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Abstract. In this paper, we study three interconnected inverse
problems in shift invariant spaces: 1) the convolution/deconvolution
problem; 2) the uniformly sampled convolution and the reconstruc-
tion problem; 3) the sampled convolution followed by sampling on
irregular grid and the reconstruction problem. In all three cases,
we study both the stable reconstruction as well as ill-posed recon-
struction problems. We characterize the convolutors for stable de-
convolution as well as those giving rise to ill-posed deconvolution.
We also characterize the convolutors that allow stable reconstruc-
tion as well as those giving rise to ill-posed reconstruction from
uniform sampling. The connection between stable deconvolution,
and stable reconstruction from samples after convolution is subtle,
as will be demonstrated by several examples and theorems that
relate the two problems.

1. Introduction

The problem of sampling and reconstruction was used as a tool for
constructing the discrete wavelet bases from the continuous wavelet
transform [15, 22, 24]. It was also used in the theoretical develop-
ment of certain inverse problems such as the moment problem [25].
Furthermore, the theory of bases and frames is intimately related to
sampling theory as originally discussed by Duffin and Schaeffer in their
seminal paper on non-harmonic Fourier series [17]. Numerical anal-
ysis, analog/digital and digital/analog conversions, digital signal and
image processing, data compression, transmission and storage are all
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instances where the problem of sampling and reconstruction plays a
fundamental role [3, 7, 9, 12, 13, 16, 19, 23, 29].

For the theory of discrete wavelet bases, the starting point is Calderon’s
resolution of the identity for L2 := L2(Rd):

(1.1) f(x) =

∞∫
0

∫
Rd

α(u, t)ψu,t(x)du
dt

t
,

where ψu,t(x) = t−dψ(x−u
t

), and α(u, t) = 〈f, ψu,t〉 [24]. The discrete
wavelet bases are then a discretization on dyadic grids of the Calderon
reproducing formula. The function α(u, t) can be viewed as a scale
dependent convolution, i.e., for fixed scale t, α(u, t) = f ∗ η, where

η(x) = ψ(−x
t

). Thus Calderon’s resolution of the identity (1.1) can be
interpreted as a scale dependent deconvolution.

In a similar fashion, our starting point is a convolution problem

f → f ∗ ψl, l = 1, · · · , s.
However, unlike Calderon’s resolution of the identity, our underlying
space is not the whole space L2, but as is typical in sampling theory
and many applications (see, for instance, [1, 5, 6, 10, 14, 16, 27, 28]),
a shift-invariant subspace of L2 of the form:

(1.2) V 2(Φ) =
{ ∑
j∈Zd

D(j)TΦ(· − j) : D ∈ (`2)(r)
}

for some vector function Φ = (φ1, . . . , φr)
T ∈ (L2)(r), where D =

(d1, . . . , dr)
T is a vector sequence such that di := {di(j)}j∈Zd ∈ `2, i.e.,

D ∈ (`2)(r). Thus
∑

j∈Zd D(j)TΦ(· − j) =
∑r

i=1

∑
j∈Zd di(j)φi(· − j).

A prototypical example is the Paley-Wiener space (or space of band-
limited functions) for which r = 1 and φ = sin(πx)/πx. Other proto-
typical spaces are B-spline spaces, in which r = 1 and φ = βn is the
B-spline of degree n. However, in both these two examples, the func-
tion φ generates a Riesz basis {φ(· − j) : j ∈ Zd} for V 2(φ). Although
the assumption that Φ generates a Riesz basis is reasonable, it is not
necessarily satisfied in practice and it may not even be true that φ and
its shifts generate a frame ([5, 8]). The only assumption that we will
require on Φ is that the Gramian

(1.3) GΦ(ξ) :=
∑
k∈Zd

Φ̂(ξ + k)Φ̂(ξ + k)
T

,

must be bounded:

(1.4) GΦ(ξ) ≤MI, a.e. ξ ∈ Rd,
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where I is the r × r identity matrix, M is a positive constant and

where we use the notation f̂ to denote the Fourier transform of a tem-

pered distribution f on Rd and f̂(ξ) :=
∫

Rd f(x)e−2πiξxdx whenever f
is integrable.

Recall that the Gramian matrix-function GΦ is a semi-positive defin-
itive Hermitian matrix for any ξ ∈ Rd so that the inequality GΦ(ξ) ≤
MI in (1.4) makes sense. An equivalent condition on the Gramian GΦ

is that its components (GΦ)i,j, i, j = 1, ..., r, belong to L∞. A simple
calculation then shows that

∥∥∥ r∑
i=1

∑
j∈Zd

di(j)φi(·− j)
∥∥∥2

2
≤

(
sup
ξ∈Rd

∑
1≤i,i′≤r

|(GΦ)ii′(ξ)|
)( r∑

i=1

‖di‖2
2

)
<∞

which implies that, under the condition (1.4), V 2(Φ) is a well-defined
linear subspace of L2(Rd). However, this condition does not imply that
V 2(Φ) is closed since we do not assume that Φ generates a Riesz basis,
or equivalently, we do not assume that GΦ(ξ) ≥ mI, a.e. ξ ∈ Rd, for
some positive constant m > 0. Here we do not even assume that Φ
generates a frame, or equivalently, that mGΦ(ξ) ≤ G2

Φ(ξ), a.e. ξ ∈ Rd

for some positive constant m > 0 (see Theorem A.1). Our weaker
assumption in this paper on Φ, not implying that V 2(Φ) is a closed
subspace of L2, does not pose an inconvenience or limit our theory, as
will be clarified in the results below.

The convolution problem we consider consists of convolving a func-
tion f ∈ V 2(Φ) with s functions ψ1, · · · , ψs, resulting in a vector
(f ∗ψ1, · · · , f ∗ψs)T ∈ (L2)(s). We replace the resolution of the identity
(1.1) by the requirement that any f ∈ V 2(Φ) can be recovered from
the vector (f ∗ψ1, · · · , f ∗ψs)T . Our first result is the characterization
of the vectors Ψ = (ψ1, · · · , ψs)T such that the convolution operator
f ∈ V 2(Φ) → (f ∗ ψ1, · · · , f ∗ ψs)T ∈ (L2)(s) has bounded inverse. We
then characterize the vector function Ψ = (ψ1, · · · , ψs)T for which the
corresponding convolution operators have inverses but not necessarily
bounded. These convolution operators are common in signal process-
ing and their study is crucial in deconvolution problems, where they
are often called filters.

By sampling the output of a convolution operator on uniform or non-
uniform grids X = {xj : j ∈ J} ⊂ Rd, where J is a countable index
set, we obtain a sequence of numbers {f ∗ ψl(xj), l = 1, · · · , s, xj ∈
X}. The next problem is then to reconstruct the function f from
the data {f ∗ ψl(xj), l = 1, · · · , s, xj ∈ X}, which is the problem of
reconstruction from sampled convolutions. The more general problem
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of reconstruction from averages [1, 5, 28] {〈f, ψl,xj
〉, l = 1, · · · , s, xj ∈

X} will not be discussed in the context of this paper.
Although the connection between the problem of reconstruction from

sampled convolutions and the problem of deconvolution is obvious, the
connection between their solutions is subtle. For example, we will
see in Example 3.8 that a convolution operator may have a bounded
inverse while the reconstruction from sampled convolutions does not.
Even more surprisingly, the sampled convolution problem may have a
bounded inverse while the reconstruction from convolution may not,
see Example 3.9. Under appropriate conditions though, the expected
implications are satisfied as we will be developed in Theorem 3.10.

This paper is organized as follows. In Section 2 we introduce the
convolution and deconvolution problems. We characterize the convo-
lution operators on V 2(Φ) that have bounded inverses (Section 2.1).
In Section 2.2, we also characterize those that have inverses but that
are not necessarily bounded (or so called stable). In Section 2.3, we
then show that, under some restriction on the convolution operators
and the generator, the existence of an inverse implies its boundedness,
and we give an example that shows that the restriction is necessary.
Deconvolution formula is given in Section 2.4.

In Section 3, we discuss the problem of critical uniform sampling
after convolution. We characterize the convolution operators on V 2(Φ)
such that critical uniform sampling after convolution is sufficient for
stable reconstruction. We also characterize those operators for which
critical uniform sampling after convolution is sufficient for reconstruc-
tion, but without stability in general. We then give conditions on the
generator Φ and the convolutor Ψ so that stability is a consequence
of the existence of a reconstruction. A reconstruction formula is given
in Section 3.3. In Example 3.8, we give an example in which a sta-
ble deconvolution operator does not allow a stable reconstruction if
it is followed by a critical sampling. More surprisingly, in Example
3.9, we give an example showing that stable reconstruction of critically
sampled convolution does not imply stable deconvolution. This pecu-
liarity, however, can be removed by adding some extra conditions on
the convolutor Ψ as shown in Theorem 3.10.

Section 4 is devoted to the connection between irregular sampling
and reconstruction after convolution and the convolution deconvolu-
tion problem. It is proved that under sufficient regularity of the convo-
lutor Ψ, the stability of the reconstruction from sampled convolution
is enough for stable deconvolution. Moreover, stable deconvolution
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implies that reconstruction from samples is stable but only for suffi-
ciently dense samples. The proof of the results are given in Section
5. Finally several new results on shift-invariant spaces that are used
in our development are gathered in the Appendices. Appendix A con-
tains a characterization of the closedness of the finitely generated shift-
invariant space V 2(Φ), which plays an important role in the proof of
Theorem 2.7. In Appendix B we give conditions under which W 2-L2

norm equivalence (often used in sampling theory) is satisfied for some
finitely generated shift-invariant spaces.

2. Calderon convolutors and deconvolution in
shift-invariant spaces

In this section, we study Calderon convolution and deconvolution in
shift-invariant spaces.

Definition 2.1. Let V be a shift-invariant subspace of L2, and let
ψ1, . . . , ψs be functions in L2.

