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ABSTRACT. In this paper, we consider sampling and reconstruction of
signals in a reproducing kernel subspace of L”(Rd),l < p < o0, as-
sociated with an idempotent integral operator whose kernel has certain
off-diagonal decay and regularity. The space of p-integrable non-uniform
splines and the shift-invariant spaces generated by finitely many local-
ized functions are our model examples of such reproducing kernel sub-
spaces of LP(R%). We show that a signal in such reproducing kernel
subspaces can be reconstructed in a stable way from its samples taken
on a relatively-separated set with sufficiently small gap. We also study
the exponential convergence, consistency, and the asymptotic pointwise
error estimate of the iterative approximation-projection algorithm and
the iterative frame algorithm for reconstructing a signal in those repro-
ducing kernel spaces from its samples with sufficiently small gap.

1. INTRODUCTION

Sampling and reconstruction is a cornerstone of signal processing. The
most common form of sampling is the uniform sampling of a bandlimited
signal. In this case, perfect reconstruction of the signal from its uniform
samples is possible when the samples are taken at a rate greater than twice
the bandwidth [28, 39]. Motivated by the intensive research activity taking
place around wavelets, the paradigm for sampling and reconstructing band-
limited signals has been extended over the past decade to signals in shift-
invariant spaces [4, 46]. Recently, the above paradigm has been further
extended to representing signals with finite rate of innovation, which are
neither band-limited nor living in a shift-invariant space [17, 31, 43, 44, 47].
Here a signal is said to have finite rate of innovation if it has finite number
of degrees of freedom per unit of time, that is, if it has requires only a finite
number of samples per unit of time to specify the signal [47].

In this paper, we consider sampling and reconstruction of signals in a
reproducing kernel subspace of LP(R%),1 < p < oco. Here and henceforth
LP := LP(RY) is the space of all p-integrable functions on the d-dimensional
Euclidean space RY with the standard norm || - || Lp(rd), OF || - ||p for short. A

reproducing kernel subspace of LP(R?) [10] is a closed subspace V of LP(R%)
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such that the evaluation functionals on V are continuous, i.e., for any 2 € R¢
there exists a positive constant C, such that

(L1) F@)] < Cullfllporay  for all f € V.

Let 1 < p < oo. We say that a bounded linear operator T' on LP(R?) is
an idempotent operator if it satisfies

(1.2) T° =T.
Denote by V the range space of the idempotent operator T on LP(R?), i.e.,
(1.3) Vi={Tf| feLP(RY)}.

We say that the range space V of the idempotent operator T on LP(RY) is
a reproducing kernel space V' associated with the idempotent operator T' on
LP(RY) if it is a reproducing kernel subspace of LP(R?).

A trivial example of idempotent linear operators is the identity opera-
tor. In this case, the range space is the whole space LP(Rd) on which the
evaluation functional is not continuous. As pointed out in [34], the whole
space L?(R?) is too big to have stable sampling and reconstruction of signals
belonging to this space. So it would be reasonable and necessary to have
certain additional constraints on the idempotent operator T'. In this paper,
we further assume that the idempotent operator 7' is an integral operator

(14) T5@) = | K@i 1€ D@

whose measurable kernel K has certain off-diagonal decay and regularity,
namely,

(15) H sup |K( +Z7Z)|HL1(Rd) < 00,
z€R4
and
(1.6) liH(l) H sup |ws(K)(- + z,z)\HLl(Rd) =0
—Y " z2eR4

[29, 42]. Here the modulus of continuity ws(K) of a kernel function K on
R? x R? is defined by

(1.7) ws(K)(z,y) = sup |K(z+2",y+y)— K(z,y).
! ' €[—6,0]4

In this paper, we assume that signals to be sampled and represented live
in a reproducing kernel space associated with an idempotent integral op-
erator whose kernel satisfies (1.5) and (1.6). The reason for this setting is
three-fold. First, the range space of an idempotent integral operator whose
kernel satisfies (1.5) and (1.6) is a reproducing kernel subspace of LP(R?),
see Theorem A.1 in the Appendix. Secondly, signals in the range space of
an idempotent integral operator whose kernel satisfies (1.5) and (1.6) have
finite rate of innovation, see Theorem A.2 in the Appendix. Thirdly, the
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common model spaces in sampling theory such as the space of p-integrable
non-uniform splines of order n satisfying n — 1 continuity conditions at each
knot [38, 48] and the finitely-generated shift-invariant space with its gener-
ators having certain regularity and decay at infinity [4, 46|, are the range
space of some idempotent integral operators whose kernels satisfy (1.5) and
(1.6), see Examples A.3 and A.4 in the Appendix.

A discrete subset I' of R? is said to be relatively-separated if

(1.8) Br(6) := sup ZX7+[—5/2,5/2W(95) < o0
rcRd ~yer
for some § > 0, while a positive number § is said to be a gap of a relatively-
separated subset I of RY if
(1.9) Ap(8) == inf > "X (Lsa5/2(@) > 1

€Rd
* yel

[8]. Note that the set of all positive numbers ¢ with Ap(d) > 1 is either an
interval or an empty set because Ar(d) is an increasing function of ¢ > 0.
Then for a relatively-separated subset I" of R¢ having positive gap, we define
the smallest positive number 6 with Ap(d) > 1 as its mazimal gap. One may
verify that a bi-infinite increasing sequence A = {\; }xez of real numbers is
relatively-separated if infiez (A1 — Ag) > 0, and that it has maximal gap
Suppez(Ak+1 — Ag) if it is finite.

In this paper, we assume that the sample Y := (f(7))er of a signal f is
taken on a relatively-separated subset I of R¢ with positive gap.

The samplability is one of most important topics in sampling theory,
see for instance [22, 26, 46] for band-limited signals, [4, 43] for signals in
a shift-invariant space, [16, 20, 21, 24, 25] for signals in a co-orbit space,
and [27, 33] for signals in reproducing kernel Hilbert and Banach spaces.
In this paper, we study the samplability of signals in a reproducing kernel
subspace of LP(R?) associated with an idempotent operator. Particularly,
in Section 2, we show that any signal in a reproducing kernel subspace V' of
LP(R?) associated with an idempotent operator whose kernel satisfies (1.5)
and (1.6) can be reconstructed in a stable way from its samples taken on
a relatively-separated set I' with sufficiently small gap 9, i.e., there exist
positive constants A and B such that

(1.10)  Allflleray < 1(F())verllenry < Bl fllpmay  forall f eV

(see Theorem 2.1 for the precise statement). Here and henceforth, given
a discrete set T', /P := (P(T"),1 < p < o0, is the space of all p-summable
sequences on I' with the standard norm || - [|»(ry, or || - [|, for short.

