
= 0, 1 ≤ k ≤ M − 1,
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and so for k = 1, . . . ,M − 1, AkQ has a zero βk
r+1 = 0. Also A0Q(αM−1

r ) =
αM−1

r A0p(αM−1
r ) < 0 and so A0Q has a zero β0

r+1 in (αM−1
r , 0). As before we

see that for 1 ≤ j ≤ r, 1 ≤ k ≤ M , AkQ has a zero βk
j in (αk−1

j , αk
j ), while for

2 ≤ j ≤ r, A0Q has a zero β0
j in (αM−1

j−1 , α0
j ), and A0Q has a zero β0

1 in (−∞, α0
1).

So A0Q, . . . , AM−1Q have interlacing negative zeros for the case α = 1.
Thus Q satisfies (II). �

Theorem 2.8. If p satisfies (II), then the polynomial (zM−1 + zM−2 + · · ·+ 1)p(z)
satisfies (II).

Proof. Suppose that p as in (1.1) satisfies (II). Let

q(z) = (zM−1 + · · ·+ 1)p(z) =
∑
j∈Z

bjz
n+M−1−j,

where

bj =
M−1∑
l=0

aj−l, j ∈ Z.

As before we write n = Mr + s, 0 ≤ s ≤ M − 1. Then n+M − 1 = Mr′+ s′, 0 ≤
s′ ≤ M − 1, where r′ = r + 1− α with

α =

{
1, s = 0,
0, 1 ≤ s ≤ M − 1.

For k = 0, . . . ,M − 1,

Akq(z) =
∑
j∈Z

bk+Mjz
r+1−α−j =

M−1∑
l=0

∑
j∈Z

aMj+k−lz
r+1−α−j

= z1−α

k∑
l=0

Ak−lp(z) + z−α

M−1∑
l=k+1

AM+k−lp(z)

= z1−α

k∑
l=0

Alp(z) + z−α

M−1∑
l=k+1

Alp(z).(2.7)

First suppose n ≤ M − 1. Then α = 0 and Akp(z) = ak, k = 0, . . . ,M − 1. So
for k = 0, . . . ,M − 1,

Akq(z) = z
k∑

l=0

al +
n∑

l=k+1

al,

which has zero βk
1 = −

∑n
l=k+1 al/

∑k
l=0 al. So βk

1 ≤ βk+1
1 , k = 0, . . . , n − 1, and

βk
1 = 0, n ≤ k ≤ M − 1. Thus A0q, . . . , AM−1q have interlacing negative zeros and

so q satisfies (II).
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Now take n ≥ M and for k = 0, . . . ,M − 1, suppose that Akp has zeros αk
1 <

. . . < αk
r . First suppose α = 0. Then s′ = s− 1 and

Akq(0)

{
> 0, 0 ≤ k ≤ s− 1,
= 0, s ≤ k ≤ M − 1.

So for s ≤ k ≤ M − 1, Akq has a zero βk
r+1 = 0. We shall show by induction that

for all other cases, 0 ≤ k ≤ M − 2, 1 ≤ j ≤ r, Akq has a zero βk
j+1 in (αk+1

j , αk
j+1),

and AM−1q has a zero βM−1
j in (α0

j , α
M−1
j ), where βk

j+1 < βk+1
j+1 , k = 0, . . . ,M − 2,

and βM−1
j < β0

j+1. Here we put αk
r+1 = 0. Now by (2.7),

As−1q(α
s
r) = αs

r

s−1∑
l=0

Alp(αs
r) +

M−1∑
l=s+1

Alp(αs
r) < 0,

since Alp(αs
r) > 0, l = 0, . . . , s − 1, and Alp(αs

r) < 0, l = s + 1, . . . ,M − 1. Since
As−1q(0) > 0, As−1q has a zero βs−1

r+1 in (αs
r, 0).