(1) We say that a vector of functions Ψ = (ψ1, . . . , ψs)
T forms a

Calderon convolutor for V if i) the convolution operators in-
duced by ψ1, . . . , ψs satisfy

s∑
l=1

‖f ∗ ψl‖2 ≤ B‖f‖2, ∀ f ∈ V,

for some B < ∞ independent of f , and ii) the only function
f ∈ V satisfying f ∗ ψl = 0, 0 ≤ l ≤ s, is the zero function.

(2) The vector function Ψ = (ψ1, . . . , ψs)
T is said to form a stable

Calderon convolutor for V if there exist positive constants A,B
such that

(2.1) A‖f‖2 ≤
s∑
l=1

‖f ∗ ψl‖2 ≤ B‖f‖2, ∀ f ∈ V.

From the definitions above, we see that stable Calderon convolutors
for V induce operators from V to (L2)(s) that have bounded inverses,
while Calderon convolutors induce operators that have inverses that
are not necessarily bounded.

2.1. Stable Calderon convolutor. For any Ψ = (ψ1, . . . , ψs)
T with

Ψ̂ ∈ (L∞)(s) and any Φ = (φ1, . . . , φr)
T with GΦ ∈ (L∞)(r×r), we define

(2.2) GΨ
Φ(ξ) :=

s∑
l=1

∑
k∈Zd

Φ̂(ξ + k)Φ̂(ξ + k)T
∣∣ψ̂l(ξ + k)

∣∣2.
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The following theorem describes equivalent characterizations of a stable
Calderon convolutor Ψ for a finitely generated shift-invariant space
V 2(Φ) and its L2-closure.

Theorem 2.2. Let Φ = (φ1, . . . , φr)
T satisfy GΦ(ξ) ∈ (L∞)(r×r) and

Ψ = (ψ1, . . . , ψs)
T satisfy Ψ̂ ∈ (L∞)(s). Then the following statements

are equivalent:

(i) Ψ is a stable Calderon convolutor for the L2-closure of the shift-
invariant space V 2(Φ).

(ii) Ψ is a stable Calderon convolutor for V 2(Φ).
(iii) There exists a positive constant m so that

(2.3) mGΦ(ξ) ≤ GΨ
Φ(ξ) a.e. ξ ∈ Rd.

Remark 2.3. In Theorem 2.2, the generator Φ and its shifts do not
necessarily generate a Riesz basis or a frame. Thus, V 2(Φ) need not
be a closed subspace of L2. On the other hand, the L2-closure of
the shift-invariant space V 2(Φ) is always a shift-invariant space V 2(Θ)
engendered by a vector function Θ = (θ1, · · · , θr) that generates a tight
frame (see Lemma 2.9 below). However, in general Θ does not have
compact support even if Φ has (see Remark 2.10). More generally,
Θ need not be in the Wiener amalgam space W 1 (see (4.2) for its
definition) even if Φ belongs to W 1, an assumption often needed in
convolution or in sampling theory (see Remark 2.11).

Remark 2.4. Equation (2.3) implies that RankGΦ(ξ) ≤ RankGΨ
Φ(ξ)

for almost all ξ ∈ Rd. Moreover, in the proof of Theorem 2.5 it is shown
that it is always true that RankGΨ

Φ(ξ) ≤ RankGΦ(ξ). Thus, if Ψ is a
stable Calderon convolutor for V 2(Φ), then RankGΦ(ξ) = RankGΨ

Φ(ξ).
Equality of ranks does not imply that Ψ is a stable Calderon convolutor
in general, but it implies that Ψ is a Calderon convolutor as stated in
the next Theorem.

2.2. Calderon Convolutor.

Theorem 2.5. Let Φ = (φ1, . . . , φr)
T satisfy GΦ ∈ (L∞)(r×r) and Ψ =

(ψ1, . . . , ψs)
T satisfy Ψ̂ ∈ (L∞)(s). Then the following statements are

equivalent to each other.

(i) Ψ is a Calderon convolutor for the L2-closure of V 2(Φ).
(ii) Ψ is a Calderon convolutor for V 2(Φ).
(iii) The matrices GΦ(ξ) and GΨ

Φ(ξ) have the same rank for almost
all ξ ∈ Rd.

As a consequence of Theorem 2.5, we obtain a necessary condition

on the support of Ψ̂. Specifically, for a vector-valued function Ψ =
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(ψ1, . . . , ψs)
T , define the periodic supporting set of its Fourier transform

by

psupp(Ψ̂) = ∪sl=1 ∪k∈Zd (suppψ̂l + k),

where suppf is the support of a measurable function f . Clearly ξ 6∈
psupp(Ψ̂) if and only if ψ̂l(ξ + k) = 0 for all k ∈ Zd and 1 ≤ l ≤ s. We
have the following corollary of Theorem 2.5:

Corollary 2.6. Let Φ = (φ1, . . . , φr)
T satisfy GΦ ∈ (L∞)(r×r) and

Ψ = (ψ1, . . . , ψs)
T satisfy Ψ̂ ∈ (L∞)(s). If Ψ is a Calderon convolutor

for V 2(Φ), then

supp(GΦ) ⊂ psupp(Ψ̂).

2.3. Deconvolution and stable deconvolution. Clearly, stable de-
convolution is stronger than simple deconvolution. Thus a stable Calderon
convolutor is a Calderon convolutor; however the converse is not true
in general. For example, when r = s = 1, φ1 = ψ1 = χ[0,1] − χ[1,2], we

have Gφ1(ξ) = |1 − e−2iπξ|2 and Gψ1

φ1
(ξ) = 1

3
|1 − e−2iπξ|4(2 + cos 2πξ).

Thus the ranks of Gφ1(ξ) and Gψ1

φ1
(ξ) are the same for all ξ ∈ R, but

there does not exist a positive constant m so that mGφ1(ξ) ≤ Gψ1

φ1
(ξ)

for almost all ξ ∈ R, since Gφ1(ξ) = O(ξ2) while Gψ1

φ1
(ξ) = O(ξ4) near

ξ = 0. Hence ψ1 is a Calderon convolutor for V 2(φ1) but is not a
stable Calderon convolutor. However, under additional assumptions,
rank equality between the matrices GΦ and GΨ

Φ implies stable recovery
of any function f ∈ V 2(Φ) from the convolution f ∗ ψl, 1 ≤ l ≤ s:

Theorem 2.7. Let Φ = (φ1, . . . , φr)
T satisfy GΦ ∈ (L∞)(r×r) and

Ψ = (ψ1, . . . , ψs)
T satisfy Ψ̂ ∈ (L∞)(s). Assume that GΦ and GΨ

Φ are
continuous functions on Rd, and that V 2(Φ) is a closed subspace of L2.
Then Ψ is a stable Calderon convolutor for V 2(Φ) if and only if the
matrices GΦ(ξ) and GΨ

Φ(ξ) have the same rank for all ξ ∈ Rd.

Remark 2.8. The extra assumption that V 2(Φ) is a closed subspace
of L2 is satisfied if, for example, mI ≤ GΦ ≤ MI for some constants
M,m > 0 (see also Theorem A).

2.4. Deconvolution formula. To establish the deconvolution formula
from Calderon convolution, we need the following result about the gen-
erators of a shift-invariant space ([11]).

Lemma 2.9. Let Φ = (φ1, . . . , φr)
T satisfy GΦ ∈ (L∞)(r×r). Then

there exist θ1, . . . , θr in the L2-closure V of V 2(Φ) such that {θl(·−k) :
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1 ≤ l ≤ r, k ∈ Zd} is a normalized tight frame of V , that is,

(2.4) f =
r∑
l=1

∑
k∈Zd

〈f, θl(· − k)〉θl(· − k), ∀ f ∈ V.

Furthermore, the generators θ1, . . . , θr of the L2-closure of V 2(Φ) can
be so chosen that

(2.5)
∑
k∈Zd

θ̂i(ξ + k)θ̂i′(ξ + k) = δii′χEi
(ξ), 1 ≤ i, i′ ≤ r,

where

(2.6) Ei = {ξ ∈ Rd : rank of GΦ(ξ) ≥ i}, 1 ≤ i ≤ r.

Remark 2.10. Write

GΦ(ξ) = A(ξ)diag(λ1(ξ), . . . , λr(ξ))A(ξ)
T

for some unitary matrix A(ξ), where λ1(ξ) ≥ . . . ≥ λr(ξ) ≥ 0. Then
one may verify that the functions θ1, . . . , θr defined by

Θ̂(ξ) = diag(µ1(ξ), . . . , µr(ξ))A(ξ)
T
Φ̂(ξ)T

satisfy all requirement in Lemma 2.9, where Θ = (θ1, · · · , θr)T and

µi(ξ) =

{
(λi(ξ))

−1/2, if λi(ξ) 6= 0,
0, if λi(ξ) = 0.

The generator Θ in Lemma 2.9 does not necessarily have compact sup-
port in general even if Φ has. In fact, in one dimensional case, if the
functions θ1, . . . , θr in Lemma 2.9 can be chosen to have compact sup-
port, then there exist compactly supported functions θ̃1, . . . , θ̃r′ ∈ V
for some 1 ≤ r′ ≤ r so that their shifts form an orthonormal basis of
the shift-invariant space V ([20]). We believe that the above result is
also true for high dimensions, but we have difficulty in its justification.

Remark 2.11. The generator Θ in Lemma 2.9 need not be in W 1

even if Φ belongs to W 1, an assumption often needed in convolu-
tion or in sampling theory. For instance, let r = 1 and φ1 be a

Schwartz function so that φ̂1(ξ) > 0 for all ξ ∈ (−1/2, 1/2) and

φ̂1(ξ) = 0 for all ξ ∈ R\(−1/2, 1/2). Then φ1 is a continuous func-
tion in W 1 and φ1(x) =

∑
j∈Z c(j)sinc(x− j), where the sinc-function

is defined by sinc(x) = sinπx
πx

, and the sequence {c(j)} is defined by∑
j∈Z c(j)e

−i2πjξ =
∑

k∈Z φ̂1(ξ + k). Let Bπ be the space of all band-

limited L2-functions. Then V 2(φ1) has a smooth generator and is a
dense subspace of the space Bπ. Suppose, on the contrary, that there



CONVOLUTION AND AVERAGE SAMPLING 9

exist functions h1, . . . , hs ∈ W 1 so that {hl(· − j) : j ∈ Z, 1 ≤ l ≤ s} is
a tight frame of Bπ. By the tight frame property of h1, . . . , hs, we have

sinc(x) =
s∑
l=1

∑
j∈Z

〈sinc, hl(· − j)〉hl(x− j) =
s∑
l=1

∑
j∈Z

hl(−j)hl(· − j).