In this paper, we then study the linear reconstruction of a signal from its
samples taken on a relatively-separated set with sufficiently small gap. The
iterative approximation-projection reconstruction algorithm is an efficient
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algorithm to reconstruct a signal from its samples, which was introduced
in [22] for reconstructing band-limited signals, and was later generalized to
signals in shift-invariant spaces in [2]; see also [4, 7, 23] and the references
therein for various generalizations and applications. In Section 3 of this
paper, we introduce the iterative approximation-projection reconstruction
algorithm for reconstructing a signal in a reproducing kernel subspace of
LP(R%) from its samples taken on a relatively-separated set with sufficiently
small gap, and study its exponential convergence, consistency, and numerical
implementation of the above iterative approximation-projection algorithm
(see Theorem 3.1, Remark 3.1 and Remark 3.2 for details).

Denote the standard action between functions f € LP(RY) and g €
LP/=1)(R%) by

(111) )= [ f@ala)d.

Then the stability condition (1.10) can be interpreted as the p-frame prop-
erty of {K(v,-)}yer on the space V. Here for a Banach subspace V of
LP(RY), we say that a family ® = {1, },cr of functions in LP/P~D(R?) is a
p-frame for V [6] if there exist positive constants A and B such that

(L12) A fll o) < [ (Dl < Blflisee)  forall f € V.

Then a natural linear reconstruction algorithm is the frame reconstruction
algorithm; see [11, 49] for reconstructing band-limited signals, [4, 9, 15, 30]
for reconstructing signals in shift-invariant spaces, and [35] for reconstruct-
ing signals in some reproducing kernel Hilbert spaces. In Section 4, we
introduce the preconditioned frame algorithm for reconstructing signals in a
reproducing kernel space associated with an idempotent integral operator
from its samples taken a relatively-separated set I" with sufficiently small
gap, and study its exponential convergence and consistency (see Theorem
4.1 for details).

Reconstructing a function from data corrupted by noise and estimating
the reconstruction error are leading problems in sampling theory, however
they have not been given as much attention; see [18, 36, 40] for reconstruct-
ing bandlimited signals, [5, 18] for reconstructing signals in shift-invariant
spaces, and [12, 31, 32] for reconstructing signals with finite rate of inno-
vations. It is observed in [37] that reconstruction from noisy data may
introduce spatially-dependent noise in the reconstructed signal (hence spa-
tial dependent artifacts) that are undesirable for sub-pixel signal processing.
Thus it is desirable to have an accurate error estimate of the reconstructed
signal at each point. In this paper, we show that the reconstruction via
the approximation-projection reconstruction algorithm and the frame recon-
struction algorithm is unbiased, and we also provide an asymptotic estimate
of the variance of the error between the reconstruction from noisy sample
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of a signal f via these algorithms and the signal f in a reproducing kernel
space, see Theorem 5.1 and Remark 5.2.

The range space V of an idempotent operator 1" on LP (Rd) has various
properties. For instance, it is complementable and the null space N(T) :=
{g € LP(RY) | Tg = 0} is its algebraic and topological complement. In
the appendix, some properties of the range space of an idempotent integral
operator on LP(RY) whose kernel satisfies (1.5) and (1.6) are established,
such as the reproducing kernel property in Theorem A.1 and the frame
property in Theorem A.2.

2. SAMPLABILITY OF SIGNALS IN A REPRODUCING KERNEL SPACE

In this section, we consider the samplability of signals in a reproducing
kernel subspace V of LP(R?) associated with an idempotent integral operator
whose kernel satisfies (1.5) and (1.6), by showing that any signal in V' can
be reconstructed in a stable way from its samples taken on a relatively-
separated set with sufficiently small gap.

Theorem 2.1. Let 1 < p < oo, T be an idempotent integral operator whose
kernel K satisfies (1.5) and (1.6), V' be the reproducing kernel subspace of
LP(RY) associated with the operator T, and &y > 0 be so chosen that

21) o= || sup foso/2 () + 29 s gy < 1
z€R4

Then any signal f in' V' can be reconstructed in a stable way from its samples
f(),y € T, taken on a relatively-separated subset T' of RY with gap &.
Moreover,

(22) (1= 70) (05 Ar(0) 7 | £l oz
< [ EODrerllry < @+ 70) (6 Br(00) 7 || ey for all f € V.

Now we apply the above samplability result to signals in a shift-invariant
space. Let

23)  w={fIflw=3 s |f@+k)|<oc}

pezd T€l-1/2,1/2]4
be the Wiener amalgam space [4, 19]. Let ¢1,...,¢, € W be continuous
functions on R? with the property that {¢;(- — k) : 1 <i <r k € Z} is an
orthonormal subset of L?(R%). Then the integral operator T defined by

2.4) Tf() = |

Rd

T

(D> dile—k)oily—h)) fy)dy for all f € LA(RY)

1=1 kezd

is an idempotent operator whose kernel satisfies (1.5) and (1.6). This yields
the samplability of signals in a finitely-generated shift-invariant space [2].
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Corollary 2.2. Let ¢y, ..., ¢, € W be continuous functions on R? such that
{¢i(- — k)| 1 <i <r k€ Z% is an orthonormal subset of L*(R?). Define
the finitely-generated shift-invariant space Vo(¢1,...,dr) by

(25) Va1, = { 3D a®oi-— k) | 0D leith)? < oo}

i=1 ke7d 1=1 kezd

Then any signal f in Vo(é1,...,¢r) can be reconstructed in a stable way
from its samples f(v),y € T, taken on a relatively-separated subset T' of R?
with sufficiently small gap &o.

The following theorem is a slight generalization of Theorem 2.1.

Theorem 2.3. Let 1 < p < oo, T be an idempotent integral operator whose
kernel K is continuous and satisfies

(2.6) sup || K (2, )| 11 (way + sup [[K (-, )|l 1 ray < oo,
z€R4 yeRd

V be the reproducing kernel subspace of LP(R?) associated with the operator
T, and §y > 0 be so chosen that

1-1/p
(2.7) 1y = (sup sup ]K(x+t,-)—K(a;,~)]’ )
’ z€R? 1 [t[<d0/2 L' (R)
1/p
x(sup || swp [K(+ty) - Kepl| o) <1
yeRr? ! [¢<6o/2 LH(RY

Then any signal f in' V' can be reconstructed in a stable way from its samples
f(7),y €T, taken on a relatively-separated subset T' of R with gap .

Remark 2.1. The conclusion in Theorem 2.3 is established in [24, Section
7.5] when the kernel K of the idempotent operator 7" satisfies

(2.8) K(z,y) = K(y, z).