Next suppose that the induction hypothesis is true for some k and j, 1 ≤ k ≤
M − 1, 1 ≤ j ≤ r. As above (2.7) gives

(2.8) (−1)r+jAk−1q(α
k
j ) = (−1)r+jαk

j

k−1∑
l=0

Alp(αk
j ) + (−1)r+j

M−1∑
l=k+1

Alp(αk
j ) < 0,

(2.9)

(−1)r+j+1Ak−1q(α
k−1
j+1) = (−1)r+j+1αk−1

j+1

k−2∑
l=0

Alp(αk−1
j+1)+(−1)r+j+1

M−1∑
l=k

Alp(αk−1
j+1) < 0.

Also by (2.7),

(−1)r+j(Akq(z)− Ak−1q(z)) = (−1)r+j(z − 1)Akp(z) < 0

on (αk
j , α

k
j+1) and so

(2.10) (−1)r+jAk−1q(β
k
j+1) > (−1)r+jAkq(β

k
j+1) = 0.

Thus by (2.8), (2.9) and (2.10), Ak−1q has a zero βk
j+1 in (αk

j , α
k−1
j+1) with βk−1

j+1 <

βk
j+1.
Now we suppose the inductive hypothesis is true for k = 0 and some j, 1 ≤ j ≤ r.

By (2.7),

(−1)r+jAM−1q(α
0
j ) = (−1)r+jα0

j

M−1∑
l=0

Alp(α0
j ) > 0,

(−1)r+jAM−1q(α
M−1
j ) = (−1)r+jαM−1

j

M−2∑
l=0

Alp(αM−1
j ) < 0.

Also by (2.7),

(−1)j+r(AM−1q(z)− zA0q(z)) = (−1)j+rz(1− z)A0p(z) < 0
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on (α0
j , α

0
j+1) and so

(−1)j+rAM−1q(β
0
j+1) < (−1)j+rβ0

j+1A0(β
0
j+1) = 0.

Thus AM−1q has a zero βM−1
j in (α0

j , α
M−1
j ) with βM−1

j < β0
j+1. So our induction

hypothesis is established.
We have shown that AM−1q has a zero βM−1

1 in (α0
1, α

M−1
1 ). We now show by

induction that for k = 0, . . . ,M − 2, Akq has a zero βk
1 with βk

1 < αk
1, βk

1 < βk+1
1 .

Take 1 ≤ k ≤ M − 2, and suppose Ak+1q has a zero βk+1
1 < αk+1

1 . Now

lim
x→−∞

(−1)r+1Akq(z) > 0

and by (2.7),

(−1)rAkq(α
k
1) = (−1)rαk

1

k−1∑
l=0

Alp(αk
1) + (−1)r

M−1∑
l=k+1

Alp(αk
1) > 0.

Also

(−1)r(Ak+1q(z)− Akq(z)) = (−1)r(z − 1)Ak+1p(z) < 0

for z < αk+1
1 , and so

(−1)rAkq(β
k+1
1 ) > (−1)rAk+1q(β

k+1
1 ) = 0.

So Akq has a zero βk
1 with βk

1 < αk
1 and βk

1 < βk+1
1 .

Thus we have shown that A0q, . . . , AM−1q have interlacing negative zeros and so
q satisfies (II).

For the case α = 1, when r′ = r, we can similarly show that for k = 0, . . . ,M−1,
Akq has zeros βk

1 < . . . < βk
r < 0, where for 1 ≤ j ≤ r, βk

j is in (αk+1
j−1 , α

k
j ),

0 ≤ k ≤ M − 2, and βM−1
j is in (α0

j , α
M−1
j ), where αk

0 = −∞, k = 1, . . . ,M − 1. As
before, the zeros of A0q, . . . , AM−1q interlace and so q satisfies (II). �

The factor zM−1 + zM−2 + · · ·+1, as in Theorem 2.8, will play an important role
in the next section. The following result will also be used in the next section.