Taking Fourier transform at both sides of the above equation leads to

χ[−1/2,1/2](ξ) =
s∑
l=1

( ∑
j∈Z

hl(−j)e−ijξ
)
ĥl(ξ),

which is a contradiction since the left hand side is discontinuous, while
the right hand side is continuous.

We start to establish the deconvolution formula. Let Φ = (φ1, . . . , φr)
T

satisfy GΦ ∈ (L∞)(r×r), and let Ψ = (ψ1, . . . , ψs)
T be a stable Calderon

convolutor for the shift-invariant space V 2(Φ) and satisfy Ψ̂ ∈ L∞.
By Lemma 2.9, we can select a generator Θ = (θ1, . . . , θr)

T of the
L2-closure of V 2(Φ) so that

(2.7) GΘ(ξ) = diag(χE1(ξ), . . . , χEr(ξ))

for some measurable sets E1, . . . , Er. By Theorem 2.2, we can find a
r × r matrix A(ξ) = (aii′(ξ))1≤i,i′≤r with bounded Zd-periodic entries
so that

(2.8) GΨ
Θ(ξ)A(ξ) = GΘ(ξ).

For any f ∈ V 2(Φ) ⊂ V 2(Θ), we denote gl = f ∗ ψl, 1 ≤ l ≤ s, and
write

f̂(ξ) =
r∑
i=1

ci(ξ)θ̂i(ξ)

for some square-integrable Zd-periodic functions ci(ξ), 1 ≤ i ≤ r. Then

the functions ψ̃l,i, defined by

̂̃ψl,i = ψ̂l(ξ)
r∑

i′=1

ai′i(ξ)θ̂i′(ξ),

satisfy
s∑
l=1

∑
k∈Zd

ĝl(ξ + k)̂̃ψl,i(ξ + k)

=
r∑

i′,i′′=1

ci′(ξ)
( s∑
l=1

∑
k∈Zd

θ̂i′(ξ + k)θ̂i′′(ξ + k)|ψ̂l(ξ + k)|2
)
ai′′i(ξ)

= ci(ξ)χEi
(ξ),
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where we have used (2.7) and (2.8) to obtain the last equality. This
yields the following deconvolution formula from Calderon convolutions:

(2.9) f =
s∑
l=1

∑
j∈Zd

〈f ∗ ψl, ψ̃l,i(· − j)〉θi(· − j), f ∈ V 2(Φ).

3. Uniform Average Sampling

In this section, we study the problem of average sampling and the
recovery of functions in shift-invariant spaces from a set of average sam-
pled values. We show that in general a stable Calderon convolutor is
not a stable uniform averaging sampler. In the opposite direction, we
also show that a stable uniform averaging sampler is not necessarily a
stable Calderon convolutor except under some appropriate conditions.
In addition, we show that for Ψ to be a stable uniform averaging sam-
pler, it often must have “better characteristics” than the generator Φ
of V .

Definition 3.1. Let V be a shift-invariant subspace of L2.

(1) We say that Ψ = (ψ1, . . . , ψs)
T is a stable uniform averaging

sampler for V if there exist positive constants A,B such that

(3.1) A‖f‖2 ≤
s∑
l=1

( ∑
j∈Zd

|f ∗ ψl(j)|2
)1/2

≤ B‖f‖2 for all f ∈ V.

(2) We say that Ψ = (ψ1, . . . , ψs)
T is a determining uniform av-

eraging sampler for V if the only function f ∈ V , satisfying
f ∗ ψl(k) = 0 for all 1 ≤ l ≤ s and k ∈ Zd, is the zero function.

From the definitions above, we see that if Ψ is a stable uniform
average sampler for V , then any function f ∈ V can be recovered in
a stable way from the average values {〈f, ψl(j − ·)〉 : j ∈ Zd, 1 ≤ l ≤
s}, i.e., the average sampling operator has a bounded inverse. The
determining averaging sampler can distinguish between two distinct
functions f1, f2 in V , but the inverse or recovery is not necessarily
stable. Thus a stable uniform averaging sampler is also determining
but the converse is not true in general.

3.1. Stable uniform averaging sampler. For any Φ = (φ1, . . . , φr)
T

with GΦ ∈ (L∞)(r×r) and Ψ = (ψ1, . . . , ψs)
T with GΨ ∈ (L∞)(s×s), we
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define
(3.2)

AΨ
Φ(ξ) :=

s∑
l=1

( ∑
k∈Zd

Φ̂(ξ + k)ψ̂l(ξ + k)
)( ∑

k′∈Zd

Φ̂(ξ + k′)ψ̂l(ξ + k′)
)T
.

Using the above definition, we obtain equivalent characterizations of a
stable uniform averaging sampler Ψ:

Theorem 3.2. Let Φ = (φ1, . . . , φr)
T and Ψ = (ψ1, . . . , ψs)

T satisfy
GΦ ∈ (L∞)(r×r) and GΨ ∈ (L∞)(s×s). Then the following statements
are equivalent to each other:

(i) Ψ is a stable uniform averaging sampler for the L2-closure of
V 2(Φ).

(ii) Ψ is a stable uniform averaging sampler for V 2(Φ).
(iii) There exists a positive constant m such that

(3.3) mGΦ(ξ) ≤ AΨ
Φ(ξ) a.e. ξ ∈ Rd.

From the definition in (3.2), we see that

AΨ
Φ(ξ) =

s∑
l=1

al(ξ)al(ξ)
T
,

where al(ξ) =
∑

k∈Zd Φ̂(ξ + k)ψ̂l(ξ + k). Thus, the rank of the matrix
AΨ

Φ(ξ) is at most s for any ξ ∈ Rd. Let

rmax := max{l : measure{ξ : rank GΦ(ξ) = l} > 0},

then by Theorem 3.2, we see that the length s of a stable averaging
sampler Ψ for the shift-invariant space V 2(Φ) is at least rmax. If a
stable averaging sampler Ψ has minimal length, that is, s = rmax, then
it has a Riesz property as described in the following Theorem:

Theorem 3.3. Let Φ = (φ1, . . . , φr)
T and Ψ = (ψ1, . . . , ψs)

T satisfy
GΦ ∈ (L∞)(r×r) and GΨ ∈ (L∞)(s×s). Assume that the rank of the
matrix GΦ(ξ) is s for almost all ξ ∈ Rd, and that Ψ is a stable averaging
sampler for V 2(Φ). Then Ψ generates a Riesz basis, that is, {ψl(·−j) :
j ∈ Zd, 1 ≤ l ≤ s} is a Riesz basis of the shift-invariant space V 2(Ψ).

As an application of Theorem 3.3, we have the following result about
the averaging sampler.

Corollary 3.4. Let Φ and Ψ be scalar-valued compactly supported L2

functions. If Ψ is a stable averaging sampler for V 2(Φ), then {Ψ(·−j) :
j ∈ Zd} is a Riesz basis of V 2(Ψ).
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Remark 3.5. Equation (3.3) implies that RankGΦ(ξ) ≤ RankAΨ
Φ(ξ)

for almost all ξ ∈ Rd. Moreover, it is not difficult to show that
RankAΨ

Φ(ξ) ≤ RankGΦ(ξ). Thus, if Ψ is a stable uniform averag-
ing sampler for V 2(Φ), then RankGΦ(ξ) = RankAΨ

Φ(ξ). Equality of
ranks does not imply that Ψ is a stable uniform averaging sampler
in general. However, it does imply that Ψ is a determining uniform
averaging sampler as in the next Theorem.

3.2. Determining uniform average sampler.

Theorem 3.6. Let Φ = (φ1, . . . , φr)
T and Ψ = (ψ1, . . . , ψs)

T satisfy
GΦ ∈ (L∞)(r×r) and GΨ ∈ (L∞)(s×s). Then the following three state-
ments are equivalent:

(i) Ψ is a determining uniform average sampler for the L2-closure
of V 2(Φ).

(ii) Ψ is a determining uniform averaging sampler for V 2(Φ).
(iii) The matrices GΦ(ξ) and AΨ

Φ(ξ) have the same rank for almost
all ξ ∈ Rd.

Similar to the situation of a stable Calderon convolutor and Calderon
convolutor, a stable averaging sampler is a determining averaging sam-
pler, but the converse is not true in general. For instance, when
r = s = 1, φ1 = χ[0,1]−χ[1,2] and ψ1 = φ1(−·), Gφ1(ξ) = |1−e−i2πξ|2 and

Aψ1

φ1
(ξ) = |1− e−2iπξ|4. For this case, the rank of Gφ1(ξ) and Aψ1

φ1
(ξ) are

equal for all ξ ∈ R. However there does not exist a positive constant
m so that mGφ1(ξ) ≤ Aψ1

φ1
(ξ) for all ξ ∈ R, since Gφ1(ξ) = O(ξ2) while

Aψ1

φ1
(ξ) = O(ξ4) near the origin. Thus ψ1 is a determining sampler for

V 2(φ1), but not a stable sampler for V 2(φ1) by Theorems 3.2 and 3.6.
Parallel to Theorem 2.7, we show in the following theorem that under
additional assumptions, equality in ranks of the matrices GΦ and AΨ

Φ

implies stable recovery from average sampling:

Theorem 3.7. Let Φ = (φ1, . . . , φr)
T and Ψ = (ψ1, . . . , ψs)

T satisfy
GΦ ∈ (L∞)(r×r) and GΨ ∈ (L∞)(s×s). Assume that GΦ and AΨ

Φ are
continuous functions on Rd, and that V 2(Φ) is a closed subspace of
L2. Then Ψ is a stable average sampler for V 2(Φ) if and only if the
matrices GΦ(ξ) and AΨ

Φ(ξ) have the same rank for all ξ ∈ Rd.

