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Abstract. A finitely supported sequence a that sums to 2 defines a scaling operator

Taf =
∑

k∈Z a(k)f(2 ·−k) on functions f, a transition operator Sav =
∑

k∈Z a(k)(2 ·−k)

on sequences v, and a unique compactly supported scaling function φ that satisfies φ =

Taφ normalized with φ̂(0) = 1. It is shown that the eigenvalues of Ta on the space of

compactly supported square-integrable functions are a subset of the nonzero eigenvalues

of the transition operator Sa on the space of finitely supported sequences, and that the

two sets of eigenvalues are equal if and only if the corresponding scaling function φ is a

uniform B-spline.
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1. Introduction

A finitely supported real sequence a := {a(k)}k∈Z, normalized so that
∑

k∈Z a(k) = 2,

defines the scaling operator Ta on Lp(R), 1 ≤ p ≤ ∞, by

Taf :=
∑
k∈Z

a(k)f(2 · −k), f ∈ Lp(R), (1.1)

and the transition operator Sa on `p(Z) by

(Sav)(j) :=
∑
k∈Z

a(k)v(2j − k), v ∈ `p(Z). (1.2)

We shall deal mainly with the space L2
c ≡ L2

c(R) of compactly supported L2-functions,

and `0 ≡ `0(Z) the space of finitely supported sequences.

In the Fourier transform domain (1.1) becomes

T̂af(u) = H(u/2)f̂(u/2) (1.3)

where H(u) = 1
2

∑
k∈Z a(k)e−iku. The infinite product

∏∞
n=1 H(2−nu) converges locally

uniformly, and there exists a compactly supported distribution φ whose Fourier transform

is

φ̂(u) =
∞∏

n=1

H(2−nu), (1.4)
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which satisfies

φ̂(u) = H(u/2)φ̂(u/2)

or equivalently

Taφ = φ and φ̂(0) = 1. (1.5)

The compactly supported distribution φ is indeed the unique solution of (1.5) (see [4],

[5]). The equation (1.5) is known as a scaling equation or refinement equation. Its solution

is called a scaling function, and the sequence a is called its mask.

Scaling functions play an important role in multiscale representation, which has appli-

cations in scale-space analysis ([18]), geometric modelling ([3], [9]) and wavelet analysis

([4], [5]). Many properties of a scaling function are controlled by the spectrum of its

transition operator ([5, 6, 7, 11, 12, 14, 17]). For a nice account of properties of tran-

sition operators and their adjoints, the subdivision operators, see ([1, 2, 8, 19, 20]). In

this paper we study the relationship between the spectra of the scaling operator and the

transition operator defined by a sequence a. Let σe(T, X) denote the set of eigenvalues

of a continuous linear operator T on a Banach space X. The object is to show that the

inclusion σe(Ta, L
2
c) ∪ {0} ⊂ σe(Sa, `0) holds for any a ∈ `0, with equality if and only if

the mask a is a shift of a binomial sequence, i.e. â(u) = 2 · e−iLu
(

1+e−iu

2

)k

, and hence the

corresponding refinable function is a B-spline. In Section 2 we prove that the inclusion

σe(Ta, L
2
c)∪{0} ⊂ σe(Sa, `0) holds for all a ∈ `0, and in Section 3 it is shown that equality

holds if and only if the mask a is a shift of the binomial sequence. In fact in Theorem 3.2

we prove more and the results are more precise.

2. Eigenvalues of Scaling and Transition Operators

In this section we develop a relationship between the eigenvalues of the scaling operator

Ta on L2
c and the corresponding transition operator Sa on `0. We shall establish the

following theorem.

Theorem 2.1. Let a := {a(k)}k∈Z ∈ `0 satisfy
∑

k∈Z a(k) = 2. Then

σe(Ta, L
2
c) ∪ {0} ⊂ σe(Sa, `0). (2.1)

As a consequence of Theorem 2.1 we have the following result ([3, 6]).

Corollary 2.2. Let a := {a(k)}k∈Z ∈ `0 satisfy
∑

k∈Z a(k) = 2. Then

σe(Ta, Cc(R)) ∪ {0} ⊂ σe(Sa, `0), (2.2)

where Cc(R) is the space of all compactly supported continuous functions on R.
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We shall first establish two lemmas in the run up to the proof of Theorem 2.1.

Lemma 2.3. Let a := {a(k)}k∈Z ∈ `0 satisfy
∑

k∈Z a(k) = 2. Then σe(Ta, L
2
c) = ∅

or {1, 1/2, . . . , 1/2k0} for some nonnegative integer k0. In the later situation, the unique

compactly supported solution φ of the refinement equation Taφ = φ with φ̂(0) = 1 has

derivatives up to order k0 in L2(R) and if gl is an eigenfunction of the scaling operator

Ta with eigenvalue 2−l, l = 0, 1, . . . , k0, then gl = Cφ(l) for some nonzero constant C.