Lemma 2.9. If a polynomial p has a factor of the form q(zM) for a polynomial q
of degree ≥ 1, then p does not satisfies (II).

Proof. Let p(z) = q(zM)r(z) for polynomials q, r. Then it is easily seen that for
k = 0, . . . ,M − 1, Akp(z) = q(z)Akr(z). Thus if q has degree ≥ 1, A0p, . . . , AM−1p
have a common zero and so cannot have interlacing zeros. �

3. Refinable Functions

As before we take an integer M ≥ 2. We first give a basic result on refinable
functions for dilation M . For M = 2 this is part of work in [13] and our proof also
follows this work.
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Theorem 3.1. Let p as in (2.1) be a polynomial of the form

p(z) = (zM−1 + zM−2 + · · ·+ 1)q(z),

where q(1) = 1, q(z) =
∑

j∈Z bjz
m−j, bj ≥ 0, j ∈ Z, bj = 0 for j < 0 and j > m,

b0 > 0 and
∑

j∈Z bjM < 1. Then there is a continuous, non-negative function φ
such that

(3.1) φ(x) =
n∑

j=0

ajφ(Mx− j), x ∈ R,

(3.2)
∑
j∈Z

φ(x− j) = 1, x ∈ R.

Moreover φ has support in [0, n/(M −1)] and if aj > 0, j = 0, . . . , n, then φ(x) > 0
for 0 < x < n/(M − 1).

Proof. Define Tp : C(R) → C(R) by

Tpf(x) =
∑
j∈Z

ajf(Mx− j), x ∈ R,

where as before we put aj = 0 for j < 0 and j > n. Now for λ ∈ `1(Z), f ∈
C(R), x ∈ R, ∑

k∈Z

λk(Tpf)(x− k) =
∑
j∈Z

(Spλ)jf(Mx− j),

where
(Spλ)j =

∑
k∈Z

aj−Mkλk, j ∈ Z.

So by induction, for any 1 ≤ m ∈ Z,∑
k∈Z

λk(T
m
p f)(x− k) =

∑
j∈Z

(Sm
p λ)jf(Mmx− j), x ∈ R.

We choose f to be the B-spline N given by

N(x) =

 x, 0 ≤ x ≤ 1,
2− x, 1 ≤ x ≤ 2,
0, otherwise.

We choose λ = δ, where δ0 = 1 and δk = 0 for k 6= 0. Then putting fm =
Tm

p N, m = 1, 2, . . . ,

fm(x) =
∑
j∈Z

(Sm
p δ)jN(Mmx− j), x ∈ R.

It is well-known that

N(x) =
∑
k∈Z

ckN(Mx− k), x ∈ R,
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where

Q(z) :=
∑
k∈Z

ckz
k =

1

M
(zM−1 + zM−2 + · · ·+ 1)2.

Then for x ∈ R, m = 1, 2, . . . ,

fm(x) =
∑
j∈Z

(Sm
p δ)j

∑
k∈Z

ckN(Mm+1x−Mj − k)

=
∑
k∈Z

∑
j∈Z

(Sm
p δ)jck−MjN(Mm+1x− k).

Also for x ∈ R,

fm+1(x) =
∑
k∈Z

(Sm+1
p δ)kN(Mm+1x− k)

=
∑
k∈Z

∑
j∈Z

ak−Mj(S
m
p δ)jN(Mm+1x− k).

Thus

(3.3) fm+1(x)− fm(x) =
∑
k∈Z

AkN(Mm+1x− k), x ∈ R,

where

(3.4) Ak =
∑
j∈Z

(Sm
p δ)j(ak−Mj − ck−Mj), k ∈ Z.