3.3. Reconstruction Formula. Let Φ = (φ1, . . . , φr)
T satisfy GΦ ∈

(L∞)(r×r), and let Ψ = (ψ1, . . . , ψs)
T be a stable averaging sampler for

the shift-invariant space V 2(Φ) and satisfy GΨ ∈ (L∞)(s×s). Let Θ =
(θ1, . . . , θr) be the generators of the L2-closure of the shift-invariant
space V 2(Φ) so that

GΘ(ξ) = diag(χE1(ξ), . . . , χEr(ξ))
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for some measurable sets E1, . . . , Er, and let B(ξ) = (bii′(ξ))1≤i,i′≤r
with bounded measurable entries be so chosen that

AΨ
Θ(ξ)B(ξ) = GΘ(ξ).

The existences of such a generator Θ and matrix B(ξ) follow from
Lemma 2.9 and Theorem 3.2 respectively. Define

dli(ξ) =
r∑

i′=1

(∑
k∈Zd

θ̂i′(ξ + k)ψ̂l(ξ + k)
)
bi′i(ξ), 1 ≤ l ≤ s, 1 ≤ i ≤ r.

Then dli, 1 ≤ l ≤ s, 1 ≤ i ≤ r, are bounded measurable Zd-periodic
functions. Moreover, recalling that any function f in V 2(Φ) has the
following expression in the Fourier domain,

f̂(ξ) =
r∑
i=1

ci(ξ)θ̂i(ξ)

for some square-integrable Zd-periodic functions c1, . . . , cr, we have
s∑
l=1

F({(f ∗ ψl)(j)})(ξ)dli(ξ)

=
r∑

i′,i′′=1

ci′(ξ)
( s∑
l=1

( ∑
k∈Zd

θ̂i′(ξ + k)ψ̂l(ξ + k)
)

×
( ∑
k′∈Zd

θ̂i′′(ξ + k′)ψ̂l(ξ + k′)
))
bi′′i(ξ)

= ci(ξ)χEi
, 1 ≤ i ≤ r.

Here for summable sequence c = {c(j)}, F(c) denotes its Fourier series,

which is defined by F(c) =
∑

j∈Zd c(j)e−ijξ. Multiplying θ̂i(ξ) at both
sides of the above equation, and summing over i from 1 to r leads to

f̂(ξ) =
r∑
i=1

s∑
l=1

F({(f ∗ ψl)(j)})(ξ)dli(ξ)θ̂i(ξ).

Finally, taking inverse Fourier transform of the above equation and
letting {dli(j)} be the Fourier coefficients of the square-integrable Zd-
periodic function dli(ξ), 1 ≤ l ≤ s, 1 ≤ i ≤ r, we obtain the following
reconstruction formula from the average sampling values,

(3.4) f =
r∑
i=1

s∑
l=1

∑
j∈Zd

cli(j)θi(· − j), f ∈ V 2(Φ),

where the sequence {cli(j)} is the convolution between the sequences
{(f ∗ ψl)(j)} and {dli(j)}.
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3.4. A stable Calderon convolutor which is not a stable averag-
ing sampler. It is not surprising that a stable Calderon convolutor Ψ
is not necessarily a stable averaging sampler. A more surprising result
is that there exists a stable Calderon convolutor ψ for a shift-invariant
space V 2(φ) such that ψ(· − x0) is not a stable averaging sampler for
any x0 ∈ R, as illustrated in the following example:

Example 3.8. Let φ and ψ be defined by φ̂(ξ) = χ[−3/2,3/2] and

ψ̂(ξ) =

 g(ξ), ξ ∈ [−1/2, 1/2],
1, ξ ∈ [−3/2,−1/2] ∪ [1/2, 3/2],
0, otherwise,

where g is a symmetric continuous function on [−1/2, 1/2] so that
max g = 3, min g = −3 and g(−1/2) = g(1/2) = 1. For any x0 ∈ [0, 1],
let ξ0 ∈ (−1/2, 1/2) be so chosen that g(ξ0) + 2 cos 2πx0 = 0. The
existence of ξ0 follows from the definition of g. Note that∑
k∈Z

φ̂(ξ0 + k)ψ̂(ξ0 + k)e−i2πx0(ξ0+k) = e−i2πx0ξ0(2 cos 2πx0 + g(ξ0)) = 0.

Then Aψφ(ξ0) = 0 and A(ξ) is continuous ξ0, while Gφ(ξ) ≥ 1 for all
ξ ∈ R. Thus, ψ(· − x0) is not a stable average sampler for any x0 ∈ R
by Theorem 3.2. On the other hand,

Gψ
φ(ξ) =

∑
k∈Z

|φ̂(ξ + k)|2|ψ̂(ξ + k)|2 ≥ 1, ξ ∈ R,

and Gφ(ξ) ≤ 2 for all ξ ∈ R. It follows that ψ is a stable Calderon
convolutor for V 2(φ) by condition (iii) of Theorem 2.2.

3.5. A stable averaging sampler which is not a stable Calderon
convolutor. One would expect that a stable averaging sampler Ψ for
V 2(Φ) is a stable Calderon convolutor, since we can always sample the
image of a Calderon convolution and use the samples for the recov-
ery. Surprisingly, this is not the case as demonstrated by the following
example:

Example 3.9. Let En, n ≥ 1, be a partition of [−1/2, 1/2) with En =
−En and |En| > 0 for all n ≥ 1. Define φ by

φ̂(ξ) =

{
(2n+ 1)−1/2, if ξ ∈ ∪nj=−n(En + j),
0, otherwise,

and ψ = φ(− ·). Then φ has orthonormal shifts, since ∪n≥1En =

[−1/2, 1/2] and
∑

k∈Z |φ̂(ξ + k)|2 = 1 for all ξ ∈ En + Z. Hence

f =
∑
j∈Z

(f ∗ ψ)(j)φ(· − j) f ∈ V 2(φ),
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and ‖f‖2 = ‖{(f ∗ ψ)(j)}j∈Z‖`2 . Thus ψ is a stable averaging sampler.
On the other hand, consider the sequence of functions fn ∈ V 2(φ)

defined by f̂n(ξ) = ĉn(ξ)φ̂(ξ), with ĉn supported on En+Z and ‖cn‖`2 =
1. Then
(3.5)

‖f̂nψ̂‖2
2 =

∫
R
|ĉn(ξ)|2|φ̂(ξ)|4dξ =

1

2n+ 1

∫
En

|ĉn(ξ)|2dξ =
1

2n+ 1
.

Hence ψ is not a stable Calderon convolutor for V 2(φ) since ‖fn‖2 = 1

while ‖f̂nψ̂‖2 = ( 1
2n+1

)−1/2, and n can be chosen to be arbitrarily large.

Although this example demonstrates that a stable averaging sampler
is not necessarily a stable Calderon convolutor we still expect that a
stable averaging sampler is a stable Calderon convolutor in most cases.
This intuition is confirmed by the following theorem:

Theorem 3.10. Let Φ = (φ1, . . . , φr)
T and Ψ = (ψ1, . . . , ψs)

T satisfy
GΦ ∈ (L∞)(r×r) and GΨ ∈ (L∞)(s×s), and assume that

(3.6) lim
N→∞

sup
ξ∈[0,1]d

s∑
l=1

∑
|k|≥N

|ψ̂l(ξ + k)|2 → 0.

If Ψ is a stable uniform averaging sampler for V 2(Φ), then Ψ is a stable
convolutor for V 2(Φ).

Thus, by removing some pathological situations as described in the
Theorem above, our intuition is validated.

4. Non-uniform average sampling

In this section, we study the problem of non-uniform average sam-
pling with sufficiently large density for finitely generated shift-invariant
spaces. We give conditions under which a stable Calderon convolutor
is a stable non-uniform averaging sampler for sufficiently small gaps.
We also show that under appropriate conditions the converse is also
true. We start with the following definitions about sampling sets:

Definition 4.1. Let X be a countable subset of Rd.

(1) We say that X is a sampling set with maximal gap δ if∑
xj∈X

χB(xj ,δ)(x) ≥ 1, x ∈ Rd,

where B(xj, δ) is the ball centered at xj and with radius δ.
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(2) A sampling set X is said to be a relatively separated sampling
set if it satisfies∑

xj∈X

χB(xj ,1)(x) ≤ D, x ∈ Rd,

for some positive integer D ≥ 1. The constant D is said to be
the gap bound of the sampling set X.

(3) A sampling set X is said to be separated with separateness ε if
it satisfies ∑

xj∈X

χB(xj ,ε) ≤ 1, x ∈ Rd.

Remark 4.2. The maximal gap measures the density of the set of
points X in Rd and it is sometimes referred to as δ-density [1, 3]. The
relatively separateness and the separateness of a sampling set are re-
lated as follows: a relatively separated sampling set X with gap bound
D can always be written as union of sampling sets X1, . . . , XJ with sep-
arateness at least 1 for some positive integer J ≤ 2dD, while, conversely,
a separated sampling set X with separateness ε is a relatively separated
sampling set X with gap bound D being approximately 2dε−1 + 1.

We also introduce the following definition about an averaging sam-
pler Ψ:

Definition 4.3. For a shift-invariant subspace V of L2, we say that
Ψ = (ψ1, . . . , ψs)

T is a stable non-uniform averaging sampler with max-
imal gap δ for V if for any relatively separated sampling set X with
maximal gap δ, there exist positive constants C1 and C2 (dependent
only on the space V , the function Ψ, the maximal gap δ, and the gap
bound D of the sampling set X only) such that

(4.1) C1‖f‖2
2 ≤

s∑
l=1

∑
xj∈X

|f ∗ ψl(xj)|2 ≤ C2‖f‖2
2, ∀ f ∈ V.

Our next result shows that a stable Calderon convolutor is a sta-
ble non-uniform averaging sampler with sufficiently small gap provided
that the convolutors are continuous function in the space W 1. Here for
1 ≤ p <∞, we say that a measurable function f on Rd belongs to the
Wiener amalgam space W p if it satisfies

(4.2) ‖f‖W p =
( ∑
j∈Zd

ess sup{|f(x+ j)|p : x ∈ [0, 1]d}
)1/p

<∞.

