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Abstract

Let `p, 1 ≤ p ≤ ∞, be the space of all p-summable sequences and Ca be the con-
volution operator associated with a summable sequence a. It is known that the
`p- stability of the convolution operator Ca for different 1 ≤ p ≤ ∞ are equiva-
lent to each other, i.e., if Ca has `p-stability for some 1 ≤ p ≤ ∞ then Ca has
`q-stability for all 1 ≤ q ≤ ∞. In the study of spline approximation, wavelet anal-
ysis, time-frequency analysis, and sampling, there are many localized operators of
non-convolution type whose stability is one of the basic assumptions. In this pa-
per, we consider the stability of those localized operators including infinite matrices
in the Sjöstrand class, synthesis operators with generating functions enveloped by
shifts of a function in the Wiener amalgam space, and integral operators with ker-
nels having certain regularity and decay at infinity. We show that the `p- stability
(or Lp-stability) of those three classes of localized operators are equivalent to each
other, and we also prove that the left inverse of those localized operators are well
localized.

Key words: Wiener’s lemma, stability, infinite matrix with off-diagonal decay,
synthesis operator, localized integral operator, Banach algebra, Gabor system,
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1 Introduction

Given a summable sequence a = (a(j))j∈Z, the convolution operator Ca asso-
ciated with the sequence a is defined by

Ca : `p 3 (b(j))j∈Z 7−→

∑
k∈Z

a(j − k)b(k)


j∈Z

∈ `p (1.1)

where `p is the set of all p-summable sequences with standard norm ‖·‖`p . The
convolution operator Ca is a bounded operator on `p for any 1 ≤ p ≤ ∞ and
the corresponding operator norm is bounded by the `1 norm of the sequence
a.

An operator T on `p is said to have `p-stability if there exists a positive constant
C such that

C−1‖c‖`p ≤ ‖Tc‖`p ≤ C‖c‖`p for all c ∈ `p. (1.2)

For the convolution operator Ca associated with a summable sequence a =
(a(j))j∈Z, it is known that Ca has `p-stability for some 1 ≤ p ≤ ∞ if and only
if

â(ξ) 6= 0 for all ξ ∈ R (1.3)

where â(ξ) :=
∑
j∈Z a(j)e−ijξ (c.f. [3,43]). Therefore the `p-stability of the

convolution operator associated with a summable sequence are equivalent to
each other for different 1 ≤ p ≤ ∞.

Theorem 1.1 Let a be a summable sequence, and Ca be the convolution oper-
ator associated with the sequence a. If Ca has `p-stability for some 1 ≤ p ≤ ∞,
then it has `q-stability for all 1 ≤ q ≤ ∞.

An equivalent formulation of the above result is that the spectrum σp(Ca) of
the convolution operator Ca associated with a summable sequence a as an
operator on `p is independent of 1 ≤ p ≤ ∞,

σp(Ca) = σq(Ca) for all 1 ≤ p, q ≤ ∞ (1.4)

see [9,41,52] and references therein for the discussion on spectrum of convolu-
tion operators.

Inspired by the commutator technique developed in [56] and norm equiva-
lence technique for a finite-dimensional space in [2], we will give a new proof
of Theorem 1.1 in this paper without using the characterization (1.3). More
importantly we can extend the equivalence for `p-stability in Theorem 1.1 to
various localized operators of non-convolution type, that arise in the study
of spline approximation ([26,28]), wavelet and affine frames ([20,42]), Gabor
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frame and non-uniform sampling ([6,35,36,61]), and pseudo-differential oper-
ators ([13,14,29,34,38,40,56,57,67–69]).

Denote by A the Schur class of infinite matrices A = (a(j, j′))j,j′∈Z such that

‖A‖A := max

sup
j∈Z

∑
j′∈Z
|a(j, j′)|, sup

j′∈Z

∑
j∈Z
|a(j, j′)|

 <∞ (1.5)

([36,62]). An infinite matrix A = (a(j, j′))j,j′∈Z in the Schur class defines a
bounded operator on `p, 1 ≤ p ≤ ∞, as follows:

A : `p 3 (c(j))j∈Z 7−→

∑
j′∈Z

a(j, j′)c(j′)


j∈Z

∈ `p. (1.6)

It is known that an infinite matrix A is a bounded operator on `p for any
1 ≤ p ≤ ∞ if and only if A is in the Schur class. In Section 2, we consider
the equivalence of `p-stability for infinite matrices in the Sjöstrand class (see
Section 2 for its definition), a subset of the Schur class A, for different 1 ≤
p ≤ ∞.

Theorem 1.2 Let A = (a(j, j′))j,j′∈Z be an infinite matrix with the property
that

∑
k∈Z supj∈Z |a(j, j + k)| <∞. If A has `p-stability for some 1 ≤ p ≤ ∞,

then A has `q-stability for all 1 ≤ q ≤ ∞.

The result in Theorem 1.2 for p = 2 follows from the Wiener’s lemma in [56].
The equivalence of `q-stability of an infinite matrix A = (a(j, j′))j,j′∈Z with∑
k∈Z supj∈Z |a(j, j + k)|(1 + |k|)s <∞ is established in [2] for s > 4 and later

improved in [66] for s > 0.

We observe that a convolution operator Ca associated with a summable se-
quence a = (a(j))j∈Z is the operator associated with the infinite matrix
A = (a(j − j′))j,j′∈Z in the Sjöstrand class. Therefore Theorem 1.1 follows
from Theorem 1.2.

We conjecture that the equivalence of `p-stability for different p ∈ [1,∞] holds
for any infinite matrix in the Schur class A. Some progress on the above
conjecture is made in [66] under additional assumption that the infinite matrix
has rows supported in balls of bounded radii.

For a continuous function f on R, we define the modulus of continuity ωδ(f)
by

ωδ(f)(x) = sup
|y|≤δ
|f(x+ y)− f(x)|. (1.7)
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The modulus of continuity is a delicate tool in mathematical analysis to mea-
sure the regularity of a function ([27,70]).