Now ∑
j∈Z

(aj − cj)z
j = znp(z−1)−Q(z)

= (zM−1 + zM−2 + ·+ 1)

{
zmq(z−1)− 1

M
(zM−1 + zM−2 + ·+ 1)

}
= (zM − 1)R(z),

for a polynomial R(z) :=
∑

j∈Z djz
j, since q(1) = 1. Thus

aj − cj = dj−M − dj, j ∈ Z,

for a finitely supported sequence {dj}. So for k ∈ Z, from (3.4),

Ak =
∑
j∈Z

(Sm
p δ)j(dk−M(j+1) − dk−Mj) = −

∑
j∈Z

(4Sm
p δ)jdk−Mj,

where for a sequence λ, (4λ)j = λj − λj−1, j ∈ Z. Hence there is a constant K
such that

|Ak| ≤ K‖4Sm
p δ‖∞,

and by (3.3),

(3.5) ‖fm+1 − fm‖∞ ≤ K‖4Sm
p δ‖∞,
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since
∑

k∈Z N(· − k) = 1. Now (z − 1)p(z) = (zM − 1)q(z) and so

aj−1 − aj = bj−M − bj, j ∈ Z.

Thus for any sequence λ,

(4Spλ)j =
∑
k∈Z

(aj−Mk − aj−1−Mk)λk

=
∑
k∈Z

(bj−Mk − bj−Mk−M)λk =
∑
k∈Z

bj−Mk(λk − λk−1).

Now for k = 0, . . . ,M − 1,
∑

j∈Z bjM+k <
∑

j∈Z bj = 1. Put

ρ = max

{∑
j∈Z

bjM+k : k = 0, . . . ,M − 1

}
< 1.

Then for λ ∈ `∞(Z),
‖4Spλ‖∞ ≤ ρ‖4λ‖∞,

and so we see from (3.5) by induction that

‖fm+1 − fm‖∞ ≤ Kρm, m = 1, 2, · · · .

Thus (fm) is a Cauchy sequence in C(R) and so there is a function φ in C(R) with

lim
m→∞

fm(x) = φ(x)

uniformly on R. Since fm+1 = Tpfm, we have Tpφ = φ, i.e., φ satisfies (3.1).

Also for j ∈ Z, aj =
∑M−1

l=0 bj−l and so
∑

k∈Z aj+Mk =
∑

j∈Z bj = 1. Thus if f

has compact support and
∑

k∈Z f(· − k) = 1, then for x ∈ R,∑
k∈Z

Tpf(x− k) =
∑
j,k∈Z

ajf(Mx−Mk − j)

=
∑
j,k∈Z

aj−Mkf(Mx− j) = 1.

Since
∑

k∈Z N(·−k) = 1, we see by induction that
∑

k∈Z fm(·−k) = 1, m = 1, 2, . . . ,
and so

∑
k∈Z φ(· − k) = 1.

Now if fm has support in [0, bm] for some bm > 0, then fm+1 = Tpfm has support
in [0, (bm + n)/M ]. With b0 = 2, (bm) forms a monotone sequence which converges
to n/(M − 1). Thus φ has support in [0, n/(M − 1)].

Since aj ≥ 0, j ∈ Z, fm+1 will be non-negative provided that fm is non-negative.
Thus φ is non-negative. Now suppose

α := min{aj : j = 0, . . . , n} > 0.

For n/(M − 1)− 1 ≤ x ≤ n + 1,
n∑

j=0

φ(x− j) =
∑
j∈Z

φ(x− j) = 1,
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and so from (3.1)

φ(x/M) =
n∑

j=0

ajφ(x− j) ≥ α

n∑
j=0

φ(x− j) = α.

Thus φ(x) ≥ α > 0 on a closed interval I0 with length

1

M

(
n + 1−

(
n

M − 1
− 1

))
=

2(M − 1) + n(M − 2)

M(M − 1)
≥ 1,

since n ≥ M − 1. Now if φ(x) > 0 on an interval Im = [am, bm] of length ≥ 1,
then from (3.1), φ(x) > 0 for all x in the interval Im+1 = [am+1, bm+1], where
am+1 = am/M and bm+1 = (bm + n)/M . Since limm→∞ am = 0 and limm→∞ bm =
n/(M − 1), we see by induction that φ(x) > 0 for 0 < x < n/(M − 1). �

If p as in Theorem 3.1 also satisfies condition (II) of Section 2, we can deduce
some total positivity properties of φ.