Proof. Let λ ∈ σe(Ta, L
2
c) and gλ be a nonzero function in L2

c that satisfies

Tagλ = λgλ. (2.3)

Then it suffices to prove that λ = 2−l and gλ = Cφ(l) for some nonnegative integer l.

Taking the Fourier transform at both sides of (2.3) leads to

H(u/2)ĝλ(u/2) = λĝλ(u), (2.4)

where H(u) := 1
2

∑
k∈Z a(k)e−iku. Note that ĝλ is analytic on R since gλ has compact

support. Therefore, by comparing the order of u on both sides of equation (2.4) at the

origin and using H(0) = 1, we conclude that λ = 2−l for some nonnegative integer l. Thus

Gλ(u) := ĝλ(u)u−l is still analytic and satisfies the equation Gλ(u) = H(u/2)Gλ(u/2).

This shows that Gλ(u) = Gλ(0)φ̂(u) since φ̂(u) =
∏∞

n=1 H(2−nu). Hence gλ = Cφ(l) for

some nonzero constant C. �

The next lemma is a known result on a sum rule of an L2- function, which we shall

state here for convenient reference (see for instance [10] and the references therein).

Lemma 2.4. For a = {a(k)}k∈Z ∈ `0 that satisfies
∑

k∈Z a(k) = 2, let φ be the unique

compactly supported distributional solution of the refinement equation φ = Taφ . If φ, . . . , φ(k0) ∈
L2(R), then the symbol H(u) := 1

2

∑
k∈Z a(k)e−iku satisfies

H(u) =

(
1 + e−iu

2

)k0+1

H̃(u)

for some trigonometric polynomial H̃(u).

Proof of Theorem 2.1

Proof. The assertion is trivial if σe(Ta, L
2
c) = ∅ since one can easily see that {0} ⊂

σe(Sa, `0). So we assume that σe(Ta, L
2
c) 6= ∅. By Lemma 2.3,

σe(Ta, L
2
c) = {1, . . . , 2−k0} (2.5)
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for some nonnegative integer k0, and φ, φ′, . . . , φ(k0) ∈ L2
c . Thus φ, φ′, . . . , φ(k0−1) are com-

pactly supported continuous functions. Taking derivatives on both sides of the equation

Taφ = φ, gives

φ(l) = 2lTaφ
(l), l = 0, 1, . . . , k0 − 1. (2.6)

Let S be the sampling operator on the integers, i.e. S : C(R) → `(Z) such that Sf :=

{f(k)}k∈Z ∀f ∈ C(R). Applying the sampling operator S and using the commutation

identity STa = SaS, lead to

SaSφ(l) = 2−lSφ(l), l = 0, 1, . . . , k0 − 1. (2.7)

We claim that Sφ(l) is not a zero sequence. Suppose on the contrary that Sφ(l) ≡ 0, i.e.

φ(l)(k) = 0 for all k ∈ Z. Using (2.6) inductively on n ∈ Z+, we have φ(l)(2−nk) = 0

for all k ∈ Z, which together with the continuity of φ(l) leads to φ(l) ≡ 0. Hence φ is a

polynomial, which contradicts the fact that φ is a nonzero compactly supported function.

This proves our claim that Sφ(l) is not a zero sequence. Hence 2−l, l = 0, 1, . . . , k0−1, are

eigenvalues of the operator Sa on `0 by (2.7) and the above claim. Therefore it remains

to prove that 2−k0 ∈ σe(Sa, `0). Recall that φ, φ′, . . . , φ(k0) ∈ L2
c by Lemma 2.3. Then

H(u) =

(
1 + e−iu

2

)k0+1

H̃(u), (2.8)

for some trigonometric polynomial H̃(u) by Lemma 2.4. Setting H1(u) =
(

1+e−iu

2

)
H̃(u)

and writing H1(u) =
∑

k∈Z a1(k)e−iku, we have

∑
k∈Z

a1(2k) =
∑
k∈Z

a1(2k + 1) = 1. (2.9)

Let N1 be so chosen that a1(k) = 0 for all integer k with |k| > N1. Then by (2.9), the

sum of the entries of every column of the matrix B := (a1(2i− j))N1

i,j=−N1
is 1. Thus 1

is an eigenvalue of B. Hence there exists a nonzero vector v1 = (v1(−N1), . . . , v1(N1))
T

such that Bv1 = v1. Considered as a compactly supported sequence, v1 has Fourier series

v̂1(u) =
∑N1

k=−N1
v1(k)e−iku. Then

v̂1(2u) = (Bv1)
∧(2u) =

N1∑
j,k=−N1

a1(2j − k)v1(k)e−2iju

=
∑
j,k∈Z

a1(2j − k)v1(k)e−2iju = (Sa1v1)
∧(2u). (2.10)
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By (2.8) and (2.10), the nonzero finitely supported sequence w ∈ `0 defined by ŵ(u) =