For 1 ≤ p ≤ ∞, let Lp be the space of all p-integrable functions on Rd with
standard norm ‖ · ‖p,

Lp =

φ : ‖φ‖Lp :=

∥∥∥∥∥∥
∑
j∈Z
|φ(· − j)|

∥∥∥∥∥∥
Lp([0,1])

<∞


consists of functions on R that are “globally” in `1 and “locally” in Lp ([43]),
and let

W1 =

φ : ‖φ‖W1 :=
∑
k∈Z

sup
x∈[0,1)

|φ(k + x)| <∞


be the Wiener amalgam space that consists of functions that are “locally” in
L∞ and “globally” in `1 ([1]). We have the following inclusions for the above
three classes of function spaces:

W1 ⊂ L∞ ⊂ Lp ⊂ L1 (1.8)

and
Lp ⊂ Lp (1.9)

where 1 ≤ p ≤ ∞ ([1,43]).

For a family of functions Φ = {φj}j∈Z enveloped by a function h ∈ Lp, i.e.,

|φj(x)| ≤ h(x− j) for all j ∈ Z and x ∈ R,

the synthesis operator SΦ associated with Φ,

SΦ : `p 3 (c(j))j∈Z 7−→
∑
j∈Z

c(j)φj ∈ Lp, (1.10)

is a bounded operator from `p to Lp ([43,63]). For the family of functions Φ
generated by shifts of finitely many functions, that is, Φ = {φn(·−j)}1≤n≤N,j∈Z
for some φn ∈ L∞, 1 ≤ n ≤ N , it is proved in [43] that if the synthesis operator
SΦ in (1.10) has `p-stability for some 1 ≤ p ≤ ∞, i.e., there exists a positive
constant C such that

C−1‖c‖`p ≤ ‖SΦc‖p ≤ C‖c‖`p for all c ∈ `p, (1.11)

then it has `q-stability for all 1 ≤ q ≤ ∞. In Section 3, we establish the
equivalence of the stability of the synthesis operator SΦ for 1 ≤ p ≤ ∞ under
some regularity and decay assumption on the generating family Φ of functions.

Theorem 1.3 Let Φ = {φj}j∈Z be a family of functions with the property that

|φj(x)| ≤ h(x− j) for all x ∈ R, j ∈ Z, (1.12)
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and

|ωδ(φj)(x)| ≤ ω(δ)h(x− j) for all x ∈ R, j ∈ Z and δ ∈ (0, 1), (1.13)

where h is a continuous function in the Wiener amalgam space W1 and ω(δ)
is a positive increasing function on (0, 1) with limδ→0 ω(δ) = 0, Let SΦ be the
synthesis operator associated with the family Φ of functions. If the synthesis
operator SΦ has `p-stability for some 1 ≤ p ≤ ∞, then it has `q-stability for
all 1 ≤ q ≤ ∞.

For p = 2, the conclusion in Theorem 1.3 follows from the Wiener’s lemma
in [63] under the decay assumption (1.12) on the generating family Φ, but
without the regularity assumption (1.13) on the generating family Φ as in
Theorem 1.3.

In Section 4, we consider the Lp-stability of localized integral operators for
different p ([46,64]). Here a bounded operator S on Lp is said to have Lp-
stability if there exists a positive constant C such that

C−1‖f‖p ≤ ‖Sf‖p ≤ C‖f‖p for all f ∈ Lp. (1.14)

Theorem 1.4 Let I be the identity operator on Lp, and T be a localized in-
tegral operator

Tf(x) :=
∫

R
KT (x, y)f(y)dy, f ∈ Lp

such that its integral kernel KT satisfies

|KT (x, y)| ≤ h(x− y) for all x, y ∈ R, (1.15)

and

|ωδ(KT )(x, y)| ≤ δαh(x− y) for all x, y ∈ R, and δ ∈ (0, 1) (1.16)

where α ∈ (0, 1) and h is a continuous function in the Wiener amalgam space
W1. If I +T has Lp-stability for some 1 ≤ p ≤ ∞, then I +T has Lq-stability
for all 1 ≤ q ≤ ∞.

For p = 2, the conclusion in Theorem 1.4 follows from the Wiener’s lemma in
[64].

In this paper, we will use the following notation: Denote by χE the charac-
teristic function on the set E. For a discrete set Λ and 1 ≤ p ≤ ∞, denote
by `p(Λ) the set of all p-summable sequence c := (c(λ))λ∈Λ with standard
norm ‖ · ‖`p(Λ), and by (`p(Λ))N the N copies of `p(Λ) with norm ‖ · ‖(`p(Λ))N .
Let B(`p(Λ)), 1 ≤ p ≤ ∞, be the Banach algebra containing all bounded
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operators on `p(Λ) embedded with standard operator norm. For a measur-
able set E, let Lp(E) be the space of all p-integrable functions on E with
norm ‖ · ‖Lp(E), while if E = Rd, we use Lp instead of Lp(Rd) and ‖ · ‖p in-
stead of ‖ · ‖Lp(Rd) for brevity. Let B(Lp) be the Banach algebra containing
all bounded operators on Lp(Rd) embedded with standard operator norm. For
x = (x1, . . . , xd) ∈ Rd, define ‖x‖∞ = max(|x1|, . . . , |xd|). Denote by I the
identity operator on Lp, 1 ≤ p ≤ ∞, or the identity matrix of appropriate size.

In this paper, the uppercase letter C denotes an absolute constant that may
be different at different occurrences, except stated explicitly.