Theorem 3.2. Let p as in (2.1) be a polynomial which satisfies (II) and is of the
form

p(z) = (zM−1 + zM−2 + · · ·+ 1)q(z),

where q(1) = 1, q(z) =
∑

j∈Z bjz
m−j, bj ≥ 0, j ∈ Z, bj = 0 for j < 0 and j >

m,m ≥ 1, b0 > 0. Then there is a continuous, non-negative function φ satisfying
(3.1) and (3.2). Moreover φ(x) > 0 if and only if 0 < x < n/(M − 1), and for
k ∈ Z, the matrix A := (φ(i− j + k/(M − 1))i,j∈Z is totally positive and any minor
of A is strictly positive if and only if its diagonal elements are positive.

Proof. By Lemma 2.9,
∑

j∈Z bjM <
∑

j∈Z bj = 1. So we can apply Theorem 3.1 to

give (3.1) and (3.2). By (II), aj > 0, j = 0, . . . , n and so Theorem 3.1 also gives
φ(x) > 0 if and only if 0 < x < n/(M − 1).

Now take k ∈ Z and for m = 0, 1, 2, . . ., define fm as in the proof of Theorem
3.1 and define the polynomial

pm(z) =
∑
j∈Z

fm(j + k/(M − 1))zj.

Then for m = 0, 1, 2, . . . ,

pm+1(z) =
∑
j∈Z

Tpfm(j + k/(M − 1))zj

=
∑
j∈Z

∑
r∈Z

arfm(Mj + k + k/(M − 1)− r)zj.(3.6)

Now for p̃(z) =
∑

j∈Z ajz
j,

(3.7) p̃(z)pm(z) =
∑
j∈Z

djz
j,
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where for j ∈ Z,

dj =
∑
r∈Z

arfm(j − r + k/(M − 1)).

From (3.6),

(3.8) pm+1(z) =
∑
j∈Z

dk+mjz
j.

Now if pm has all negative zeros, then by Theorem 2.7, p̃pm satisfies (II) and so
by (3.7) and (3.8), pm+1 has all distinct negative zeros. Since p0 has all negative
zeros, we see by induction that for all m = 1, 2, . . . , pm has all distinct negative
zeros. Since (pm) converges to p(z) :=

∑
j∈Z φ(j + k/(M − 1))zj, it follows that p

has all negative zeros. The required result then follows from a result in [1]. �

We recall from Theorem 2.8 that p as in Theorem 3.2 satisfies (II) provided that
q satisfies (II). If we assume that p satisfies the stronger condition (I), then we can
deduce a stronger total positivity property. As in Theorem 3.1 we follow here the
work of [13], where the result is proved for M = 2.

Theorem 3.3. Suppose that p as in (2.1) is a polynomial which satisfies (I) and
is of the same form as in Theorem 3.2. Then the function φ as in Theorem 3.2
satisfies the property that for any s ≥ 1, x1 < · · · < xs, and integers l1 < · · · < ls,

(3.9) det(φ(xi − lj) : i, j = 1, . . . , s) ≥ 0.

Proof. For m = 0, 1, . . ., we define fm as in the proof of Theorem 3.1, so that for
i ∈ Z, x ∈ R,

fm+1(x− i) =
∑
j∈Z

ajfm(Mx−Mi− j)

=
∑
j∈Z

aj−Mifm(Mx− j).

Letting B = (aj−Mi)i,j∈Z, we apply the Cauchy-Binet formula [16, p.1] to give for
x1 < · · · < xs, l1 < · · · < ls,

det(fm+1(xi − lj) : i, j = 1, . . . , s)

=
∑

k1<···<ks

B

(
l1 · · · ls
k1 · · · ks

)
det(fm(Mxi − kj) : i, j = 1, . . . , s).