For p = 2, an idempotent operator T" with kernel K satisfying (2.8) is a
projection operator onto a closed subspace of L?. Hence the idempotent
operator T' with its kernel satisfying (2.8) is uniquely determined by its
range space V onto L?. The above conclusion on the idempotent operator
does not hold without the assumption (2.8) on its kernel. We leave the
above option on the kernel of idempotent operators free for better estimate
in the gap dp in Theorem 2.1, and also for our further study on local exact
reconstruction (c.f. [3, 41, 45] for signals in shift-invariant spaces). For
instance, let us consider samplability of signals in the linear spline space

Vi= {;Zc(k’)h(x — k)| sup le(k)| < oo},

where h(x) := max(1l — |z|,0) is the hat function. It is well known [3] that
a signal f in the linear spline space V7 can be reconstructed in a stable way
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from its samples f(7x), k € Z, with maximal gap do := suppcz(Ve+1 — 1) <
1. For any integer N > 1, define

_ 3N . ~ e k-1
KN(a:,y)—\/mk%:Zh( k)h(N(y—1))(VIN2 — 6N—3N+1)""",

and let Ty be the integral operator with kernel K. One may verify that
Ty, N > 1, are idempotent operators with the same range space Vi and the
kernel Ky satisfies (2.8) only when N = 1. Recalling that K (z—1,y—1) =
Ky(z,y) and Kny(—z,—y) = Kn(z,y), we have

supH sup ]KN(a:—{—t,')—KN(a:?')\Hl
2€R ' |t|<0/2

= sup H sup \KN(:U+t,-)—KN(:L',-)\H1
x€[0,1/2]  [t|<d0/2

2 o0
I Y N 1- VN o)

x sup || sup Y |h(z—k)—hx+t—k)AN(—k—s),
z€[0,1/2]  [t|<d0/2 ey,

9Ny

6N —4°

IN

<

This shows that the inequality (2.7) holds for K = Ky and p = co when
do < % — %. On the other hand, we have

supH sup |Ki(x+t, ) — Ki(x, )\H1
2€R | |t|<50/2
(9 — \/5)50

> HK1(50/27 ) - Kl(o’ )Hl = 4 )

which implies that the inequality (2.7) does not hold for K = K; and p = 0o
when &y > (9_%“\[3) ~ 0.5504 and so the theorem does not apply.

We conclude this section by providing proofs of Theorems 2.1 and 2.3. To
prove Theorem 2.1, we need a technical lemma.

Lemma 2.4. Let 1 < p < o0, dp € (0,00), 7 € (0,1), and I" be a discrete
subset of R® with the property that

(2.9) 1< Ap(éo) < BF(50) < 00.
Assume that f € LP(RY) satisfies

(2.10) lwso /2 () e ray < 7l fll e rays
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and U = {uy }yer is a bounded uniform partition of unity (BUPU) associ-
ated with the covering {~ + [~60/2,00/2]%}yer of RY, i.e.,

0 <uy(x) <1forallz€R%and y €T,
(2.11) ., is supported in v + [~89/2, 5o/2]? for each v € T, and
> erty(z) =1forall z € RY.

Then

(212) (1= ) fllzoeay < [ lanl 20 ). el < 4+ Pl e
Proof. By the definition of the modulus of continuity,

(2.13) [f(@)| = |wso 2(F) (@) < [F(N] < [f(@)] + |wsy /2 () ()]

for all z € v+ [~80/2,00/2]¢ and v € T'. This together with (2.9) and (2.10)
proves (2.12).
For 1 <p < o0, it follows from (2.10), (2.11), and (2.13) that

/
17l = (Z /R d If(:v)l”w(x)dw)l '
/
< Z / )Py () Z / (w2 (D) @) P (2)dz) "
1/p
< (Zlf(v)lplluwlh) + 71 £l
el
and
1/ 1/
(Z1rarlen)™ < (X [ 1#@)]+wsn20@ @)
yel yel’
< (140l
Then (2.12) for 1 < p < oo is proved. O

Remark 2.2. Two popular examples of bounded uniform partitions of unity
(BUPU) associated with the covering {y+[—d0/2, 80/2]*},er of R are given
by

Xy [=50,/2,50 /2] (%)

(2.14) U~ (x) = ,vel,
! D el Xoy'+[=50/2,50/2]¢ (%)

and

(2]—5) u’Y(:E) = XV’Y ('T)a RS F,

where V, is the Voronoi polygon whose interior consists of all points in R4
being closer to v than any other point 7' € T.
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Given a continuously differentiable function f on the real line, its modulus
of continuity ws(f)(x) is dominated by the integral of its derivative f’ on
x +[-6,4], i.e.,

8
ws(f)(x) < / @+ 8|t forall w € R.
-0

Then the following result (which is well known for band-limited signals [22])
follows easily from Lemma 2.4.

Corollary 2.5. Let 1 < p < oo, f be a time signal satisfying
(2.16) 1 le ) < BollfllLew)

for some positive constant By, and T' = {7y }rez be a relatively-separated
subset of R with mazximal gap 8o < 1/By. Then there exists a positive
constant C' (that depends on By, Br(do) and Ar(dy) only) such that

217)  CIflzo@ < [FO sl ) s erlly < ClF o)

Now we prove Theorem 2.1.

Proof of Theorem 2.1. For any f €V,
@18) oz (Dl = NosaTO < | [ wsalEOC0l Wl
< | s oK)+ 2 [l = ol
ze

For any discrete set I' with 1 < Ap(do) < Br(dyg) < oo, we define {u}yer
as in (2.14). Then

(2.19) % < luy|lr < % forally eI
| Br(do) =M Ar(oy) T

From (2.1), (2.18) and Lemma 2.4, we obtain the estimates in (2.2) for
p = oo. On the other hand, from (2.1), (2.18), (2.19) and Lemma 2.4, we
get the following estimate for 1 < p < oo:

(o)™ < 6 B (X 15 Ple )

vyel vyel

< (65Br(80))/P(1 + 10)llf 1
and
(S1ror)™ = o5 aroo) (X 1) Pl )
yel’ yerl
> (8, Ar(80)) P (1 = ro)[If -
This proves (2.2) for 1 < p < oco. O

Proof of Theorem 2.3. Similar argument used in the proof of Theorem 2.1
can be applied to prove Theorem 2.3. We leave the detailed proof for the
interested readers. (|
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3. ITERATIVE APPROXIMATION-PROJECTION RECONSTRUCTION
ALGORITHM

In this section, we show that signals in a reproducing kernel subspace
of LP(R?) associated with an idempotent integral operator can be recon-
structed, via an iterative approximation-projection reconstruction algorithm,
from its samples taken on a relatively-separated set with sufficiently small

gap.