2 `p-stability for localized infinite matrices

In this section, we consider the `p-stability for infinite matrices of the form(
a(λ, λ′)

)
λ∈Λ,λ′∈Λ′

having certain off-diagonal decay. That kind of extreme non-

commutative matrices arises in the study of spline approximation ([26,28]),
wavelet and affine wavelets ([20,42]), Gabor frame ([6,35,36]), non-uniform
sampling ([61]), and pseudo-differential operators ([13,14,29,34,38,40,56,57,67–
69]), and the `p-stability for those matrices is one of few basic assumptions in
these studies. The main results of this section are Theorem 2.1 (a slight gen-
eralization of Theorem 1.2), Corollary 2.3 (an equality for spectrum of slanted
matrices on `p for different p) and Corollary 2.4 (a Wiener’s lemma for the
Sjöstrand class of infinite matrices).

To state our result on stability for localized infinite matrices, we recall three
concepts. We say that a discrete subset Λ of Rd is relatively-separated if

R(Λ) = sup
x∈Rd

∑
λ∈Λ

χλ+[0,1)d(x) <∞. (2.1)

For relatively-separated subsets Λ,Λ′ of Rd, we let C(Λ,Λ′), or C for short, be
the Sjöstrand class of infinite matrices A = (a(λ, λ′))λ∈Λ,λ′∈Λ′ such that

‖A‖C :=
∑
k∈Zd

sup
λ∈Λ,λ′∈Λ′

|a(λ, λ′)|χk+[0,1)d(λ− λ′) <∞ (2.2)

([56,62]). As usual, an infinite matrix A = (a(λ, λ′))λ∈Λ,λ′∈Λ′ in the Sjöstrand
class C(Λ,Λ′) defines a bounded operator from `p(Λ′) to `p(Λ),

A : `p(Λ′) 3 (c(λ′))λ′∈Λ′ := c 7−→ Ac :=

 ∑
λ′∈Λ′

a(λ, λ′)c(λ′)


λ∈Λ

∈ `p(Λ),

(2.3)
where 1 ≤ p ≤ ∞ ([62]). For 1 ≤ p ≤ ∞, we say that an infinite matrix
A := (a(λ, λ′))λ∈Λ,λ′∈Λ′ has `p-stability if there exists a positive constant C
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such that

C−1‖c‖`p(Λ′) ≤ ‖Ac‖`p(Λ) ≤ C‖c‖`p(Λ′) for all c ∈ `p(Λ′). (2.4)

Theorem 2.1 Let Λ,Λ′ be two relatively-separated subsets of Rd, and A =
(a(λ, λ′))λ∈Λ,λ′∈Λ′ be an infinite matrix in the Sjöstrand class C(Λ,Λ′). If A has
`p-stability for some 1 ≤ p ≤ ∞, then A has `q-stability for all 1 ≤ q ≤ ∞.

For Λ′ = Λ, the above theorem can be reformulated as follows:

Corollary 2.2 Let Λ be a relatively-separated subset of Rd. Then the spectrum
σp(A) of an infinite matrix A in the Sjöstrand class C(Λ,Λ) as an operator on
`p(Λ) is independent of 1 ≤ p ≤ ∞, i.e.,

σp(A) = σq(A) 1 ≤ p, q ≤ ∞. (2.5)

A function w on Rd is said to be a weight if w(x) ≥ 1 for all x ∈ Rd and

sup|y|≤1 supx∈Rd
w(x+y)
w(x)

< ∞. For a weight w on Rd and a positive number α,

denote by Σw
α the family of all α-slant infinite matrices A = (a(j, j′))j,j′∈Zd

with
‖A‖Σwα =

∑
k∈Zd

w(k) sup
j,j′∈Zd

|a(j, j′)|χk+[0,1)d(j
′ − αj) <∞.

The slanted matrices appear in wavelet theory, signal processing and sampling
theory [2,11,16,45], and also occur in the K-theory of operator algebras [72].
Note that

Σw
α ⊂ Σw0

α = C(αZd,Zd) (2.6)

for any weight w where w0 ≡ 1 is the trivial weight. Then we obtain the
following result from Theorem 2.1.

Corollary 2.3 Let α > 0 and w0 ≡ 1. If A ∈ Σw0
α has `p-stability for some

1 ≤ p ≤ ∞, then A has `q-stability for all 1 ≤ q ≤ ∞.

It follows from (2.6) and Corollary 2.3 that for any weight w, the `p-stability
of any infinite matrix A ∈ Σw

α are equivalent for different 1 ≤ p ≤ ∞. This
result for the special weights w(x) = (1 + |x|)s, with s > (d + 1)2 and with
s > 0, is established in [2] and [66] respectively.

Given a Banach algebra B, we say that a subalgebra A of B is inverse-closed
if the inverse T−1 of the operator T ∈ A belongs to B implies that it belongs
to A ([23,30,50,53,65]). The inverse-closed subalgebra was first studied for
periodic functions with absolutely convergent Fourier series, which states that
if a periodic function f does not vanish on the real line and has absolutely
convergent Fourier series, i.e., f(x) =

∑
j∈Z a(j)e−ijx and

∑
j∈Z |a(j)| < ∞,
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then f−1 has absolutely convergent Fourier series too ([71]). An equivalent
formulation of the above Wiener’s lemma involving matrix algebras is that
the commutative Banach algebra

W̃ :=

(a(j − j′)
)
j,j′∈Z

,
∑
j∈Z
|a(j)| <∞

 (2.7)