By Theorem 2.1, the terms B

(
l1 · · · ls
k1 · · · ks

)
are all non-negative. Also f0 = N ,

which satisfies (3.9) with φ replaced by N . So by induction (3.9) is satisfied with
φ replaced by fm, m = 1, 2, · · · . Since (fm) converges to φ, (3.9) holds. �

We remark that in [13] a function satisfying the conclusion of Theorem 3.3 is
called a ripplet. In [13] it is also shown that for M = 2 there is strict inequality
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in (3.9) if and only if the diagonal elements of the matrix concerned are strictly
positive, i.e.,

(3.10) 0 < xj − lj <
n

M − 1
, j = 1, . . . , s.

This result is a generalisation of results in [4] and [5] for B-splines, which are in
turn a stronger form of the Schoenberg-Whitney Theorem [18]. It is not true in
general for M ≥ 3.

To see this, take M = 3 and let

p(z) =
1

8
(z2 + z + 1)(z + 1)3 =

5∑
j=0

ajz
5−j.

Since the polynomial z2+z+1 satisfies (I), the polynomial p satisfies (I) by Theorem
2.7. Now let φ be the corresponding refinable function as in Theorem 3.3, which
has support in [0, 5/2]. For 7/6 ≤ x ≤ 4/3, we have 3x− 4 ≤ 0, 3x− 1 ≥ 5/2, and
so the refinement equation (3.1) gives

φ(x) = a2φ(3x− 2) + a3φ(3x− 3)

=
7

8
φ(3x− 2) +

7

8
φ(3x− 3) =

7

8
,

by (3.2). Now by (3.2),

φ(x + 1) + φ(x) + φ(x− 1) = 1, 1 ≤ x ≤ 3/2,

and so

φ(x + 1) + φ(x− 1) =
1

8
=

1

7
φ(x), 7/6 ≤ x ≤ 4/3.

Thus φ(· + 1), φ, φ(· − 1) are linearly dependent on [7/6, 4/3]. So for any 7/6 ≤
x−1 < x0 < x1 ≤ 4/3,

det(φ(xi − j) : i, j = −1, 0, 1) = 0.

Thus we may have equality in (3.9) although (3.10) is satisfied.
We also note that while the functions φ(· − j), j ∈ Z, are locally linearly depen-

dent, as shown above, they are globally linearly independent. To see this, we note
that (3.2) implies

φ(x + 1) + φ(x) = 1, 1/2 ≤ x ≤ 1.

It is easily checked from (3.1) that φ is not constant on [1/2, 1]. Thus φ(x+1) and
φ are linearly independent on [1/2, 1]. Suppose that

∑
j∈Z cjφ(x − j) = 0, x ∈ R.

Then c−1φ(x + 1) + c0φ(x) = 0, 1/2 ≤ x ≤ 1, and so c−1 = c0 = 0. Similarly cj = 0
for all integers.

We shall now show that when n/(M − 1) is an integer, then it is true that there
is strict inequality in (3.9) if and only if (3.10) holds.

Theorem 3.4. If p and φ are as in Theorem 3.3 and n is an integer multiple of
M − 1, then there is strict inequality in (3.9) if and only if (3.10) holds.
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Again we follow the work of [13]. We shall need a generalization of Theorem 2.1.
Let p as in (2.1) satisfy (I) and let B denote the matrix (aj−Mi)i,j∈Z. Then from
Theorem 2.1 we see that for s ≥ 1 and i1 < . . . < is, j1 < . . . < js,

B

(
i1 · · · is
j1 · · · js

)
≥ 0

with strict inequality if and only if

0 ≤ jl −Mil ≤ n, l = 1, . . . , s.