Theorem 4.4. Let V be a shift-invariant subspace of L2, and let Ψ =
(ψ1, . . . , ψs)

T be a continuous vector-valued function in W 1. If Ψ is
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a stable Calderon convolutor for V , then Ψ is a stable non-uniform
averaging sampler for V for all sufficiently small maximal gaps δ.

Although the previous theorem may not seem surprising, we have
seen from the previous section on uniform averaging sampler and ex-
amples 3.8 and 3.9, that the issues are delicate and not straight forward.
A more surprising result is a converse:

Theorem 4.5. Let V be a shift-invariant subspace of L2 and let Ψ =
(ψ1, . . . , ψs)

T be a continuous vector-valued function in W 1. If Ψ sat-
isfies condition (4.1) for some relatively separated sampling set X with
positive maximal gap, then it is a stable Calderon convolutor for V .

Remark 4.6. Note that if f ∈ V 2(Φ), then f ∗ ψl ∈ V 2(Φ ∗ ψl).
Moreover, since f ∗ψl ∈ W 2, we have that ‖f ∗ψl(X)‖`2 ≤ K‖f ∗ψl‖W 2

for some positive constant K (see [3]). Therefore, to prove Theorem
4.5, it would be sufficient to prove that

(4.3) ‖g‖W 2 ≤ C‖g‖2

for all g ∈ V 2(Φ ∗ ψl), for some constant C. However, the inequality
(4.3) is not true in general, as seen from the following example.

Example 4.7. Let h be a C∞ function so that h is supported in [0, 1],
‖h‖2 = 1,maxx∈[0,1] h(x) = 2, and minx∈[0,1] h(x) = 0, and let Ei =
[ai, bi], i ≥ 1, be subintervals of [0, 1] so that they are mutually disjoint
and |bi − ai| = 2−i, and define

φ(x) =


2−i/2h

(
x−ai

bi−ai

)
, x ∈ Ei for some i ≥ 1,

−2−i/2h
(
x−2i−ai

bi−ai

)
, x ∈ Ei + 2i for some i ≥ 1,

0, otherwise.

By direct computation,

(4.4) sup
x∈n+[0,1]

|φ(x)| =


√

2, n = 0,
2−i/2+1, n = 2i for some 1 ≤ i ∈ Z,
0, otherwise,

and

‖φ‖W 1 ≤
√

2 + 2
∞∑
i=1

2−i/2 = 3
√

2 + 2 <∞.

Hence φ is a continuous function in W 1. Set

g =

{
2−i/2h

(
x−ai−j
bi−ai

)
, x ∈ Ei + j for some 0 ≤ j ≤ 2i − 1, i ≥ 1,

0, otherwise.
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Clearly we have

g(x)− g(x− 1) = φ(x)

and

‖g‖2
2 =

∞∑
i=1

∫
Ei+Z

|g(x)|2dx =
∞∑
i=1

|Ei|2−i2i‖h‖2
2 =

∞∑
i=1

2−i = 1 <∞.

Note that

sup
x∈n+[0,1]

|g(x)| =


√

2, n = 0, 1,
2−(j+1)/2+1, 2j ≤ n ≤ 2j+1 − 1 for some 0 ≤ j ∈ Z,
0, otherwise,

and hence

‖g‖2
W 2 = 4 + 4

∞∑
j=1

2−j−12j = +∞.

Assume, on the contrary, that there exists a positive constant C so
that ‖f‖W 2 ≤ C‖f‖2 for all f ∈ V 2(φ). Define gn ∈ V 2(φ), n ≥ 1, by

ĝn(ξ) = φ̂(ξ)(1− e−iξ)−1χ|1−e−iξ|≥1/n(ξ).

Then gn tends to g in L2, since ĝn(ξ)− ĝ(ξ) = χ|1−e−iξ|≤1/n(ξ)ĝ(ξ) and
g ∈ L2. This together with the norm equivalence implies that gn, n ≥ 1,
is a Cauchy sequence in W 2. Thus gn has a limit g∞ in W 2. Recall
that gn tends to g in L2. Therefore g = g∞, and hence g ∈ W 2, which
is a contradiction.

From the above example, we see that the non-uniform sampling oper-
ator on V 2(Φ) is not a bounded operator. The fact that the inequality
(4.3) is not true in general also shows that results on sampling after
convolution cannot be deduced from results on ideal sampling such as
those in [1, 3, 6, 12, 13, 27]. To reduce Theorem 4.5 to previous sam-
pling results, extra conditions on Φ and Ψ must be imposed such that
(4.3) is satisfied, for example, such conditions in Theorem B.1 in the
appendix.

5. proofs

In this section, we give the proofs of Theorems 2.2, 2.5, 2.7, 3.2, 3.3,
4.4 and 4.5.
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5.1. Proofs of Theorem 2.2. The fact that (i)=⇒ (ii) is trivial. To
show that (ii)=⇒(i), we first note that

∑s
l=1 ‖f ∗ ψl‖2 ≤ B‖f‖2 is

satisfied for any f ∈ L2 because ψ̂i ∈ L∞, i = 1, . . . , s. Let f be in
the L2-closure of V 2(Φ) and choose a sequence fn ∈ V 2(Φ) such that
fn → f . We get

A‖f‖2 = A lim
n→∞

‖fn‖2 ≤ lim
n→∞

s∑
l=1

‖fn ∗ ψl‖2 =
s∑
l=1

‖f ∗ ψl‖2 ≤ B‖f‖2.

For any f ∈ V 2(Φ), there exists a square-integrable Zd-periodic

function C(ξ) = (c1(ξ), . . . , cr(ξ))
T so that f̂(ξ) = C(ξ)T Φ̂(ξ). This

together Parseval identity yields

(5.1) ‖f‖2
2 =

∫
[0,1)d

C(ξ)TGΦ(ξ)C(ξ)dξ,

and
s∑
l=1

‖f ∗ ψl‖2
2 =

s∑
l=1

∫
Rd

|f̂(ξ)ψ̂l(ξ)|2dξ

=
s∑
l=1

∫
Rd

C(ξ)T Φ̂(ξ)Φ̂(ξ)
T

C(ξ)|ψ̂l(ξ)|2dξ

=

∫
[0,1)d

C(ξ)TGΨ
Φ(ξ)C(ξ)dξ.(5.2)

From the definition of f ∈ V 2(Φ), the space V̂ 2(Φ) := {f̂(ξ) : f ∈
V 2(Φ)} is characterized by

(5.3) V̂ 2(Φ) =
{
C(ξ)T Φ̂(ξ) : C(ξ) ∈ (L2

p)
(r)

}
,

where (L2
p)

(r) is r copies of the space of all square-integrable Zd-periodic
functions. Using (5.1), (5.2) and (5.3), we note that

‖f‖2
2 ≤ A−1

s∑
l=1

‖f ∗ ψl‖2
2 ∀ f ∈ V 2(Φ)

if and only if∫
[0,1)d

C(ξ)TGΦ(ξ)C(ξ)dξ ≤ A−1

∫
[0,1)d

C(ξ)TGΨ
Φ(ξ)C(ξ)dξ.

Since GΦ(ξ) and GΨ
Φ(ξ) are non-negative, self-adjoint a.e. ξ ∈ Rd, and

since C ∈ (L2
p)

(r) can be chosen to be an arbitrary Zd-periodic mea-
surable vector function, the last inequality is satisfied if and only if
GΦ(ξ) ≤ A−1GΨ

Φ(ξ), a.e. ξ ∈ Rd. Hence (ii) and (iii) are equivalent,
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since, as before, ‖f ∗ ψl‖2 ≤ B‖f‖2 is satisfied for any f ∈ L2 because

ψ̂i ∈ L∞, i = 1, . . . , s, thus also for V 2(Φ) ⊂ L2.

5.2. Proof of Theorem 2.5. The implication (i)=⇒(ii) is obvious.
Then it remains to prove (ii)=⇒(iii) and (iii)=⇒(i).

First we prove (ii)=⇒(iii). Note that rank GΨ
Φ(ξ) ≤ rank GΦ(ξ) for

almost all ξ ∈ Rd. To see this, let v be any vector in Rd such that
vTGΦ(ξ) = 0, then

0 = vTGΦ(ξ)v =
∑
k∈Zd

‖vT Φ̂(ξ + k)‖2.

So vT Φ̂(ξ + k) = 0 for all k ∈ Zd, which implies vTGΨ
Φ(ξ) = 0. Hence

the null space of GΦ(ξ) is contained in the null space of GΨ
Φ(ξ). It

follows that the rankGΨ
Φ(ξ) ≤ rankGΦ(ξ), a.e. ξ ∈ Rd. Now suppose

that (ii) holds but not (iii), then there exists a measurable set E with
positive measure such that rankGΨ

Φ(ξ) is strictly less than rankGΦ(ξ)
for almost all ξ ∈ E ⊂ [0, 1]d. This fact together with the fact that
vTGΦ(ξ) = 0 =⇒ vTGΨ

Φ(ξ) = 0 for any v ∈ Rd imply that there exists
a nonzero vector function v such that its components are measurable,
supported in E + Zd, with ‖v‖L2([0,1]d) = 1, and such that

(5.4) v(ξ)TGΦ(ξ)v(ξ) > 0 a.e. ξ ∈ E,
and

(5.5) v(ξ)TGΨ
Φ(ξ)v(ξ) ≡ 0 a.e. ξ ∈ E.

Then the function f defined by f̂(ξ) = v(ξ)T Φ̂(ξ) is a nonzero function
in V 2(Φ) by (5.1) and (5.4), but f ∗ ψl = 0 for all 1 ≤ l ≤ s since

f̂ ∗ ψl(ξ) = v(ξ)T Φ̂(ξ)ψ̂l(ξ) = 0 by (5.2) and (5.5), which contradicts
our assumption that (ii) holds.