Theorem 3.1. Let 1 < p < oo, T be an idempotent integral operator whose
kernel K satisfies (1.5) and (1.6), V' be the reproducing kernel subspace of
LP(RY) associated with the operator T, and 5y > 0 be so chosen that (2.1)
holds. Set

ro = H sup |w60/2(K)( + Zaz)‘HLl(Rd)'
2€R4

Then for any relatively-separated subset I with gap dg and co = (co(7Y))yer €
P(T), the sequence {fn}o2, of signals in V defined by

(31) { f()(x) = Z’YGF CO(’Y) Tu'Y("L.)7

fo(@) = fo(@) + fa-1(x) = Xorer fn-1(7) Tuqy(z) for n > 1,
converges exponentially, precisely
(32) [Ifn = foollLo@ey < TN foll Loqrayrs ™ /(1 —10)  for some foo €V,
where U := {uy}yer is a BUPU in (2.11). The sample of the limit signal
feo and the given initial data co are related by
(3.3) > (co(y) = foo (1)) T (z) = 0.

~yel

Furthermore the iterative algorithm (3.1) is consistent, i.e., if the given
initial data co = (g(7))~yer is obtained by sampling a signal g € V then
the sequence {f,}5°, in the iterative algorithm (3.1) converges to g.

Proof. Define a bounded operator Qr  on LP by
(34) Qruf(a) = Y (TH()uy(x) — (Tf)()

~yel’
= [ (Z @G0 - Ke) 1wy, 5 € 7
Re vyel
Then
(3.5) QruT = Qru
by (1.2), and
(3.6) 1Qruflly <rollfll, forall feLP

by the following estimate for the integral kernel of the operator Qr y:

B7) | @Ky~ K@y)| < sup fos ()@ —y+2.2)]
~er z'eR
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Define the approximation-projection operator Pr i by

(3.8) Pru=TQruv +T.
Then it follows from (1.2), (3.5) and (3.6) that
(3.9) PryT =TPry = Pru,
(3.10) (T'— Pry)" = (-1)"TQpry foralln>1,
and
(3.11) (T — Prp)"|| <||T||rg for all n > 1.
By (3.1), (3.4) and (3.8),
(3.12) fovr=tn = (T = Poy)(fo = fa-1)

= (T—Pu)"(fr = fo)

= (T—Pry)*fo, n>0.
This together with (3.11) proves the exponential convergence of f,,n > 0,
and the estimate (3.2).

The equation (3.3) follows easily by taking limit on both sides of (3.1)
and applying (2.2).

Define

(3.13) Rpp =T+ (T—Pry)™

n=1
Then it follows from (3.9) and (3.11) that Rap is a bounded operator on L
and a pseudo-inverse of the operator Pry, i.e.,

(3.14) RapPry = PruRap =T,
and moreover it satisfies

RapT = TRap = Rap.
Applying (3.12) iteratively leads to

(3.15) fn= (T + Z(T — PRU)]“) fo foralln>1,
k=1
which together with (3.13) implies that

In the case that the initial data cg is the sample of a signal g € V, the initial
signal fj in the iterative algorithm (3.1) and the signal g are related by

(3.17) fo = PDUg.

Combining (3.14), (3.16) and (3.17) proves the consistency of the iterative
algorithm (3.1). O
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From the proof of Theorem 3.1, we have the following result for the op-
erator Rap in (3.13).

Corollary 3.2. Let 1 < p < oo, T be an idempotent integral operator whose
kernel K satisfies (1.5) and (1.6), V' be the reproducing kernel subspace of
LP(R?Y) associated with the operator T, 5o > 0 be so chosen that (2.1) holds,
I’ be a relatively-separated subset with gap 0o, U := {u} er is a BUPU in
(2.11), and Rap be as in (3.13). Then Rap is a bounded integral operator
on LP(R?) and its kernel Kap satisfies (1.5), (1.6), and

(3.18)

Kap(z,y) = / K(x,2z1)Kap (21, 22) K (22,y)dz1dze  for all z,y € R,
Rd JRE

Remark 3.1. If the initial sample ¢ in the iterative approximation-projection
reconstruction algorithm (3.1) is the corrupted sample of a signal g € V,
ie.,

co = (9(7) + €(7))yer

for some noise € = (€(y)),er, then the L” norm of the original signal g and
the recovered signal fo, via the iterative approximation-projection recon-
struction algorithm (3.1) is bounded by the ## norm of the noise e. More
precisely, from (3.11) and (3.12) we obtain

(3.19) 1 fn = 9llp
oo n
< Y NTQEp(fo—ho)llp + > IITQE trhollp
k=n+1 k=0
oo n
< 1Tl >0 Ellfo = hollp + T ol
k=n-+1 k=0
< TN = 7o) (1 follorg ™ + l1Rollp)
_ 1
< TP — o)~ (sup llus ) P lcollpri ™ + llell,)
vyel
and
(3.20) 1 foo =gl < T =70)" lholl,
_ 1
< TP = ro) 1(su1F>||u7||1) llell,

YE

where hg = Zyer €(y)Tuy and f,,n > 0, are given in the approximation-
projection reconstruction algorithm (3.1). Define the sample-to-noise ratio
in the logarithmic decibel scale, a term for the power ratio between a sample
and the background noise, by

lcollp

p
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The estimate in (3.19) suggests that the stopping step ng for the iterative
approximation-projection reconstruction algorithm (3.1) is

SNR(dB)
3.22 S e S
522 = (1)
where [z] denotes the integral part of a real number z. In this case,
_ 1
(3.23) 1Fno = gllp < 2IT1*(1 = 7o) 1(5213 s 1) 7 ellps
g

and the error between the resulting signal f,, and the original signal g is
about twice the error due to the noise in the initial sample data.

Remark 3.2. Given the initial data co = (co(7y))er, define

(3.24) F, = (fn(')’))vel“, n >0,
and
(3.25) A= (Tu) ), yer

where f,,n > 0, is given in the iterative approximation-projection recon-
struction algorithm (3.1). This leads to the discrete version of the iterative
approximation-projection reconstruction algorithm (3.1):

{ Fy = Acy,

(3.26) Fo=Fo+(I—A)F, 1, n>1.

Exponential convergence: Now let us consider the exponential con-
vergence of the sequence F,,,n > 0, when (1.5), (1.6) and (2.1) hold. By
(3.26), we have

(327) Fn — Fn—l = ([ — A)nFO = (I — A)nACQ, n > 1.

Define

(3.28) lellpr = || 3 lelus | - for e = (e(3))ser.
~yel

where 1 < p < oo. For ¢ = (¢(7))yer with ||c]|p v < oo, write (I — A)"Ac =
(dn(7))yer and define cry(z) = 32, cp c(7)uqy (). Similar to the equation
(3.11) we have

(3.20) da(7) = (~1)"(TQ} yer) ().
This together with (3.6) implies that
(3.30) (7~ AY" Ao
< Xm0 LK@k vero) @z
< || [ UK+ o alBOC 2 QR er) )|
R4 P
< Corlelpu
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where
(3.31) Co = || sup |K(- 4 2, 2)|||, + || sup ws,/2(K)(- + z,2)||,-
z€R4 z€R4
Hence the exponential convergence of the sequence F), in the || - ||, norm

follows from (3.27) and (3.30).