Proposition 3.5. If n is an integer multiple of M − 1, then for integers r, s ≥ 1,
i1 < . . . < is, j1 < . . . < js,

(3.11) Br

(
i1 · · · is
j1 · · · js

)
≥ 0,

with strict inequality if and only if

(3.12) 0 ≤ jl −M ril ≤
(M r − 1)n

M − 1
, l = 1, . . . , s.

Proof. The proof is by induction on r. We assume the result is true for some r ≥ 1
and use the Cauchy-Binet formula to give

Br+1

(
i1 · · · is
j1 · · · js

)
=

∑
k1<k2<...<ks

B

(
i1 · · · is
k1 · · · ks

)
Br

(
k1 · · · ks

j1 · · · js

)
.

Then (3.11) holds with r replaced by r + 1. Note that (3.12) with r replaced by
r + 1 may be written as, for l = 1, . . . , s,

(3.13) il ≤ M−r−1jl,

(3.14) M−r−1((M − 1)jl + n) ≤ (M − 1)il + n.

Now (3.11), with r replaced by r + 1, holds with strict inequality if and only if
there are integers k1 < . . . < ks with, for l = 1, . . . , s,

(3.15) il ≤ M−1kl ≤ M−r−1jl,

(3.16) M−r−1((M − 1)jl + n) ≤ M−1((M − 1)kl + n) ≤ (M − 1)il + n.

So if (3.11), with r replaced by r + 1, holds with strict inequality, then for l =
1, . . . , s, (3.15) and (3.16) are true for some k1 < . . . < ks, which implies (3.13) and
(3.14) for l = 1, . . . , s.

The converse is more difficult. Suppose (3.13) and (3.14) hold for l = 1, . . . , s.
We must show that there are integers k1 < . . . < ks such that (3.15) an (3.16) hold
for l = 1, . . . , s. We shall prove this by induction on s. Take s ≥ 1 and suppose
that the result is true for s replaced by s−1. For l = 1, . . . , s, let kl be the smallest
integer satisfying

(3.17) il ≤ M−1kl
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(3.18) M−r((M − 1)jl + n) ≤ (M − 1)kl + n,

and kl > kl−1, (which this last condition is omitted for l = 1). We know that (3.15)
and (3.16) hold for l = 1, . . . , s− 1, and it remains only to prove

(3.19) ks ≤ M−rjs

(3.20) ks ≤ Mis + n.

Note that if km+1 ≥ km + 2 for some m, 1 ≤ m ≤ s − 1, then the condition
kl > kl−1 is not enforced for l = m+1. Thus we can apply our inductive hypothesis
for l = m + 1, . . . , s, to deduce (3.19) and (3.20). So we may assume

(3.21) kl+1 = kl + 1, l = 1, . . . , s− 1.

If s ≥ 2, then

ks = ks−1 + 1 ≤ Mis−1 + n + 1

≤ Mis −M + n + 1 ≤ Mis + n

and so (3.20) holds. If s = 1 and k1 > Mi1 + n, then

k1 − 1 ≥ Mi1 + n ≥ Mi1

and

(M − 1)(k1 − 1) + n ≥ (M − 1)(Mi1 + n) + n

≥ M((M − 1)i1 + n) ≥ M−r((M − 1)j1 + n)

by (3.14). This contradicts the definition of k1 being the smallest integer satisfying
(3.17) and (3.18). So again (3.20) holds.

It remains to prove (3.19). Suppose (3.19) is not true, then by (3.21),

(3.22) k1 > M−rjs − s + 1.

Now by (3.13),

k1 > Mis − s + 1 ≥ Mi1 + (M − 1)(s− 1)

and hence

k1 − 1 ≥ Mi1 + (M − 1)(s− 1) ≥ Mi1.