is an inverse-closed Banach subalgebra of B2(`2(Z)) ([71]). The classical Wiener’s
lemma and its various generalizations (see, e.g., [6–8,10,23,28,35,36,39,42,53,56])
are important and have numerous applications in numerical analysis, wavelet
theory, frame theory, and sampling theory. For example, the classical Wiener’s
lemma and its weighted variation ([39]) were used to establish the decay
property at infinity for dual generators of a shift-invariant space ([1,43]); the
Wiener’s lemma for matrices associated with twisted convolution was used in
the study the decay properties of the dual Gabor frame for L2 ([6,35,36]); the
Jaffard’s result ([42]) for infinite matrices with polynomial decay was used in
numerical analysis ([17,58,59]), wavelet analysis ([42]), time-frequency analy-
sis ([31–33]) and sampling ([4,24,33,63]); and the Sjöstrand’s result ([56]) for
infinite matrices was used in the study of pseudo-differential operators, Gabor
frames and sampling ([6,34,56,61]). Therefore there are lots of papers devoted
to the Wiener’s lemma for infinite matrices with various off-diagonal decay
conditions (see [5–7,10,12,28,36,39,42,56,60,62] and also [37] for a short his-
torical review). The Wiener’s lemma for the Sjöstrand class C(Λ,Λ) of infinite
matrices (a(λ, λ′))λ,λ′∈Λ says that C(Λ,Λ) is an inverse-closed subalgebra of
B(`2(Λ)) where Λ is a relatively-separated subset of Rd ([56]). This together
with the equivalence of `p-stability for different p in Theorem 2.1 proves that
C(Λ,Λ) is an inverse-closed subalgebra of B(`p(Λ)) for any 1 ≤ p ≤ ∞.

Corollary 2.4 Let 1 ≤ p ≤ ∞ and Λ be a relatively-separated subset of Rd.
Then the Sjöstrand class C(Λ,Λ) is an inverse-closed subalgebra of B(`p(Λ)),
i.e., if A ∈ C(Λ,Λ) has bounded inverse on B(`p(Λ)), then A−1 ∈ C(Λ,Λ).

Before we start the proof of Theorem 2.1, let us consider necessary conditions
on the relatively-separated subsets Λ and Λ′ such that there exists a matrix
A = (a(λ, λ′))λ∈Λ,λ′∈Λ′ in the Sjöstrand class C(Λ,Λ′) which has `p-stability for
some 1 ≤ p ≤ ∞. Similar conclusion is obtained in [61] for sampling signals
with finite rate of innovation, and in [51] for slanted matrices.

Proposition 2.5 Let Λ,Λ′ be relatively-separated subsets of Rd. If there exists
a matrix A = (a(λ, λ′))λ∈Λ,λ′∈Λ′ in the Sjöstrand class C(Λ,Λ′) which has `p-
stability for some 1 ≤ p ≤ ∞, then there exists a positive number R0 such that
for any bounded set K the cardinality of the set Λ ∩ B(K,R0) is larger than
or equal to the cardinality of the set Λ′ ∩ K, where B(K,R) is the set of all
points in Rd with distance to K less than R.
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PROOF. We show the above result on relatively-separated sets Λ and Λ′ by
similar argument to the proof of the necessary condition on the sampling set
of a stable sampling and reconstruction process in [61]. Let K be a compact
subset of Rd and `p(Λ′ ∩K) be the space of all sequences in `p(Λ′) supported
on Λ′ ∩K. For a sequence c ∈ `p(Λ′ ∩K), it follows from the property of the
matrix A in the Sjöstrand class that the `p norm of the sequence Ac outside of
B(K,R)∩Λ is less than ε(R)‖c‖`p(Λ′), where ε(R) (independent of the compact
set K) tends to zero as R tends to infinity. Thus there exists a positive constant
R0 such that the `p norm of the sequence Ac inside B(K,R0)∩Λ is equivalent
to the `p norm of the sequence c. This implies that the submatrix obtained
by selecting the columns in Λ∩B(K,R0) and rows in Λ′ ∩K of the matrix A
has full rank, which proves the desired conclusion on the relatively-separated
subsets Λ and Λ′. 2

The proof of Theorem 2.1 is inspired by the commutator technique developed
in [56] and norm equivalence technique for a finite-dimensional space in [2].
To prove Theorem 2.1, we need several lemmas. First we recall a known result
about the boundedness of infinite matrices in the Sjöstrand class.

Lemma 2.6 ([63]) Let 1 ≤ p ≤ ∞, Λ and Λ′ be two relatively-separated
subsets of Rd, and A = (a(λ, λ′))λ∈Λ,λ′∈Λ′ be an infinite matrix in the Sjöstrand
class C(Λ,Λ′). Then the infinite matrix A is a bounded operator from `p(Λ′)
to `p(Λ). Moreover there exists an absolute constant C (that depends on d and
p only) such that

‖Ac‖`p(Λ) ≤ CR(Λ)1/pR(Λ′)1−1/p‖A‖C‖c‖`p(Λ′) for all c ∈ `p(Λ′). (2.8)

Define the cut-off function

ψ(x) = min(max(2− ‖x‖∞, 0), 1) =


1 if ‖x‖∞ ≤ 1,

2− ‖x‖∞ if 1 < ‖x‖∞ < 2,

0 if ‖x‖∞ ≥ 2.

(2.9)

Then  0 ≤ ψ(x) ≤ 1 for all x ∈ Rd, and

|ψ(x)− ψ(y)| ≤ ‖x− y‖∞ for all x, y ∈ Rd.
(2.10)

For n ∈ Zd and N ∈ N, define the multiplication operator ΨN
n : `p(Λ)→ `p(Λ)

by

ΨN
n c =

(
ψ
(λ− n

N

)
c(λ)

)
λ∈Λ

for c = (c(λ))λ∈Λ ∈ `p(Λ) (2.11)
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where Λ is a relatively-separated subset of Rd. The multiplication operator
ψNn can also be thought as a diagonal matrix diag(ψ((λ− n)/N))λ∈Λ.