Finally we prove (iii)=⇒(i). Suppose not, then there exists f ∈ V
such that f 6= 0 but f ∗ ψl ≡ 0 for 1 ≤ l ≤ s, where we denote the
L2-closure of V 2(Φ) by V . Write

(5.6) f̂(ξ) = C(ξ)T Φ̂(ξ),

where C is a Zd-periodic measurable function (not square-integrable in
general) satisfying

(5.7) |C(ξ)| <∞ a.e. ξ ∈ Rd

(see [10]). Then

(5.8) C(ξ)TGΦ(ξ)C(ξ) =
∑
k∈Zd

|f̂(ξ + k)|2 6≡ 0
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by (5.6) and the assumption f 6= 0, and

(5.9) C(ξ)TGΨ
Φ(ξ)C(ξ) =

s∑
l=1

∑
k∈Zd

|f̂ ∗ ψl(ξ + k)|2 ≡ 0

by (5.6) and the assumption f ∗ ψl = 0 for all 1 ≤ l ≤ s. Combining
(5.7), (5.8) and (5.9), we see that the rank of GΦ is strictly larger than
the one of GΨ

Φ on the support of C, which contradicts the assumption
(iii).

5.3. Proof of Theorem 2.7. By Theorem 2.2, there exists a positive
constant m such that mGΦ(ξ) ≤ GΨ

Φ(ξ) for almost all ξ ∈ Rd. This
together with the continuity of GΦ and GΨ

Φ implies that the above
inequality holds for all ξ ∈ Rd. Recall (from the proof of Theorem
2.5) that the rank of GΨ

Φ(ξ) is no larger than the rank of GΦ(ξ) for all
ξ ∈ Rd. Therefore the ranks of GΦ(ξ) and GΨ

Φ(ξ) are the same for all
ξ ∈ Rd.

Now we prove the sufficiency. Let λl(ξ), 1 ≤ l ≤ r, be the eigenvalues
of the matrix GΦ(ξ), ξ ∈ Rd, which are ordered so that λ1(ξ) ≥ λ2(ξ) ≥
· · · ≥ λr(ξ). Then λk(ξ), 1 ≤ k ≤ r, are continuous functions of ξ by
the continuity assumption on GΦ. From the closedness of the shift-
invariant space V 2(Φ), we have from Theorem A.1 that

G2
Φ(ξ) ≥ mGΦ(ξ) a.e. ξ ∈ Rd,

for some positive constant m. Therefore

λk(ξ)
2 ≥ mλk(ξ) a.e. ξ ∈ Rd.

This together with the continuity of λk(ξ) imply that either λk(ξ) ≥ m
for all ξ ∈ Rd, or λk(ξ) = 0 for all ξ ∈ Rd. Thus there exists 1 ≤ k0 ≤ r
such that

(5.10) λ1(ξ) ≥ . . . ≥ λk0(ξ) ≥ m > 0 = λk0+1(ξ) = . . . = λr(ξ)

for all ξ ∈ Rd. This also implies that the rank of the matrix GΦ(ξ) is
always k0 for any ξ ∈ Rd.

Let µ1(ξ), . . . , µr(ξ) be eigenvalues of the matrix GΨ
Φ(ξ) ordered such

that µ1(ξ) ≥ · · · ≥ µr(ξ). Recall that the rank of GΦ(ξ) is k0 for all ξ ∈
Rd by the assumption on GΦ and GΨ

Φ. Thus µ1(ξ) ≥ · · · ≥ µk0(ξ) > 0
and µk0+1(ξ) = . . . = µr(ξ) = 0 for all ξ ∈ Rd. Note that µk(ξ) are
continuous function about ξ and also are Zd-periodic. Therefore there
exists a positive constant m1 so that

(5.11) µ1(ξ) ≥ · · · ≥ µk0(ξ) ≥ m1 > 0 = µk0+1(ξ) = · · · = µr(ξ)

for all ξ ∈ Rd. Recall (form the proof of Theorem 2.5) that the null
space of GΦ(ξ) is contained in the null space of GΨ

Φ(ξ). But since
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the ranks of GΨ
Φ(ξ) and GΦ(ξ) are the same by assumption, it follows

that the null spaces of the matrices GΦ(ξ) and GΨ
Φ(ξ) are equal. This

together with (5.10) and (5.11) implies that

GΨ
Φ(ξ) ≥ m1

λ1

GΦ(ξ) for all ξ ∈ Rd,

where λ1 = esssupξ∈Rdλ1(ξ). Hence the sufficiency follows.

5.4. Proof of Theorem 3.2. The implication (i)=⇒(ii) is obvious.
For any function f ∈ L2 and any function ψ with Gψ ∈ L∞, we have
that∫

Rd

|f̂(ξ)ψ̂(ξ)|dξ =

∫
[0,1]d

∑
k∈Zd

|f̂(ξ + k)ψ̂(ξ + k)|dξ ≤ ‖Gψ‖1/2
∞ ‖f‖2.

Thus f ∗ψ is continuous by the Riemman Lebesgue Lemma. Moreover
we have ∑

j∈Zd

|f ∗ ψ(j)|2 =

∫
[0,1]d

∣∣ ∑
k∈Zd

f̂(ξ + k)ψ̂(ξ + k)
∣∣2dξ

≤
∥∥∥ ∑
k∈Zd

|ψ̂(ξ + k)|2
∥∥∥
∞
‖f‖2

2.(5.12)

Thus, the right inequality of (3.1) holds for all f ∈ L2, and so in
particular for all f in the L2-closure of V 2(Φ). Let fn be a sequence in
V 2(Φ) that converges to f . If (ii) holds then using (5.12) and the left
inequality of (3.1) we get

A‖f‖2 = lim
n→∞

A‖fn‖2 ≤ lim
n→∞

‖{fn ∗ ψ(j)}‖`2 = ‖{f ∗ ψ(j)}‖`2 ,

and (ii)=⇒(i) follows.

For any f ∈ V 2(Φ), we may write f̂(ξ) = C(ξ)T Φ̂(ξ), where C is a
vector-valued square-integrable Zd-periodic function. Then

(5.13) ‖f‖2
2 =

∫
[0,1)d

C(ξ)TGΦ(ξ)C(ξ)dξ,

and
s∑
l=1

∑
j∈Zd

|f ∗ ψl(j)|2 =
s∑
l=1

∫
[0,1)d

∣∣∣C(ξ)T
∑
k∈Zd

Φ̂(ξ + k)ψ̂l(ξ + k)
∣∣∣2dξ

=

∫
[0,1)d

C(ξ)TAΨ
Φ(ξ)C(ξ)dξ.(5.14)
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Using (5.13) and (5.14), (iii)=⇒(ii) is obvious. To finish the proof, we
note that if (ii) holds then there exists m > 0 such that

m

∫
[0,1)d

C(ξ)TGΦ(ξ)C(ξ)dξ ≤
∫

[0,1)d

C(ξ)TAΨ
Φ(ξ)C(ξ)dξ.

SinceGΦ andAΨ
Φ are self-adjoint and C is an arbitrary square-integrable

Zd-periodic function, we have that (ii)=⇒(iii). Hence the equivalence
between (ii) and (iii) is established.

5.5. Proof of Theorem 3.3. Let V be the L2-closure of the shift-
invariant space V 2(Φ). By Lemma 2.9 and the rank assumption on
GΦ, there exist H = (h1, . . . , hs)

T , with hl ∈ V, l = 1, . . . , s, such that
their integer shifts form an orthonormal basis of the shift-invariant
space V = V 2(H). By Theorem 3.2 and the stable averaging sampler
assumption about Ψ, Ψ is a stable average sampler for V = V 2(H),
and hence there exists a positive constant m so that

(5.15) vTAΨ
H(ξ)v =

s∑
l=1

∣∣∣ s∑
l′=1

vl′
∑
k∈Zd

ĥl′(ξ+k)ψ̂l(ξ + k)
∣∣∣2 ≥ m

s∑
l′=1

|vl′|2

for any vector v = (v1, . . . , vs)
T ∈ Cr. Recall that the integer shifts of

h1, . . . , hs are orthonormal. Then

(5.16) ψ̂l(ξ) =
s∑

l′=1

all′(ξ)ĥl′(ξ) + ψ̂l,2(ξ) =: ψ̂l,1(ξ) + ψ̂l,2(ξ),

where all′(ξ) =
∑

k∈Zd ψ̂l(ξ + k)ĥl′(ξ + k), 1 ≤ l, l′ ≤ s, and ψl,2, 1 ≤
l ≤ s, satisfy

(5.17)
∑
k∈Zd

ψ̂l,2(ξ + k)ĥl′(ξ + k) = 0

for any 1 ≤ l′ ≤ s. By (5.16) and (5.17), we have

(5.18) GΨ(ξ) = GΨ1(ξ) +GΨ2(ξ)

and

(5.19) GΨ1(ξ) =
( s∑
n=1

aln(ξ)al′n(ξ)
)

1≤l,l′≤s
,

where Ψ1 = (ψ1,1, . . . , ψs,1)
T and Ψ2 = (ψ1,2, . . . , ψs,2)

T . By (5.15),
(5.17) and (5.18), we have

(5.20)
s∑
l=1

∣∣∣ s∑
l′=1

all′(ξ)vl′
∣∣∣2 ≥ m

s∑
l′=1

|vl′|2
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for any vector v = (v1, . . . , vs)
T ∈ Cr. Combining (5.18), (5.19) and

(5.20), and using the fact that GΨ2(ξ) is a nonnegative self-adjoint s×s
matrix, we get that

vTGΨ(ξ)v = vTGΨ1(ξ)v + vTGΨ2(ξ)v ≥ m‖v‖2 + vTGΨ2(ξ)v ≥ m‖v‖2.

So GΨ(ξ) ≥ mI for almost all ξ ∈ Rd.