(1− e−iu)k0 v̂1(u) satisfies

(Saw)∧(u) = H(u)ŵ(u/2) + H(u/2 + π)ŵ(u/2 + π)

= 2−k0(1− e−iu)k0 (H1(u/2)v̂1(u/2) + H1(u/2 + π)v̂1(u/2 + π))

= 2−k0(1− e−iu)k0(Sa1v1)
∧(u)

= 2−k0(1− e−iu)k0 v̂1(u) = 2−k0ŵ(u). (2.11)

This proves that 2−k0 ∈ σe(Sa, `0), and hence completes the proof of Theorem 2.1. �

3. Scaling Operators and B-splines

For a sequence a := {a(k)}k∈Z ∈ `0 let Ia ⊂ Z be the smallest interval containing the

support of a. For an interval I ⊂ Z let `(I) := {a ∈ `0 : supp(a) ⊂ I}. One may verify that

`(Ia) is an invariant subspace of Sa on `0, i.e. Sav ∈ `(Ia) for all v ∈ `(Ia). For an integer

N ≥ 1, let aN = {aN(k)}k∈Z be the binomial sequence of order N, i.e. aN(k) = 1
2N−1

(
N
k

)
for k = 0, 1, . . . , N, and 0 otherwise. The corresponding scaling operator Ta

N
and the

transition operator Sa
N

restricted to compactly supported L2-functions and sequences

supported in Ia
N

respectively have the same eigenvalues as described in the following

theorem.

Theorem 3.1. If aN is the binomial sequence of order N , then

σe(Ta
N
, L2

c) = {2−k : k = 0, 1 . . . , N − 1}, (3.1)

σe(Sa
N
, `(Ia

N
)) = {2−k : k = 0, 1 . . . , N − 1}, (3.2)

and

σe(Sa
N
, `0) = {0} ∪ {2−k : k = 0, 1 . . . , N − 1}. (3.3)

For a sequence a := {a(k)}k∈Z ∈ `0 that satisfies
∑

k∈Z a(k) = 2, Theorem 2.1 says

that σe(Ta, L
2
c) ∪ {0} ⊂ σe(Sa, `0). On the other hand, Theorem 3.1 shows that equality

is attained for the binomial sequences aN for any N ∈ N. A natural question is whether

equality holds for any other sequences a ∈ `0 besides the binomial sequences. The answer

is no and the next result shows why not.

Theorem 3.2. Let a := {a(k)}k∈Z ∈ `0 satisfy
∑

k∈Z a(k) = 2. Then the following are

equivalent.
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(a) The mask a is a shifted binomial sequence, i.e.

1

2

∑
k∈Z

a(k)e−iku = e−iLu
(1 + e−iu

2

)N

= 2−Ne−iLu

N∑
k=0

(
N

k

)
e−iku ,

where L = max(Ia) and N = |Ia|.
(b) σe(Sa, `(Ia)) = σe(Ta, L

2
c).

(c) σe(Sa, `0) = σe(Ta, L
2
c) ∪ {0} and 0 /∈ σe(Sa, `(Ia)).

Refinement equations whose masks are shifted binomial sequences arise in many situ-

ations. The corresponding refinable functions are B-splines, which have many desirable

properties ideal for signal processing [16] and geometric modelling [3]. Here the N -th or-

der B-spline BN is defined inductively by BN+1 := BN ∗B1 with B1 := χ[0,1]. Theorem 3.2

characterizes B-splines via the connection between the eigenvalues of the corresponding

scaling operators and transition operators on spaces of compactly supported L2-functions

and finitely supported sequences respectively. See ([13, 15]) and references therein for

more characterizations of B-splines.

To prove Theorem 3.1, we need a lemma.

Lemma 3.3. Let a := {a(k)}k∈Z ∈ `0 satisfy
∑

k∈Z a(k) = 2. Then

σe(Sa, `(Ia)) ∪ {0} = σe(Sa, `(Ia ∪ (Ia + 1))) = σe(Sa, `0). (3.4)

Proof. From the matrix representation of Sa, it follows that

0 ∈ σe(Sa, `(Ia ∪ (Ia + 1))). (3.5)

Because of (3.5), the following inclusions hold,

σe(Sa, `(Ia)) ∪ {0} ⊂ σe(Sa, `(Ia ∪ (Ia + 1))) ⊂ σe(Sa, `0).