For an infinite matrix A = (a(λ, λ′))λ∈Λ,λ′∈Λ′ and any s ≥ 0, define the trun-
cation matrix

As = (as(λ, λ
′))λ∈Λ,λ′∈Λ′ (2.12)

where as(λ, λ
′) = a(λ, λ′) if ‖λ−λ′‖∞ < s and as(λ, λ

′) = 0 otherwise. For the
truncation matrices As, s ≥ 0, of an infinite matrix A in the Sjöstrand class
C(Λ,Λ′), we have

‖A− As‖C is a decreasing function with lim
s→+∞

‖A− As‖C = 0. (2.13)

Lemma 2.7 Let 1 ≤ p, q ≤ ∞, 1 ≤ N ∈ N, Λ and Λ′ be two relatively-
separated subsets of Rd, and A = (a(λ, λ′))λ∈Λ,λ′∈Λ′ be an infinite matrix in
the Sjöstrand class C(Λ,Λ′). Then there exists an absolute constant C (that
depends on d, p, q only) such that

∥∥∥∥(‖(ANΨN
n −ΨN

n AN)c‖`p(Λ)

)
n∈NZd

∥∥∥∥
`q(NZd)

≤CR(Λ)1/pR(Λ′)1−1/p min
0≤s≤N

(
‖A− As‖C +

s

N
‖A‖C

)
×
∥∥∥∥(‖ΨN

n c‖`p(Λ′)

)
n∈NZd

∥∥∥∥
`q(NZd)

for all c ∈ `q(Λ′). (2.14)

PROOF. Observing that

ANΨN
n −ΨN

n AN = (ANΨN
n −ΨN

n AN)Ψ6N
n ,

we obtain from Lemma 2.6 that

‖(ANΨN
n −ΨN

n AN)c‖`p(Λ) ≤ CR(Λ)1/pR(Λ′)1−1/p

× ‖ANΨN
n −ΨN

n AN‖C‖Ψ6N
n c‖`p(Λ′) (2.15)

for any c ∈ `p(Λ′). We note from (2.9), (2.10) and (2.13) that

‖ANΨN
n −ΨN

n AN‖C ≤
∥∥∥(aN(λ, λ′)(ψNn (λ′)− ψNn (λ)

)
λ∈Λ,λ′∈Λ′

∥∥∥
C

≤ min
0≤s≤N

(∥∥∥(aN(λ, λ′)− as(λ, λ′)
)
λ∈Λ,λ′∈Λ′

∥∥∥
C

+
s

N

∥∥∥(as(λ, λ′))
λ∈Λ,λ′∈Λ′

∥∥∥
C

)
≤ min

0≤s≤N

(
‖A− As‖C +

s

N
‖A‖C

)
. (2.16)

Then we combine (2.15) and (2.16) to yield
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‖(ANΨN
n −ΨN

n AN)c‖`p(Λ) ≤ CR(Λ)1/pR(Λ′)1−1/p

× min
0≤s≤N

(
‖A− As‖C +

s

N
‖A‖C

)
‖Ψ6N

n c‖`p(Λ′) (2.17)

for any c ∈ `p(Λ′). Thus for 1 ≤ q ≤ ∞, we get from (2.9), (2.10) and (2.17)
that

∥∥∥∥(∥∥∥(ANΨN
n −ΨN

n AN)c
∥∥∥
`p(Λ)

)
n∈NZd

∥∥∥∥
`q(NZd)

≤CR(Λ)1/pR(Λ′)1−1/p min
0≤s≤N

(
‖A− As‖C +

s

N
‖A‖C

)
×
∥∥∥∥(‖Ψ6N

n c‖`p(Λ′)

)
n∈NZd

∥∥∥∥
`q(NZd)

≤CR(Λ)1/pR(Λ′)1−1/p min
0≤s≤N

(
‖A− As‖C +

s

N
‖A‖C

)
×

∑
j∈Zd with ‖j‖∞≤6

∥∥∥∥(‖ΨN
n+2jNc‖`p(Λ′)

)
n∈NZd

∥∥∥∥
`q(NZd)

≤CR(Λ)1/pR(Λ′)1−1/p min
0≤s≤N

(
‖A− As‖C +

s

N
‖A‖C

)
×
∥∥∥∥(‖ΨN

n c‖`p(Λ′)

)
n∈NZd

∥∥∥∥
`q(NZd)

.

This proves the estimate (2.14). 2

Lemma 2.8 Let 1 ≤ N ∈ N, 1 ≤ p, q ≤ ∞, Λ and Λ′ be two relatively-
separated subsets of Rd, and A = (a(λ, λ′))λ∈Λ,λ′∈Λ′ be an infinite matrix in
the Sjöstrand class C(Λ,Λ′). Then there exists a positive constant C (that
depends only on d, p, q) such that

∥∥∥∥(‖ΨN
n Ac‖`p(Λ)

)
n∈NZd

∥∥∥∥
`q(NZd)

≤CR(Λ)1/pR(Λ′)1−1/p‖A‖C

×
∥∥∥∥(‖ΨN

n c‖`p(Λ′)

)
n∈NZd

∥∥∥∥
`q(NZd)

(2.18)

holds for any sequence c ∈ `q(Λ′).

PROOF. By (2.9) and (2.10), we have that

4d ≥
∑
k∈Zd

χ[−2,2)d(x− k)≥
∑
k∈Zd

(ψ(x− k))2

≥
∑
k∈Zd

χ[−1,1)d(x− k) = 2d for all x ∈ Rd. (2.19)

11



Combining (2.19) and Lemma 2.6, we obtain that

‖ΨN
n Ac‖`p(Λ)≤CR(Λ)1/pR(Λ′)1−1/p

∑
n′∈NZd

‖ΨN
n AΨN

n+n′‖C‖ΨN
n+n′c‖`p(Λ′)

≤CR(Λ)1/pR(Λ′)1−1/p

×
∑

n′∈NZd

( ∑
k∈Zd with ‖k−n′‖∞≤4N

a(k)
)
‖ΨN

n+n′c‖`p(Λ′) (2.20)

holds for n ∈ NZd and c ∈ `q(Λ′), where

a(k) = sup
λ∈Λ,λ′∈Λ′

|a(λ, λ′)|χk+[0,1)d(λ− λ′).