Numerical stability and stopping rule: Next let us consider the nu-
merical stability of the iterative algorithm (3.26). Assume that the numerical
error in n-th iterative step in the iterative algorithm (3.26) is €,,n > 0, i.e.,

FO = Acy + €
Fn:F0+(I—A)Fn_1+€n, n > 1.
Let F,, = (fa(7))yer,n > 0, where f,,n > 0, are given in the iterative

approximation-projection reconstruction algorithm (3.1) with initial data
co- By induction, we obtain

(3.32)

n—1
(3.33) Fp—Fy==> (I-A)"""*Ag +é,,
k=0
where €y = €y and € = (k+ 1)eg + €1 + - - - + € for k > 1. Therefore
(3~34) HFn - FanU
n—1
< Z (1 - A)n_l_kAngp,U + HganvU
k=0
n—1
< Y Corg el + lenllpo
k=0
n—1 k
< Co Yy (R Vleollpw + Y lleillp)
k=0 j=1

n
+(n+ Dlleollpw + Y llejllpw
j=1

1-— To + CO "
< 22+ Dllollp + 3 llegloo).
j=1

Denote the limit of F), as n tends to infinity by Fu. By (3.27) and (3.30)
we have

Coro

o
(3.35) 1Fn = Fucllpr < Corg™leol], . < HTELHCOHP,U-

k=n

Define the sample-to-numerical-error ratio (SNER) of the iterative algorithm
(3.32) in the logarithmic decibel scale by

nfcollp,u
n|leollp,v + Z?:l ll€1lp,u

(3.36) SNER(dB) = 20 ngf1 log
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Then
1 —719+ Co
1o

which together with (3.35) implies that

(3.37) 1En = Fullpu < (n + 1)107SNERUEB)/20) 101 1)

- 1-— C
(3:38) I1F = Fucllpr <~ (g™
70

O (1 (e D107 SNERED 20 g

This suggests that a reasonable stopping step n; in the iterative algorithm
(3.26) is

- [ SNER(dB)  logyo(In(1/r)) 1}
201og;y(1/70) log;o 1/70 ’

as the function f(y) = rf + y10~SNER(dB)/20 attains the absolute minimum
at

(3.39)

NER(dB 1 In(1
(3.40) Yo 1= SNER(dB) ~ log;o(In( /7“0))‘
201ogy(1/r0) logy 1/70

4. ITERATIVE FRAME RECONSTRUCTION ALGORITHM

In this section, we study the convergence and consistency of the iter-
ative frame algorithm for reconstructing a signal in the reproducing ker-
nel subspace of LP(R?) associated with an idempotent integral operator
from its samples taken a relatively-separated set with sufficient small gap.
The readers may refer to [13, 14] for an introduction to frame theory, and
[4, 9, 11, 15, 30, 35, 49] for various frame algorithms to reconstruct a signal
from its samples.

Theorem 4.1. Let 1 < p < oo, T be an idempotent integral operator whose
kernel K satisfies (1.5) and (1.6), V' be the reproducing kernel subspace of
LP(RY) associated with the operator T, and d; > 0 be so chosen that

(4.1) ro 1= (2?”1 + 7“0)7“0 <1,
where
ro 1= H sup \wgl/Q(K)( + z,z)]HLl(Rd)
z€R4
and

ry =

L} (R4)

sup | K (- + 2,.2)|
z€R4

Let T' be a relatively-separated subset of R® with gap 6, U = {ty}yer be a
BUPU associated with the covering {y + [~61/2,61/2]%}er, and

(4.2) Sruf(x) =Y (THurll@eyK (@), f € LP(RY)
~yel'
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be the preconditioned frame operator on LP(RY). Given a sequence cg =
(co(7))yer € £P(I'), we define the iterative frame reconstruction algorithm
by

(4.3) { Jo= Zyer CO('Y)HU"/HLl(Rd)K(‘v’Y)v
' Jn=fo+ funo1—Srufa-1, n>1

Then the iterative algorithm (4.3) converges to fs exponentially and is con-
sistent. Moreover,

(4.4) foo = Ry fo,

where

(4.5) Rp:=T+Y (T —Sry)"
n=1

defines a bounded integral operator on LP(RY) and is a pseudo-inverse of the
preconditioned frame operator Sry, i.e.,

(4.6) RFT = TRF = RF and RFSF,U = SF,URF =T.
Furthermore, the kernel Kp(x,y) of the integral operator Ry satisfies (1.5),

(1.6), and
(4.7)

Kp(x,y) = /d dK(JE,Zl)KF(Zl,22)K(Z2,y)d21d22 for all z,y € R
R JR

Proof. Define an integral operator Cr yr by

@8) Coof@ = [ [ (K@) - K@)
~yel’
X (K('y,y) - K(z,y)))f(y)dydz for all f € L?,

and let QT. ;; be the adjoint of the integral operator Qr,y in (3.4), i.e.,
(4.9)

Gt = [ (30 (K1) = Kya))u, () Flu)dy for all f € 17

yel’

Then

(4.10) SF,U T = TQF,U + QI*“,UT + CF,U,
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which implies that

(4.11) ISt f —Tfllp
IT1Qr,uflly + QT T fllp + ICru fllp

71| [ Bt = ],
# [ pauate = IT sG],

+H/ / hal/z(._z)h51/2(z—y)|f(y)|ddeH
Rd JRd )
< 71| fllp forall feV,

IN

IN

where hs = sup,/cgra ws(K)(- + 2/, ).
By the iterative algorithm (4.3),

(4.12) fo=fo+ ) (T=Spu)ffo foralln>1.
k=1

This together with (4.11) proves the exponential convergence of f,,n > 0,
and the limit function f is given by (4.4).

By (1.2), (4.2) and Theorem A.1 in the Appendix, we have
(4.13) SF,UT = TSRU = Sij.

This together with the exponential convergence of the right hand side of the
equation (4.5) establishes that Rp is a bounded operator and satisfies (4.6),
and hence it is the pseudo-inverse of Sr .

The consistency of the frame iterative algorithm (4.3) follows from (4.4)
and the fact that fo = Sr g if the initial data co = (g(7y)) er is the sample
of g € V taken on the set I'.