5.6. Proof of Theorem 3.10. By Theorem 3.2, there exists a positive
constant m such that

(5.21) mvTGΦ(ξ)v ≤
s∑
l=1

∣∣∣ ∑
k∈Zd

vT Φ̂(ξ + k)ψ̂l(ξ + k)
∣∣∣2

for any ξ ∈ [0, 1)d and v ∈ Cr. By (3.6), there exists an integer N0 so
that

s∑
l=1

∣∣∣ ∑
|k|>N0

vT Φ̂(ξ + k)ψ̂l(ξ + k)
∣∣∣2

≤
s∑
l=1

( ∑
k∈Zd

|vT Φ̂(ξ + k)|2
)
×

( ∑
|k|>N0

|ψ̂l(ξ + k)|2
)

≤ m

4
vTGΦ(ξ)v(5.22)

for all ξ ∈ [0, 1)d. Combining (5.21) and (5.22) and using Hölder in-
equality, we obtain

m

4
vTGΦ(ξ)v ≤

s∑
l=1

∣∣∣ ∑
|k|≤N0

vT Φ̂(ξ + k)ψ̂l(ξ + k)
∣∣∣2

≤ (2N0 + 1)d
s∑
l=1

∑
|k|≤N0

|vT Φ̂(ξ + k)|2|ψ̂l(ξ + k)|2

≤ (2N0 + 1)d
s∑
l=1

∑
k∈Zd

|vT Φ̂(ξ + k)|2|ψ̂l(ξ + k)|2

= (2N0 + 1)dvTGΨ
Φ(ξ)v

for all v ∈ Cr and ξ ∈ [0, 1)d. Therefore Ψ is a stable convolutor for
V 2(Φ) by Theorem 2.2.

5.7. Proof of Theorem 4.4. For δ > 0, let ω(f, δ) be the modulus of
continuity function (or oscillation) of f defined by

ω(f, δ)(x) = sup
|y−x|≤δ

|f(y)− f(x)|.
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By the density of compactly supported continuous functions in the
space of all continuous function in W 1, we have

Lemma 5.1. Let ψ be a continuous function in W 1. Then

lim
δ→0

‖ω(ψ, δ)‖W 1 = 0.

Proof of Theorem 4.4. Let Ψ be a stable Calderon convolutor for V .
Then there exists a positive constant m such that

(5.23) m‖f‖2 ≤
( s∑
l=1

‖f ∗ ψl‖2
2

)1/2

∀f ∈ V.

By Lemma 5.1, there exists δ0 > 0 so that for any δ < δ0,
(5.24)( s∑

l=1

‖|f | ∗ ω(ψl, δ)‖2
2

)1/2

≤ ‖f‖2 ×
( s∑
l=1

‖ω(ψl, δ)‖2
1

)1/2

≤ m

2
‖f‖2

for all f ∈ V .
Let X be a relatively separated sampling set with maximal gap δ <

δ0/2, that is,

(5.25) 1 ≤
∑
xj∈X

χB(xj ,δ) ≤ C0

for some positive constant C0, and let {hj} be the partition of unity
corresponding to the covering {B(xj, δ) : xj ∈ X} of Rd,

(5.26)
∑
xj∈X

hj(x) ≡ 1 ∀ x ∈ Rd and 0 ≤ hj ≤ 1.

By (5.25), we have∑
xj∈X

s∑
l=1

|f ∗ ψl(xj)|2 ≤
∑
xj∈X

s∑
l=1

‖ψl‖1

∫
Rd

|f(y)|2|ψl(xj − y)|dy

≤
s∑
l=1

‖ψl‖1 ×
( ∑
k∈Zd

∫
k+[0,1]d

|f(y)|2dy

×
( ∑
k′∈Zd

∑
xj∈X∩(k′−[0,1]d)

sup
t∈k′−k+[0,2]d

|ψl(t)|
))

≤ C‖f‖2
2

s∑
l=1

‖ψl‖1‖ψl‖W 1 ,
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where C is a positive constant. Therefore it suffices to prove that

(5.27)
∑
xj∈X

s∑
l=1

|f ∗ ψl(xj)|2 ≥ C ′‖f‖2
2 ∀ f ∈ V,

where C ′ is a positive constant. Clearly for any f ∈ V ,

(5.28) |f ∗ ψl(xj)− f ∗ ψl(x)| ≤ (|f | ∗ ω(ψl, δ))(x)

for all x ∈ B(xj, δ). Combining (5.23) – (5.26) and (5.28), we obtain

|B(0, δ)|1/2
( s∑
l=1

∑
xj∈X

|f ∗ ψl(xj)|2
)1/2

≥
( s∑
l=1

∑
xj∈X

∫
Rd

hj(x)|f ∗ ψl(xj)|2dx
)1/2

≥
( s∑
l=1

∑
xj∈X

∫
Rd

hj(x)|f ∗ ψl(x)|2dx
)1/2

−
( s∑
l=1

∑
xj∈X

∫
Rd

hj(x)(|f | ∗ ω(ψl, δ))
2(x)dx

)1/2

≥ m‖f‖2 −
( s∑
l=1

‖|f | ∗ ω(ψl, δ)‖2
2

)1/2

≥ m

2
‖f‖2,

and hence (5.27) is proved. �

5.8. Proof of Theorem 4.5. Let X = {xj} be a relatively separated
sampling set. Then

(5.29)
∑
xj∈X

χB(xj ,1) ≤ C

for some positive constant C. By the assumption on Ψ, there exists a
positive constant m so that

(5.30) m‖f‖2 ≤
( s∑
l=1

∑
xj∈X

|f ∗ ψl(xj)|2
)1/2

∀ f ∈ V.
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Note that for any f ∈ L2 and h ∈ W 1, we obtain from (5.29) that

∑
xj∈X

∫
B(xj ,δ)

|f ∗ h(x)|2dx

≤ C

∫
∪jB(xj ,δ)

|f ∗ h(x)|2dx

≤ C‖h‖1

∫
Rd

|f(y)|2
( ∫

∪jB(xj ,δ)

|h(x− y)|dx
)
dy

≤ C‖h‖1

∑
k,k′∈Zd

∫
y∈k−[0,1)d

|f(y)|2

×
∫
x∈(∪jB(xj ,δ))∩(k′+[0,1)d)

|h(x− y)|dxdy

≤ C ′‖h‖1

∑
k,k′∈Zd

∫
y∈k−[0,1)d

|f(y)|2 sup
z∈k′−k+[0,2)d

|h(z)|

×|(∪jB(xj, δ)) ∩ (k′ + [0, 1)d)|
≤ C ′|B(0, δ)|‖h‖1‖h‖W 1‖f‖2

2.(5.31)

Recall that limδ→0 ‖ω(ψl, δ)‖W 1 = 0 by Lemma 5.1. Then it follows
from (5.31) that

(5.32)
( s∑
l=1

∑
xj∈X

∫
B(xj ,δ)

(|f |∗ω(ψl, δ)(x))
2dx

)1/2

≤ m

2
|B(0, δ)|1/2‖f‖2

for any δ < δ0, where δ0 is a positive constant dependent on Ψ and the
gap bound of the sampling set X.

For any δ > 0, f ∈ L2 and a continuous function ψ, one can easily
verify from the definition of the modulus of continuity that

(5.33) |f ∗ ψ(x)− f ∗ ψ(y)| ≤ |f | ∗ ω(ψ, δ)(x) ∀y ∈ B(x, δ).
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Combining (5.29), (5.30), (5.32) and (5.33), we obtain( s∑
l=1

‖f ∗ ψl‖2
2

)1/2

≥ C1

( s∑
l=1

∑
xj∈X

∫
x∈B(xj ,δ)

|f ∗ ψl(x)|2dx
)1/2

≥ C1

( s∑
l=1

∑
xj∈X

|f ∗ ψl(xj)|2|B(xj, δ)|
)1/2

−C1

( s∑
l=1

∑
xj∈X

∫
B(xj ,δ)

(|f | ∗ ω(ψl, δ)(x))
2dx

)1/2

≥ C1m|B(0, δ)|1/2‖f‖2 − C1
m

2
|B(0, δ)|1/2‖f‖2

=
mC1

2
|B(0, δ)|1/2‖f‖2(5.34)

for δ < δ0 and f ∈ V . This proves that Ψ is a stable Calderon convo-
lutor for V .

Appendix A. Closedness of a finitely generated
shift-invariant space

In this part, we give a characterization of the closedness of V 2(Φ) for
those generators Φ with bounded GΦ, which plays an important role in
the proof of Theorem 2.7. A similar result was established in [5] under
the assumption that Φ ∈ W 1.

Theorem A.1. Let Φ = (φ1, . . . , φr)
T satisfy GΦ ∈ (L∞)(r×r). Then

V 2(Φ) is closed in L2 if and only if there exists a positive constant
m > 0 such that

G2
Φ(ξ) ≥ mGΦ(ξ) a.e. ξ ∈ Rd.

Proof. First we prove the sufficiency. Let λ1(ξ), . . . , λr(ξ) be eigenval-
ues of GΦ(ξ), which are ordered so that λ1(ξ) ≥ λ2(ξ) ≥ · · · ≥ λr(ξ).
Then

λk(ξ)
2 ≥ mλk(ξ) a.e. ξ ∈ Rd, 1 ≤ k ≤ r,

by the assumption on GΦ. Note that λk(ξ), 1 ≤ k ≤ r, are measurable
and Zd-periodic since GΦ is. Then the sets

Ek := {ξ ∈ Rd : λk(ξ) ≥ m}
satisfies Ek = Ek + 2πZd and E1 ⊃ E2 ⊃ · · · ⊃ Er. Furthermore there

exist projections Q(ξ) so that Q(ξ)GΦ(ξ)Q(ξ)
T

= GΦ(ξ), vTGΦ(ξ)v̄ ≥
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m‖vTQ(ξ)‖2 for all v ∈ Cr, and Q(ξ)Φ̂(ξ) = Φ̂(ξ) for almost all ξ ∈ Rd.
Let fn ∈ V 2(Φ), n ≥ 0, be a Cauchy sequence in L2. Without loss of
generality, we assume that f0 = 0 and ‖fn+1−fn‖ ≤ 2−n, n ≥ 0. Write

f̂n+1(ξ)− f̂n(ξ) = Dn(ξ)
T Φ̂(ξ) = Dn(ξ)

TQ(ξ)Φ̂(ξ).