From (2.20) we get that

∥∥∥∥(‖ΨN
n Ac‖`p(Λ)

)
n∈NZd

∥∥∥∥
`q(NZd)

≤CR(Λ)1/pR(Λ′)1−1/p
( ∑
n′∈NZd

∑
k∈Zd with ‖k−n′‖∞≤4N

a(k)
)

×
∥∥∥∥(‖ΨN

n c‖`p(Λ′)

)
n∈NZd

∥∥∥∥
`q(NZd)

≤CR(Λ)1/pR(Λ′)1−1/p‖A‖C
∥∥∥∥(‖ΨN

n c‖`p(Λ′)

)
n∈NZd

∥∥∥∥
`q(NZd)

for 1 ≤ q ≤ ∞. Then the estimate (2.18) follows. 2

Now let us start to prove Theorem 2.1.

Proof of Theorem 2.1. Let N ≥ 1 be a sufficiently large integer determined
later, n ∈ NZd, the multiplication operator ΨN

n be as in (2.11), and the trun-
cation matrix AN be as in (2.12). By the assumption on the infinite matrix
A, there exists a positive constant C0 such that

‖ΨN
n c‖`p(Λ′) ≤ C0‖AΨN

n c‖`p(Λ) (2.21)

for any sequence c ∈ `q(Λ′), n ∈ NZd and 1 ≤ N ∈ N. By (2.8), (2.13), (2.14),
(2.18) and (2.21), we get
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( ∑
n∈NZd

‖ΨN
n c‖

q
`p(Λ′)

)1/q

≤C0

( ∑
n∈NZd

‖AΨN
n c‖

q
`p(Λ)

)1/q

≤C0

( ∑
n∈NZd

‖(A− AN)ΨN
n c‖

q
`p(Λ)

)1/q

+C0

( ∑
n∈NZd

‖(ANΨN
n −ΨN

n AN)c‖q`p(Λ)

)1/q

+C0

( ∑
n∈NZd

‖ΨN
n (AN − A)c‖q`p(Λ)

)1/q

+ C0

( ∑
n∈NZd

‖ΨN
n Ac‖

q
`p(Λ)

)1/q

≤C0CR(Λ)1/pR(Λ′)1−1/p
(
‖A− AN‖C + inf

0≤s≤N

(
‖A− As‖C +

s

N
‖A‖C

))
×
( ∑
n∈NZd

‖ΨN
n c‖

q
`p(Λ′)

)1/q

+ C0

( ∑
n∈NZd

‖ΨN
n Ac‖

q
`p(Λ)

)1/q

≤C0CR(Λ)1/pR(Λ′)1−1/p inf
0≤s≤N

(
‖A− As‖C +

s

N
‖A‖C

)
×
( ∑
n∈NZd

‖ΨN
n c‖

q
`p(Λ′)

)1/q

+ C0

( ∑
n∈NZd

‖ΨN
n Ac‖

q
`p(Λ)

)1/q

(2.22)

where 1 ≤ q <∞. Note that for any infinite matrix A ∈ C(Λ,Λ′)

0≤ lim
N→∞

inf
0≤s≤N

(
‖A− As‖C +

s

N
‖A‖C

)
≤ lim

N→∞

(
‖A− A√N‖C +N−1/2‖A‖C

)
= 0

by (2.13). Therefore by selecting N sufficiently large in (2.22), we have that

( ∑
n∈NZd

‖ΨN
n c‖

q
`p(Λ′)

)1/q

≤ 2C0

( ∑
n∈NZd

‖ΨN
n (Ac)‖q`p(Λ)

)1/q

. (2.23)

By the equivalence of different norms on a finite-dimensional space, there
exists a positive constant C (that depends on p, q, d only) such that

C−1(R(Λ′)Nd)min(1/p−1/q,0)‖ΨN
n c‖`q(Λ′) ≤ ‖ΨN

n c‖`p(Λ′) (2.24)

and

‖ΨN
n Ac‖`p(Λ) ≤ C(R(Λ)Nd)max(1/p−1/q,0)‖ΨN

n Ac‖`q(Λ) (2.25)

hold for all sequences c ∈ `q(Λ′), n ∈ NZd and 1 ≤ N ∈ N. Therefore
combining (2.23), (2.24) and (2.25), we conclude that

‖c‖`q(Λ′) ≤ C(R(Λ′)Nd)−min(1/p−1/q,0)(R(Λ)Nd)max(1/p−1/q,0)‖Ac‖`q(Λ) (2.26)
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for any c ∈ `q(Λ′), and the conclusion for 1 ≤ q <∞ follows.

The conclusion for q = ∞ can be proved by similar argument. We omit the
details here. 2

3 Stability for localized synthesis operators

In this section, we consider the stability of the synthesis operator

SΦ : `p(Λ) 3 (c(λ))λ∈Λ 7−→
∑
λ∈Λ

c(λ)φλ ∈ Vp(Φ,Λ) (3.1)

associated with a family Φ = {φλ : λ ∈ Λ} of functions on Rd, where

Vp(Φ,Λ) :=

∑
λ∈Λ

c(λ)φλ : (cλ)λ∈Λ ∈ `p(Λ)

 , 1 ≤ p ≤ ∞ (3.2)

([63]). The synthesis operator SΦ appears in the study of spline approximation
and operator approximation ([27,55]), wavelet analysis ([18,25,48,49]), Gabor
analysis ([31]) and sampling ([1,61]), while one of basic assumptions for the
synthesis operator SΦ is the `p-stability, i.e., there exists a positive constant
C such that

C−1‖c‖`p(Λ) ≤ ‖SΦc‖p ≤ C‖c‖`p(Λ) for all c ∈ `p(Λ). (3.3)

The main results of this section are Theorem 3.1 (a generalization of Theorem
1.3) about equivalence of the `p-stability of the synthesis operator SΦ for
different 1 ≤ p ≤ ∞, and Corollary 3.3 about well localization of the inverse
of the synthesis operator SΦ.