From (1.5), (4.1), (4.8), (4.9) and (4.10), it follows that

o0
| sup [Kp(-+ 2, )], < | sup K-+, 2], + 3 (ra)" < oo
2/ €R4 2/€R4

n=1

Hence Ky satisfies the off-diagonal decay property (1.5). The reproducing
equality (4.7) follows from
TRrT = Rp

by (4.6). The regularity property (1.6) for the kernel K holds because of the
off-diagonal decay property (1.5) for the kernel F', the regularity property
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(1.6) for the kernel K of the idempotent operator T, and the following
estimate

ws(Kp)(z,y) /d/dw5 (K)(z, z1)|Kp(z1, 22)|
R R

X (1K (22, y)| + ws(K)(22,y))dz1dzs

/Rd/ (@, 20) | Kp (21, 22) | |ws (K) (22, y) | dz1d 22
by (4.7). _

5. ASYMPTOTIC POINTWISE ERROR ESTIMATES FOR RECONSTRUCTION
ALGORITHMS

In this section, we discuss the asymptotic pointwise error estimate for
reconstructing a signal from its samples corrupted by white noises, as the
maximal gap of the sampling set tends to zero.

Theorem 5.1. Let 1 < p < oo, T be an idempotent integral operator whose
kernel K satisfies (1.5) and (1.6), and V' be the reproducing kernel subspace
of LP(RY) associated with the operator T. Let T' be a relatively-separated
subset of R% with gap 6, U := {uy}yer be a BUPU associated with the cov-
ering {7y + [—6/2,6/2)%}er, and R := {Ry(x)}er be either the displayer
{(H’LL—Y||L1(Rd))_1RAP’UMY}»YEF in the approzimation-projection reconstruction
algorithm or the displayer {Rp K (-,y)}yer in the frame reconstruction al-
gorithm where the operators Rap and Rp are defined in (3.13) and (4.5)
respectively. Assume that e(v),y € T', are bounded i.i.d. noises with zero
mean and o® variance, i.e.,

(5.1) e(y) € [-B, B], E(e(y)) =0, and Var(e(y)) = o?

for some positive constant B, and that the initial data cq is the sample of a
signal g € V taken on I' corrupted by random noise € := (€(7))~er, i.e.,

(5.2) co = (9(7) + €(7))yer-
Then for any x € R?
(5.3) E(g(z) — Reo(x)) =0
and
(5.4) Var(g(z) — Reo(2)) = > [[us |71 gy | By (2)
vyerl’

< s ||u7||L1<Rd>( /R (@ 2z +o(1) a6 0,
where
(5.5)

Reo(x ZCO Ml 1 ey Ry () for all ¢g = (co(7))yer € £°(1).
yel’
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Furthermore if
(5.6) [usyl[1ray = @(6)(1 +0(1)) asd—0

for some positive numbers a(9) independent of v, then the inequality in (5.4)
becomes an equality, i.e.,

(5.7)  Var(g(z) — Reo(z)) = a(a)(ﬂ(

as 0 tends to zero.

|K (2, 2)2dz + 0(1))
Rd

Remark 5.1. The error estimate (5.7) is established in [5] for reconstruct-
ing signals in a finitely-generated shift-invariant subspace of L?(R%) from
corrupted uniform sampling data via the frame reconstruction algorithm.
More precisely, I' = 6Z¢, u,(x) = X[-s/2,6/24(x — ) for v € I, the idempo-
tent operator T is defined in (2.4), and the range space associated with the
idempotent operator 7" is the shift-invariant space Va(¢1,...,¢,) in (2.5).

Remark 5.2. By the definition of a BUPU associated with the covering
{v+[-6/2,8/2]%},er of RY, we have

(5.8) oyl 71 ray < 6%

The above inequality becomes an equality when I' = 6Z% and Uy = X[—5/2,5/2)¢
It is expensive to find the operators Rap and Rr when the sampling set has
very small gap 4. As noticed in the proof of Theorem 5.1, both operators
are close to the idempotent operator 7" when the sampling set has very
small gap. Then a natural replacement of the displayer R, in (5.5) is either
(llur |l L2 gay) ' Tusy or K(-,7). In both cases, the variance estimates in (5.4)
and (5.7) still hold, but the unbiased condition (5.4) does not.

To prove Theorem 5.1, we need several technical lemmas. The first lemma
is a slight generalization of Theorem 5.1.

Lemma 5.2. Let the operator T, the kernel K, the reproducing kernel space
V, the sampling set I, the bounded uniform partition of unity U = {u }er,
the random noise €, and the variance o of the noise € be as in Theorem 5.1,
and let the displayer R := {R(x)} er satisfy

(5.9) 9(@) =Y gMllusllprreyRy(z) for all g €V,
vyel

and

(5.10) lim || sup sup |Ry(-+2) — K(-+ 2, 2)| =0.
6—=0 H YEL z€v+[-5/2,6/2]¢ ! HLl(Rd)

Then (5.3), (5.4) and (5.7) hold.
Proof. Set

(5.11) hs(x) = sup sup |Ry(z+ 2) — K(z + 2, 2)|.
V€l zey+[-6/2,6/2)4
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By (1.5), (5.10) and (5.11), we have

6.12) L lelhlB@] < [ S (K@) + sl = 2)ds

yer vyer
| sup [K (- + 2, 2)|[|; +[|hs]l1 < oo
z€R4

IN

This together with (5.1) and (5.9) leads to
(513)  B(g(x) - Reolw) = B( Y e)llu By ()

~vel

= > E(c()luylliRy(2) =0,

vel

and the unbiased property (5.3) for the reconstruction process in (5.5) fol-
lows.

By (5.1), (5.3) and (5.12), we obtain
Var(g(e) - Reof@)) = B3 el i By (a))

vyel
= 3 s 3R, ()
yerl’
Therefore
(5.14) Var( (z) — Reo(z))
< o*(suplluslh) (3 s B @)
~yel
< 02(?61113 lluyllr) (/Rd (|K (z,2)] + |hs(z — Z)D?dz)

< (suplinl) (/R K (2 2)d + o(1)).

where we have used (5.10) and (5.11) to obtain the last two estimates. Hence
the variance estimate (5.4) for the reconstruction process in (5.5) is estab-

lished.
By (5.6), (5.10) and (5.14), we get
(5.15) Var(g(x) — Rco(az))

= o*(a(6) +o(1)) (Z ||U7”1’Rv($)‘2)

vyel

— 02(a(5)+0(1))</

Rd

_ 0204(5)(/]@ K (2, 2)d + o(1)).

(K(z,2) + O(hs(z — z)))zdz)
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and hence (5.7) is proved. O

Lemma 5.3. Let the operator T, the kernel K, the reproducing kernel space
V, the sampling set I, the bounded uniform partition of unity U = {u}~er,
the random noise €, and the variance o of the noise € be as in Theorem 5.1,
and let the displayer R = {R,} cr be defined by

(5.16) Ry = ([usy[1) "' Rapuy,y €T

where Rap is given in (3.13). Then the above displayer R satisfies (5.9) and
(5.10).

Proof. By (3.13), (3.16) and (3.17), the reconstruction formula (5.9) holds
for the displayer R in (5.16).