Note that

‖fn+1 − fn‖2
2 =

∫
[0,1]d

Dn(ξ)
TGΦ(ξ)Dn(ξ)dξ

≥ m

∫
[0,1]d

‖Dn(ξ)
TQ(ξ)‖2dξ,

which implies that

‖Dn(ξ)
TQ(ξ)‖L2([0,1]d) ≤ m−1/22−n.

Hence the function f defined by

f̂(ξ) =
∞∑
n=0

Dn(ξ)
TQ(ξ)Φ̂(ξ) =

∞∑
n=0

(f̂n+1(ξ)− f̂n(ξ))

belongs to V 2(Φ), and

‖fn − f‖2 = ‖f̂n − f̂‖2 ≤
∞∑
k=n

‖f̂k+1 − f̂k‖

→ 0 as n→∞.

This proves the closedness of the space V 2(Φ) in L2 topology.
Now we prove the necessity. Let λ1(ξ), . . . , λr(ξ) be the eigenvalues

of GΦ(ξ) which are ordered so that λ1(ξ) ≥ λ2(ξ) ≥ · · · ≥ λr(ξ).
Then there exists e1(ξ), . . . , er(ξ) so that e1(ξ), . . . , er(ξ) are mutually
orthogonal unit vectors and satisfy

ek(ξ)
TGΦ(ξ) = λk(ξ)ek(ξ)

T , 1 ≤ k ≤ r, ξ ∈ Rd.

Suppose, on the contrary, that there does not exist m > 0 so that
GΦ(ξ)2 ≥ mGΦ(ξ) for almost all ξ ∈ Rd. Then there exists an integer
k so that λk(ξ)

2 ≥ mλk(ξ) does not hold for almost all ξ ∈ Rd. Hence
the sets

Fn = {ξ ∈ Rd : 0 < λk(ξ) < 2−n}, n ≥ 1,

are measurable sets with |Fn ∩ [0, 1]d| > 0 for all n ≥ 0. Define g and
gl, l ≥ 1, by

ĝ(ξ) =
∞∑
n=1

εnχFn\Fn+1
(ξ)ek(ξ)

T Φ̂(ξ),
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and

ĝl(ξ) =
l∑

n=1

εnχFn\Fn+1
(ξ)ek(ξ)

T Φ̂(ξ),

where εn, n ≥ 1, are so chosen that εn = 0 if the Lebesgue measure
of (Fn\Fn+1) ∩ [0, 1]d is zero and εn = |(Fn\Fn+1) ∩ [0, 1]d|−1/2 when
the Lebesgue measure of (Fn\Fn+1)∩ [0, 1]d is nonzero. Then gl, l ≥ 1,
belong to V 2(Φ), and we have

‖gl − g‖2
2 =

∞∑
n=l+1

ε2n

∫
Fn\Fn+1

|ek(ξ)T Φ̂(ξ)|2dξ

=
∞∑

n=l+1

ε2n

∫
(Fn\Fn+1)∩[0,1]d

ek(ξ)
TGΦ(ξ)ek(ξ)dξ

=
∞∑

n=l+1

ε2n

∫
(Fn\Fn+1)∩[0,1]d

λk(ξ)dξ

≤
∞∑

n=l+1

2−nε2n|(Fn\Fn+1) ∩ [0, 1]d| ≤ 2−n → 0 as n→∞.

Therefore by the closedness of the shift-invariant space V 2(Φ),

ĝ(ξ) = Ĉ(ξ)T Φ̂(ξ)

for some Zd-periodic function Ĉ with Ĉ ∈ L2([0, 1]d). Therefore the
function h defined by

ĥ(ξ) =
[
Ĉ(ξ)T −

∞∑
n=1

εnχFn\Fn+1
(ξ)ek(ξ)

T
]
Φ̂(ξ)
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is a zero function. On the other hand, we note that

‖h‖2
2 ≥

∫
Fn\Fn+1

|(Ĉ(ξ)T − εnek(ξ)
T )Φ̂(ξ)|2dξ

=

∫
(Fn\Fn+1)∩[0,1)d

(Ĉ(ξ)T − εnek(ξ)
T )GΦ(ξ)(Ĉ(ξ)T − εnek(ξ)T )dξ

=
∑
l 6=k

∫
(Fn\Fn+1)∩[0,1)d

λl(ξ)|〈Ĉ(ξ), el(ξ)〉|2dξ

+

∫
(Fn\Fn+1)∩[0,1)d

λk(ξ)|〈Ĉ(ξ), ek(ξ)〉 − εn|2dξ

≥
∫

(Fn\Fn+1)∩[0,1]d
|〈Ĉ(ξ), ek(ξ)〉 − εn|2λk(ξ)dξ

≥ 2−n−1

∫
(Fn\Fn+1)∩[0,1]d

|〈Ĉ(ξ), ek(ξ)〉 − εn|2dξ.

Therefore we obtain

〈Ĉ(ξ), ek(ξ)〉 = εn a.e. ξ ∈ Fn\Fn+1.

Thus ∫
[0,1]d

|Ĉ(ξ)|2dξ ≥
∞∑
n=1

∫
(Fn\Fn+1)∩[0,1]d

|Ĉ(ξ)|2dξ

≥
∞∑
n=1

∫
(Fn\Fn+1)∩[0,1]d

|〈Ĉ(ξ), ek(ξ)〉|2dξ

=
∞∑
n=1

ε2n|(Fn\Fn+1) ∩ [0, 1]d|

≥
∑

|(Fn\Fn+1)∩[0,1]d|6=0

1 = +∞,

which is a contradiction. �

Appendix B. Norm equivalence in shift-invariant spaces

In this part, we consider the problem for which generator Φ does the
following norm equivalence hold:

(B.1) C−1‖f‖2 ≤ ‖f‖W 2 ≤ C‖f‖2 ∀ f ∈ V 2(Φ),

where C is a positive constant independent of f . The above norm
equivalence is interesting by itself, and also useful in the non-uniform
(average) sampling on a finitely generated shift-invariant space, and
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can be used to deduce results on average sampling from well-known
results on ideal sampling in [1, 3, 6, 27].

For functions Φ = (φ1, . . . , φr)
T satisfying GΦ ∈ (L∞)(r×r), we say

that Φ has stable shifts if {φi(· − j) : j ∈ Zd, 1 ≤ i ≤ r} is a Riesz
basis for V 2(Φ) (see [21, 26]).

Theorem B.1. Suppose that Φ = (φ1, . . . , φr)
T satisfies one of the

following three conditions:

(i) Φ belongs to W 1 and has stable shifts.
(ii) Φ is a compactly supported L∞-function.

(iii) Φ̂ is compactly supported and satisfies GΦ ∈ (L∞)(r×r).

Then the norm equivalence (B.1) holds for any function f ∈ V 2(Φ).

Remark B.2. For a shift-invariant space V with finite dimensional
restriction on [0, 1)d, it is shown in [4] that there always exist com-
pactly supported functions φ1, . . . , φr having stable shifts so that V ⊂
V 2(φ1, . . . , φr). Moreover, those functions φ1, . . . , φr are bounded when
all functions in the restriction of V to [0, 1)d are. Therefore as a con-
sequence of Theorem B.1, we have the following result.

Corollary B.3. Let V be a shift-invariant subspace of L2. If the re-
striction of V to [0, 1)d is a finite dimensional space of bounded func-
tions, then (B.1) holds for any f ∈ V .

Remark B.4. The stable shift condition on Φ in Theorem B.1 cannot
be dropped in general, as demonstrated in Example 4.7.

Proof of Theorem B.1. First we prove (B.1) under the assumption (i).
For any f =

∑r
i=1

∑
j∈Zd ci(j)φi(· − j) ∈ V 2(Φ) with {ci(j)} ∈ `2, 1 ≤

i ≤ r, we have

‖f‖2
W 2 ≤

∑
j∈Zd

sup
x∈[0,1)d

( r∑
i=1

∑
j′∈Zd

|ci(j′)||φi(x+ j − j′)|
)2

≤
∑
j∈Zd

sup
x∈[0,1)d

( r∑
i=1

∑
j′∈Zd

|ci(j′)|2|φi(x+ j − j′)|
)

×
( r∑
i=1

∑
j′∈Zd

|φi(x+ j − j′)|
)

≤
( r∑
i=1

‖φi‖W 1

)2
r∑
i=1

∑
j∈Zd

|ci(j)|2

≤ C
( r∑
i=1

‖φi‖W 1

)2

‖f‖2
2
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for some positive constant C independent of f , where we have used the
stable shifts to obtain the last inequality. This proves (B.1) under the
first assumption.

Next we prove (B.1) under the assumption (ii). Since Φ has compact
support and is bounded, the restriction of V 2(Φ) to [0, 1)d is a finite
dimensional space of bounded functions. Let h1, . . . , hK be a basis of
the restriction of V 2(Φ) to [0, 1)d. By the shift-invariance of the space
V 2(Φ), we have

V 2(Φ) ⊂ V 2(H),

where H = (h1, . . . , hK)T . Note that hi, 1 ≤ i ≤ K, are supported in
[0, 1)d and belong to L∞. Thus H ∈ W 1. Moreover, by the construc-
tion, H has stable shifts, therefore the assertion (B.1) follows from the
previous result.

Finally we prove (B.1) under the assumption (iii). By the assump-

tion, there is an integer K so that f̂ ⊂ [−K,K]d for any f ∈ V , which
implies that f =

∫
Rd f(· − y)h(y)dy for any Schwartz function h with

ĥ(ξ) = 1 for all ξ ∈ [−K,K]d. Therefore,

‖f‖W 2 ≤ ‖h‖1 ×
∑
j∈Zd

sup
x∈j+[0,1)d

∫
Rd

|f(y)|2|h(x− y)|dy

≤ ‖h‖1‖h(·)(1 + | · |)d+1‖∞

×
∑
j∈Zd

sup
x∈j+[0,1)d

∫
Rd

|f(y)|2(1 + |x− y)|)−d−1dy

≤ C‖f‖2

for some positive constant C independent of f ∈ V . This prove (B.1)
under the assumption (iii) and hence completes the proof. �
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