Then we need only to show that σe(Sa, `0) ⊂ σe(Sa, `(Ia))∪{0}. Note that I(Sav) = Ia+Iv

2
∩Z

for any v ∈ `0. Then if λ ∈ σe(Sa, `0)\{0} and 0 6= vλ ∈ `0 satisfies Savλ = λvλ, then

Ivλ
⊂ Ia, which means that vλ ∈ `(Ia) and λ ∈ σe(Sa, `(Ia)). �

Proof of Theorem 3.1

Proof. We first prove (3.1). Since the B-spline BN is a piecewise polynomial of degree

N − 1 of compact support and BN ∈ CN−2 for N ≥ 1, it follows that B
(n)
N ∈ L2

c for

any n = 0, 1, . . . , N − 1, and B
(N)
N 6∈ L2

c . Therefore, the first assertion (3.1) follows from

Lemma 2.3.
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Next we prove (3.2). For the binomial sequence a
N
, we have Ia

N
= [0, N ] ∩ Z and

âN(u) = 2−N+1(1 + e−iu)N . One may verify that the functions Fk, 1 ≤ k ∈ Z, defined by

F1(u) := 1 and

Fk(u) :=
∑
j∈Z

(
e−i(u+2jπ) − 1

−i(u + 2jπ)

)k

=
∑
j∈Z

Bk(j)e
−iju,

satisfy

Fk(u) =

(
1 + e−iu/2

2

)k

Fk

(u

2

)
+

(
1 + e−i(u/2+π)

2

)k

Fk

(u

2
+ π

)
, k ≥ 1.

Therefore by the proof of (2.11), for any k = 0, . . . , N − 1, the sequence vk with v̂k(u) =

(1 − e−iu)kFN−k(u), k = 0, 1, . . . , N − 1, belong to `(Ia
N

) and are the eigensequences of

the transition operator Sa
N

associated with the eigenvalue 2−k. This yields

{2−k : k = 0, 1, . . . , N − 1} ⊂ σe(Sa
N
, `(Ia

N
)). (3.6)

One may also verify that the sequences v, whose Fourier transforms are (1 − e−iu)N−1

and (1 − e−iu)N−1e−iu, belong to `(Ia
N

) and are linearly independent eigenvector of the

transition operator Sa
N

associated with the eigenvalue 2−N+1. By (3.6) and the above

fact, there are N distinct eigenvalues for the operator Sa
N

on `(Ia
N

) and the eigenspace

associated with the eigenvalue 2−N+1 is at least two. Recall that the dimension of the

space `(Ia
N

) is N + 1. Then

σe(Sa
N
, `(Ia

N
)) ⊂ {2−k : k = 0, 1, . . . , N − 1}. (3.7)

Hence (3.2) follows from (3.6) and (3.7).

Finally the assertion (3.3) follows easily from (3.2) and Lemma 3.3. �

Proof of Theorem 3.2

Proof. For any l ∈ Z, τl : `0 → `0 denotes the shift operator τla = a(·+l). We remark that

σe(Sa, `0) = σe(Sτla, `0), σe(Sa, `(Ia)) = σe(Sτla, `(Iτla)), and σe(Ta, L
2
c) = σe(Tτla, L

2
c). So

we can assume without loss of generality that Ia = {0, . . . , N} for some positive integer

N .

That (a) implies (b) is the result of Theorem 3.1, while the equivalence between (c) and

(b) follows from (2.2) and (3.4) and the fact that 0 6∈ σe(Ta, L
2
c). Now we show that (b)

implies (a). By Lemma 2.3, σe(Ta, L
2
c) = ∅ or {1, 1/2, . . . , 1/2k0} for some non-negative

integer k0. Since a(min(Ia)), a(max(Ia)) ∈ σe(Sa, `(Ia)) by the matrix representation of

Sa, it follows that

σe(Sa, `(Ia)) = {1, 1/2, . . . , 1/2k0}. (3.8)
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Since as an operator on `(Ia), Sa is represented by the matrix (a(2i − j))N
i,j=0, its eigen-

polynomial is of the form (−1)N+1λN+1 + (−1)Ntrace(Sa)λ
N + g(λ), where trace(Sa) =∑N

j=0 a(j) = 2 and g is a polynomial of degree less than N. Thus the sum of all the

eigenvalues of Sa, counting multiplicity is equal to trace(Sa) = 2. Therefore, assum-

ing that 1/2k is an eigenvalue of Sa on `(Ia) with multiplicity lk ≥ 1, we obtain the

equations
∑k0

k=0 lk/2
k = 2 and

∑k0

k=0 lk = N + 1. The first equation yields lk = 1 for

k = 0, 1, . . . , k0 − 1, lk0 = 2. The second equation then implies

k0 = N − 1. (3.9)

By (3.8), (3.9) and the assumption (b), we obtain σe(Ta, L
2
c) = {1, 1/2, · · · , 1/2N−1}.

This together with Lemmas 2.3 and 2.4 and the fact Ia = {0, . . . , N} prove that H(u) :=

1
2

∑
k∈Z a(k)e−iku =

(
1+e−iu

2

)N

, and hence the assertion (a). �
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