Denote the kernel of the integral operators Rap — T by Kap. By (1.2),
(3.7), (3.10), (3.13) and (3.18), we have

(5.17) IN(Ap(x,y) = /d dK(x, Zl)KAP(Zl,Zz)K(Zz,y)ledZQ,
R R
and
(5.18) H sup \f(Ap(-—i-z',z’)\Hl
z'€R4

oo n
< D sup K 2 2 (I sup s (K + 2,21
—1 #€Rd z'€R4
— 0 asd—0.

This together with (1.5) and (1.6) implies that

(5.19) Hsup sup | (lusll) " Rapus (- + 2') —K(.+z’,z’)\H
YET 2/ evy+[—6/2,6/2]¢ 1
< || sup wot) e+ )+ sup [ ] prC sz
2/cRd 1 2eRd JRE JRd

XK ap (21, 22)| (| (22, 2)] + [ws () (22, 2)])dzadz |,
— 0 asd—0.

Hence (5.10) follows. O

Lemma 5.4. Let the operator T, the kernel K, the reproducing kernel space
V, the sampling set I, the bounded uniform partition of unity U = {u }er,
the random noise €, and the variance o of the noise € be as in Theorem 5.1,

and let the displayer R = {R,} cr be defined by

where Ry is given in (4.5). Then the above displayer R satisfies (5.9) and
(5.10).
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Proof. The reconstruction formula (5.9) follows from Theorem 4.1.
Denote the integral kernel of the integral operator Rp — T by Kg. Then

(5.21) f(p(x,y) = /d dK(:J:,zl)f(p(zl,ZQ)K(Zg,y)dzlsz,
Re JR

and

(5.22) H sup |Kp(-+ z,z)|H1

Z (2“ sup |K(-+ 2,2 H|1 + H Sup lws (K )(+Z,Z)H|1>n

X (H sup |ws(K)(- + z,z)|H1) —0 asd—0
z€R4
by (1.6), (4.5), and (4.10). Therefore

/ sup sup |IREK(-,7))(x+ 2) — K(x + z, 2)|dx
R v€T zev+[-6/2,6/2]¢

< sup sup |K(z+ 2,7) — K(z + z,2)|dz
R4 v€L zey+[-6/2,6/2]4

+/ sup sup
R v€T zev+[-6/2,6/2]4
’/ K(l‘+Z,Zl)IN{F(Zl,ZQ)K(ZQ,’Y)ledQ’d.’E
Rd JR4

< [ sup fospa(K)(a + 2, lds
R

d 2/ eRd
/ / / sup |K(x — 2 + 2/, z)])(sup ]KF(21—22+Z/,Z’)|)
Rd JRE JRE /R z'€Rd
x(sup |K(z2+2',2")| + sup wsn(K) (22 + 2/, 2')|)dz1dadx
z'eR4 z'eRd
— 0 asd—0.
Then (5.10) is established for the displayer R in (5.20). O

Proof of Theorem 5.1. The conclusions in Theorem 5.1 follows directly from
Lemmas 5.2, 5.3 and 5.4. U

APPENDIX A. REPRODUCING KERNEL SUBSPACES OF LP(RY) ASSOCIATED
WITH IDEMPOTENT INTEGRAL OPERATORS

The range space associated with an idempotent operator T on LP(R?)
whose kernel satisfies (1.5) and (1.6) include the space of all p-integrable
non-uniform splines of order n satisfying n — 1 continuity conditions at each
knot (Example A.3), and the space introduced in [43] for modeling signals
with finite rate of innovation (Example A.4). In this appendix, we establish
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some properties of such range spaces, particularly the reproducing kernel
property in Theorem A.1 and the frame property in Theorem A.2.

A.1. Reproducing kernel property. In this subsection, we show that
the range space of an idempotent operator on L? (]Rd) whose kernel satisfies
(1.5) and (1.6) has some properties similar to the ones for a reproducing
kernel Hilbert subspace of L?(R).

Theorem A.1. Let T be an idempotent integral operator on LP(R?) whose
kernel K satisfies (1.5) and (1.6), and V' be the range space of the operator
T. Set

as(a) = 5| sup K (42,2 1 )
z€R

1-1/
(1 50, 1+ sy + 1 508 R4 e)

and
bo(a) = (6% + 1)' 7M1~ sup s (K (- + 2 || s
z€R

ford >0and1<q<oo. Then

(i) V is a reproducing kernel subspace of LP(R%). Moreover,

[f(@)] < asp/(p = D)l o)

forany f €V and 6 > 0.
(ii) The kernel K satisfies the “reproducing kernel property”:

(A.1) ) K(z,2)K(z,y)dz = K(z,y) for all z,y € R%
R
(iii) K(-,y) € V for any y € R%.
(iv) The functions K(x,-), K(-,y), ws(K)(z,-) and ws(K)(-,y) belong to
LARY) for all z,y € RY and 1 < q < oo, and their LI(R?)-norms
are uniformly bounded. Moreover,

(A2)  max (sup 1K (@, )| oz, sup 1K (59)lzoa) ) < asla)
zER? yeRY
and
(A.3) max ( sup s (K)(@, ) paggays 0 [lws(K)(,9) | oy ) < bala).
r€R y€ERd

Proof. (iv): By the definition of the modulus of continuity,

(A.4) K (2, y)| < 677 (1K (2, 2)| + |ws (K)(z, 2)])d=
ké+[—6/2,6/2]¢
where y, 2z € k§ + [~6/2,0/2]% and = € R?. Thus

sup |K(z,)|lo < (Td(H sup |K (- —i—z,z)\Hl + H sup |ws(K)(- —i—z,z)\Hl)
z€Rd z€R4 z€R4
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and

sup || K(z,-)|1 < H sup |K (- +Z’Z)’H1'

zeR? z€R4
Interpolating the above estimates for the L' and L™ norms of K (z,-) yields
sup,epd || K (7, )|ly < as(g). Similarly, we have that sup,cpa [[K(-,y)[l; <
as(q). Therefore (A.2) follows.

The estimate (A.3) for ws(K') can be established by similar argument used

in the proof of the estimate (A.2) except replacing (A.4) by the following
two inequalities:

ws(K)(@y) < 07 (ws(K) (2, 2) + was () (w, 2)) d=
kb +[—5/2,5/2)4

for any z € Ry € kd + [6/2,6/2]? and k € Z¢, and

(A.5) wis(K)(,y) < > ws(K)(z+ €d,y + €'6)
e,e'€{-1,0,1}4

for all z,y € R,

(i): By (1.4) and (A.2), we have that |f(z)] < [[K(z,")],/p-0)llfllp <
as(p/(p — )||fll, for all z € R% and f € V. Then (A.1) holds and V is a
reproducing kernel subspace of L.

(ii): Noting that

/ sup

R4 zcRd Rd
we then have that the kernel A(z,y) := [pa K(z + 2,y)K(y, 2)dy — K(z,y)
of the linear operator T2 — T satisfies || sup,cpa |A(- + z,2)||1 < oo. This
together with (1.2) proves (A.1).