So by definition, k1 is the smallest integer satisfying (3.18). Thus

(3.23) (M − 1)(k1 − 1) + n < M−r((M − 1)j1 + n),

which gives

k1 − 1 < M−r(j1 − (M r − 1)n/(M − 1))

≤ M−r(js − s + 1− (M r − 1)n/(M − 1))

= M−rjs + M−r − s + (1−M−r)(s− n/(M − 1)).
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If s ≤ n/(M−1), then k1−1 < M−rjs +M−r−s and so k1−1 ≤ M−rjs−s, which
contradicts (3.22), and so (3.19) is true. So we may assume s ≥ n/(M − 1) + 1.
Now by (3.16),

ks = k1 + s− 1 ≤ Mi1 + n + s− 1

≤ M(is − s + 1) + n + s− 1

= Mis + n− (M − 1)(s− 1)

≤ M−rjs + n− (M − 1)(s− 1)

by (3.13). Since s− 1 ≥ n/(M − 1), then ks ≤ M−rjs, i.e., (3.19) holds. �

Proposition 3.5 is not true in general if n is not an integer multiple of M − 1.
To see this, first note that for the matrix B as before, B2 = (ãj−M2i)i,j∈Z, where

(M+1)n∑
j=0

ãjz
(M+1)n−j = p(z)p(zM).

Take M = n = 3 and p(z) = z3 + z2 + z + 1. Then p satisfies (I) but

B2

(
−1 0
1 2

)
=

∣∣∣∣ ã10 ã1

ã11 ã2

∣∣∣∣ =

∣∣∣∣ 1 1
1 1

∣∣∣∣ = 0.

Proof of Theorem 3.4. Suppose that there is strict inequality in (3.9). If xt− lt ≤ 0
for some t, 1 ≤ t ≤ s, then φ(xi − lj) = 0 for i = 1, . . . , t, j = t, . . . , s. So the
first t rows of the matrix in (3.9) are linearly dependent, which contradicts the
determinant being strictly positive. Similarly, if xt − lt ≥ n/(M − 1) for some
t, 1 ≤ t ≤ s, then the last s− t + 1 rows of the determinant are linearly dependent
and we again get a contradiction. Thus (3.10) must be satisfied. We note that this
argument does not depend on n/(M − 1) being an integer.

We now assume that (3.10) is satisfied and shall deduce strict inequality in (3.9).
By the refinement equation (3.1), for i ∈ Z, x ∈ R,

φ(x− i) =
∑
j∈Z

ajφ(Mx−Mi− j) =
∑
j∈Z

Bijφ(Mx− j),

and repeating this procedure gives for any integer r ≥ 1,

φ(x− i) =
∑
j∈Z

Br
ijφ(M rx− j).

So by the Cauchy-Binet formula,

det(φ(xi − lj) : i, j = 1, . . . , s)

=
∑

k1<...<ks

Br

(
l1 · · · ls
k1 · · · ks

)
det(φ(M rxi − kj) : i, j = 1, . . . , s)(3.24)

For r ≥ 1 and i = 1, . . . , s, choose an integer ki,r with 0 < M rxi−ki,r ≤ 1. Since
φ(x) > 0 for 0 < x < n/(M − 1) and n/(M − 1) > 1, the diagonal terms of the
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matrix (φ(M rxi− kj,r) : i, j = 1, . . . , s) are positive. Also the off-diagonal terms of
this matrix are zero for large enough r since for i 6= j,

|M rxi − kj,r| = |M r(xi − xj) + M rxj − kj,r| → ∞
as r →∞. Thus for large enough r, we have k1,r < . . . < ks,r and

(3.25) det(φ(M rxi − kj,r) : i, j = 1, . . . , s) > 0.

Now limr→∞ M−rkj,r = xj, j = 1, . . . , s, and so by (3.10)

0 < M−rkj,r − lj < (1−M−r)n/(M − 1), j = 1, . . . , s,

for large enough r. Then by Proposition 3.5,

Br

(
l1 · · · ls

k1,r · · · ks,r

)
> 0

for all large enough r. So by (3.24) and (3.25) there is strict inequality in (3.9). �
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