(iii): The conclusion that K(-,y) € V for any y € R? follows from (A.1)
and (A.2). O

2
K(x—l—z,y)K(y,z)dy‘dx < (/ ('sup |K(x—|—z,z)|)da:> < 00,
R zeRd

A.2. Frame property. In this subsection, we show that the range space
of an idempotent integral operator whose kernel satisfies (1.5) and (1.6)
has localized frames. Let 1 < p < oo, V C LP and W C LP/®P=1) We
say that the p-frame ® = {¢x}rean C W for V and the p/(p — 1)-frame
O = {pr}rea C V for W form a dual pair if the following reconstruction
formulae hold:

(A.6) F=> (fioagr forall feV,
AEA

and

(A7) 9= {(g:¢x)¢x forallgeW.
AEA

Here we denote by (f,g) the standard action (1.11) between a function
f € L? and a function g € LP/(P—1),
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Theorem A.2. Let 1 < p < oo, T be an idempotent integral operator on
LP(RY) whose kernel K satisfies (1.5) and (1.6), T* be the adjoint of the
idempotent operator T, i.e.,

(A.8) T*g(x) = | K(y,x)g(y)dy forall g € LP/P~D(RY),

Rd
and let V and V* be the range spaces of the operator T on LP(R?) and
the operator T* on Lp/(p_l)(Rd) respectively. Then there exist a relatively-
sepamted subset A, and two famzlzes O = {pxr}ren of functions ¢y € V and
P = {gi))\},\eA of functions x € V* such that

(i) Both ® and ® are localized in the sense that
(A.9)
{ oA (2)| + |oa(z)] <
|ws (@2) () + ws(a)
where h and hs are integrable functions with lims_q || hs||1 = 0.
(ii) @ is a p-frame for V and ® is a p/(p — 1)-frame for V*.
(iii) ® and ® form a dual pair.
(iv) Both V and V* are generated by ® and ® respectively in the sense

h(z = A)
()] < hs(x —A) forall A € A and z € R?,

that
(A10)  V=V(@) = { 3 cNaa|(cMen € (1) },
AEA
and
(A1) V' = Vo)) i= { D eNd| EN))en € @D (1)},
AEA

Remark A.1. The space V,(®) was introduced in [43] to model signals with
finite rate of innovations. From Theorem A.2, we see that signals in a repro-
ducing kernel subspace associated with an idempotent operator on LP(R?)
with its kernel satisfying (1.5) and (1.6) have finite rate of innovation.

Proof of Theorem A.2. Let §g > 0 be a sufficiently small positive number
chosen later. Define the operator T§, by

(A12) Tso / Ko () f()dy | € IP(RY),

where

(A.13)

Ky () = 65 /[

/ K(z, M21) K (A 22, y)dz1dzs.
—380/2,80/2]% J[—80/2,60/2]%

)\Eﬁozd

Then
(A.14) T5, T =TTs, = T,
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by (1.2), and

(A15)  [Kg(z,y) — K(z,9)| < /RdIK(CC’Z)Hwao(K)(Z,y)IdZ

by Theorem A.1. Therefore
(A.16) 1T50f = Tfllp < 71(00)[[fllp forall fe LP,

where 11(5) = [|sup,cga [ + 2 1| supscg sy (K)(- + 2, )11 et
do > 0 be so chosen that r1(dy) < 1. The existence of such a positive
number follows from (1.5) and (1.6). Then it follows from (A.14), (A.15)

and (A.16) that the operator T;O =T+ > 22, (T — Ts,)" is a bounded
integral operator with the property that T(;rOT(;O = T(;OT(;LO = T and that the
kernel Kp s, of the operator T;O satisfies || sup,era |[Kps, (- + 2, 2)||[1 < o0
and lims_o || sup,cpa |w5(KD 50)(- + 2, 2)||[1 = 0. Define

d/p
(A7) { oAz Jga f 50/2,60/214 BD.60 (7, 21) K (21, A + 22)dzadzy

- d+d
¢A( ) - 50 /7 f[—50/2,50/2]d K(>\ + Z,ZE)dZ
for all A € 6oZ%, and set ® = {¢r}ycs,z¢ and P = {&)\}/\e(gozd. Then

one may verify that the above two families ® and ® of functions satisfy
all required properties. We leave the detailed verification for the interested
readers. O

A.3. Examples. In this subsection, we present two examples of a repro-
ducing kernel space associated with an idempotent integral operator on LP.

Example A.3. [38] Let n > 1, A = {A}rez be a bi-infinite increasing
sequence of real numbers with 0 < infyez(Apy1—Ap) < suprez(Aet1— k) <
oo, and

(A.18) Sml(A) = {f € C"Y(R): Fl\eAes) 18 @ polynomial
having degree at most n for each k € Z}.

Let B; be the normalized B-spline associated with the knots A;, ..., Aitnt1,
and define its autocorrelation matrix A = ((B;, Bj>)ij cz- Then the infinite
matrix A is invertible and its inverse B = (bij)i,jeé has exponential off-
diagonal decay, that is, there exist constants C' and e such that |b;;| <
Cexp(—eli — j|) for all 4, j € Z. Define

= Y Bi(x)bi;B;(y)

1,j€EL

=/K@Mﬂww
R

Then one may verify that the above integral operator T is an idempotent
operator on LP(R), the kernel K of the operator T satisfies (1.5) and (1.6),

and
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and S"~Y(A) N LP(R) is the range of the operator T on LP(R). The spline
model has many practical advantages over the band-limited model in Shan-
non’s sampling theory, and has been well-studied (see [44, 46, 48] and the
references therein).

Example A.4. [43] Let A be a relatively-separated subset of R? with pos-
itive gap, ® = {¢x}rca and @ = {dx}ren be two families of functions such
that
6a(2)] + [da(2)] < h(z — N), z € RY,

and ~

jws($2)(@)] + |ws (D) ()] < hs(x = A), = € RY,
hold for all A € A and § > 0, where h and hs are functions in the Wiener
amalgam space W with lims_¢ ||hs|lw = 0. Then one may verify that the
kernel function

(A.19) K(z,y) =Y éx(2)oa(y)

AEA
satisfies (1.5) and (1.6). If we further assume that ® and ® satisfy

/ ox(x) Py (x)dx = 5y for all A, N € A,
]Rd

where d) y stands for the Kronecker symbol, then the operator T with the
kernel K in (A.19) is an idempotent operator on L2. In this case,

(A.20) Va@)i= { 3 eNn(e) | Dl < oo

AEA AEA

is the range space of the operator 7 on L? and hence a reproducing kernel
subspace of L2. A special case of the above space Vo(®) is the finitely-
generated shift-invariant space Va(¢1,...,¢,) in (2.5), see [1, 4, 8, 30] and
references therein.
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