Theorem 3.1 Let Λ be a relatively-separated subset of Rd, Φ = {φλ, λ ∈ Λ}
be a family of functions with the property that∥∥∥∥ sup

λ∈Λ
|φλ(·+ λ)|

∥∥∥∥
W1

<∞ (3.4)

and

lim
δ→0

∥∥∥∥ sup
λ∈Λ
|ωδ(φλ)(·+ λ)|

∥∥∥∥
W1

= 0. (3.5)

If the synthesis operator SΦ in (3.1) has `p-stability for some 1 ≤ p ≤ ∞, then
it has `q-stability for any 1 ≤ q ≤ ∞.

For Φ = {φn(· − j)}1≤n≤N,j∈Zd generated by integer shifts of finitely many
functions φ1, . . . , φN , we have the following corollary for the synthesis operator
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SΦ associated with Φ. Here in the statement of the following result, we do not
include the regularity condition (3.5) because limδ→0 ‖ωδ(f)‖W1 = 0 for any
continuous function f in the Wiener amalgam space W1 ([1]).

Corollary 3.2 Let φ1, . . . , φN be continuous functions in the Wiener amal-
gam space W1, and for 1 ≤ p ≤ ∞ define

Vp(φ1, . . . , φN) :=


N∑
n=1

∑
j∈Zd

cn(j)φn(· − j) : (cn(j)) ∈ (`p(Zd))N

 .
If the synthesis operator Lφ1,··· ,φn : (`p(Zd))N 7−→ Vp(φ1, . . . , φN) defined by

Lφ1,··· ,φn : (cn(j))1≤n≤N,j∈Zd 7−→
N∑
n=1

∑
j∈Zd

cn(j)φn(· − j)

has `p-stability for some p ∈ [1,∞], i.e., there exists a positive constant C
such that

C−1‖c‖(`p(Zd))N ≤ ‖Lφ1,...,φN c‖p ≤ C‖c‖(`p(Zd))N for all c ∈ (`p(Zd))N ,

then the synthesis operator Lφ1,··· ,φn has `q-stability for any q ∈ [1,∞].

The result in the above corollary is established in [43] under the weak assump-
tion that φ1, . . . , φN ∈ L∞.

Note that the synthesis operator SΦ has `2-stability if and only if the matrix
A =

(
a(λ, λ′)

)
λ,λ′∈Λ

has `2-stability where a(λ, λ′) =
∫
Rd φλ(x)φλ′(x)dx for

λ, λ′ ∈ Λ. This observation together with the equivalence in Theorem 3.1 for
the synthesis operator SΦ and the Wiener’s lemma in [56] for the Sjöstrand
class of infinite matrices leads to the following result.

Corollary 3.3 Let 1 ≤ p ≤ ∞, Λ be a relatively-separated subset of Rd,
Φ = {φλ, λ ∈ Λ} satisfy (3.4) and (3.5). If the synthesis operator SΦ has
`p-stability, then there exists another family Φ̃ = {φ̃λ, λ ∈ Λ} of functions
satisfying (3.4) and (3.5) such that the inverse of the synthesis operator SΦ is
given by

(SΦ)−1f =
( ∫

Rd
f(x)φ̃λ(x)dx

)
λ∈Λ

for all f ∈ Vp(Φ,Λ).

The conclusion in the above corollary with p = 2 is established in [63] without
the regularity assumption (3.5). The conclusion in the above corollary for
general 1 ≤ p ≤ ∞ gives a partial answer to a problem in [63, Remark 5.3].

To prove Theorem 3.1, we recall a result in [63].
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Lemma 3.4 Let 1 ≤ p ≤ ∞, Λ be a relatively-separated subset of Rd, Φ =
{φλ, λ ∈ Λ} satisfy (3.4). Then there exists a positive constant C (that depends
on d and p only) such that

‖SΦc‖p ≤ CR(Λ)1−1/p

∥∥∥∥ sup
λ∈Λ
|φλ(·+ λ)|

∥∥∥∥
W1

‖c‖`p(Λ). (3.6)

Now we start to prove Theorem 3.1.

Proof of Theorem 3.1. Let 1 ≤ p, q ≤ ∞. By the `p-stability of the synthesis
operator SΦ, there exists a positive constant C0 such that

‖c‖`p(Λ) ≤ C0‖SΦc‖p for all c ∈ `p(Λ). (3.7)

For 1 ≤ n ∈ N, define the operator Pn on Lp by

Pnf(x) = 2nd
∑

λ′∈2−nZd
φ0(2n(x− λ′))×

∫
Rd
f(y)φ0(2n(y − λ′))dy, f ∈ Lp(Rd)

(3.8)
where φ0 be the characteristic function on [0, 1)d, and let Φn = {Pnφλ, λ ∈ Λ}.
Then

|φλ(x)− Pnφλ(x)| ≤ ω2−n(φλ)(x) for all x ∈ Rd and λ ∈ Λ. (3.9)

From (3.7), (3.9) and Lemma 3.4 it follows that

‖SΦc‖p≤‖SΦnc‖p + ‖SΦ−Φnc‖p

≤‖SΦnc‖p + CR(Λ)1−1/p

∥∥∥∥ sup
λ∈Λ

ω2−n(φλ)(·+ λ)
∥∥∥∥
W1

‖c‖`p(Λ). (3.10)

Combining (3.5) and (3.10) leads to the existence of a sufficiently large integer
n0 such that

‖c‖`p(Λ) ≤ 2C0‖SΦn0
c‖p for all c ∈ `p(Λ). (3.11)

Define An0 = (an0(λ
′, λ))λ′∈2−n0Zd,λ∈Λ by

an0(λ
′, λ) = 2n0d

∫
Rd
φλ(y)φ0(2n0(y − λ′))dy. (3.12)

Since

Pn0φλ =
∑

λ′∈2−n0Zd
an0(λ

′, λ)φ0(2n0(· − λ′)),

and ∥∥∥∥ ∑
λ′∈2−n0Zd

a(λ′)φ0(2n0(· − λ′))
∥∥∥∥
p

= 2−n0d/p‖a‖`p(2−n0Zd) (3.13)
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for any a = (a(λ′))λ′∈2−n0Zd ∈ `p(2−n0Zd), the equation (3.11) can be rewritten
in the following matrix formulation:

‖c‖`p(Λ) ≤ 2C02−n0d/p‖An0c‖`p(2−n0Zd) for all c ∈ `p(Λ). (3.14)

By (3.4), it holds that

∑
j∈Zd

sup
λ′∈2−n0Zd,λ∈Λ

|an0(λ
′, λ)|χj+[0,1)d(λ

′ − λ)

≤ 2n0d
∑
j∈Zd

sup
λ′∈2−n0Zd,λ∈Λ

χj+[0,1)d(λ
′ − λ)×

∫
Rd
h(y − λ)φ0(2n0(y − λ′))dy

≤
∑
j∈Zd

sup
y∈j+[0,2)d

h(y) ≤ 2d‖h‖W1 <∞

where h(x) = supλ∈Λ |φλ(x+ λ)|, which means that the infinite matrix An0 in
(3.12) belongs to the Sjöstrand class C(2−n0Zd,Λ),

An0 ∈ C(2−n0Zd,Λ). (3.15)

By (3.14), (3.15) and Theorem 2.1, the infinite matrix An0 has the `q-stability,
i.e., there exists a positive constant C1 such that

‖c‖`q(Λ) ≤ C1‖An0c‖`q(2−n0Zd) for all c ∈ `q(Λ). (3.16)

For any c = (c(λ))λ∈Λ ∈ `q(Λ),

‖An0c‖`q(2−n0Zd) = 2n0d/q

∥∥∥∥ ∫
Rd
Kn0(·, y)(SΦc)(y)dy

∥∥∥∥
q
≤ 2n0d/q‖SΦc‖q (3.17)

by (3.13), where Kn0(x, y) = 2n0d
∑
λ′∈2−n0Zd φ0(2n0(x−λ′))φ0(2n0(y−λ′)). The

`q-stability of the synthesis operator SΦ then follows from (3.16) and (3.17).

4 Lp-stability for localized integral operators

In this section, we consider the Lp-stability of integral operators

Tf(x) :=
∫

Rd
KT (x, y)f(y)dy, f ∈ Lp(Rd) (4.1)

whose kernels KT are enveloped by convolution kernels with certain decay at
infinity, i.e.,

|KT (x, y)| ≤ h(x− y) for all x, y ∈ Rd (4.2)
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where h is a function in the Wiener amalgam space W1 ([8,15,44,47,46,64]).
Examples of the integral operators of the form (4.1) include projection oper-
ators on wavelet spaces ([19,21,22,25,43,63]), frame operators associated with
Gabor systems in the time-frequency space ([5,6,31,35]), and reconstruction
operators in sampling theory ([1,61,63]).

An integral operator T with kernel KT enveloped by a convolution kernel in
the Wiener amalgam space defines a bounded operator on Lp. The above class
C1 of localized integral operators is a non-unital algebra. The new algebra

IC1 = {λI + T : λ ∈ C, T ∈ C1}

obtained by adding the identity operator I on Lp to that algebra C1 is a unital
Banach subalgebra of B(Lp), 1 ≤ p ≤ ∞ ([64]).

In this section, we discuss the Lp-stability of the localized integral operators
in IC1 with additional regularity on kernels. The main results of this section
are Theorem 4.1 (a slight generalization of Theorem 1.4), and Corollary 4.2
concerning the well localization of the inverse of a localized integral operator.

Theorem 4.1 Let 0 < α ≤ 1, D be a positive constant, and T be an integral
operator of the form (4.1) with its kernel KT satisfying∥∥∥∥ sup

y∈Rd
|KT (y, ·+ y)|

∥∥∥∥
W1

≤ D (4.3)

and ∥∥∥∥ sup
y∈Rd

ωδ(KT )(y, ·+ y)
∥∥∥∥
W1

≤ Dδα for all δ ∈ (0, 1). (4.4)

If I + T has Lp-stability for some 1 ≤ p ≤ ∞, then it has Lq-stability for all
1 ≤ q ≤ ∞.

The above result for p = 2 follows from the Wiener’s lemma for localized inte-
gral operators ([64]). Applying the Lp equivalence in Theorem 4.1 for different
p, we can extend the Wiener’s lemma in [64] to p 6= 2.

Corollary 4.2 Let 1 ≤ p ≤ ∞, 0 6= λ ∈ C, and T be an integral operator
with its kernel KT satisfying (4.3) and (4.4). If λI + T has bounded inverse
on Lp, then (λI + T )−1 = λ−1I + T̃ for some integral operator T̃ with kernel
satisfying (4.3) and (4.4).

Recall that any integral operator having its kernel satisfying (4.3) and (4.4)
does not have bounded inverse in Lp, 1 ≤ p <∞ ([64]). Then from Corollary
4.2 we have the following result to spectra of localized integral operators on
Lp.

Corollary 4.3 Let T be an integral operator with its kernel KT satisfying
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(4.3) and (4.4). Then

σp(T ) = σq(T ) for all 1 ≤ p, q <∞, (4.5)

where σp(T ) denotes the spectrum of the operator T on Lp.

Now we start to prove Theorem 4.1.

Proof of Theorem 4.1. By the Lp-stability of the operator I +T , there exists
a positive constant C0 such that

‖f‖p ≤ C0‖(I + T )f‖p for all f ∈ Lp. (4.6)

For 1 ≤ n ∈ N, let Tn = PnTPn with kernel KTn where Pn is given in (3.8).
Then

KTn(x, y) =
∑

λ,λ′∈2−nZd
an(λ, λ′)φ0(2n(x− λ))φ0(2n(y − λ′)) (4.7)

and

|KTn(x, y)−KT (x, y)| ≤ Cω2−n(KT )(x, y) for all x, y ∈ Rd, (4.8)

where φ0 is the characteristic function on [0, 1)d and

an(λ, λ′) = 22nd
∫

Rd

∫
Rd
φ0(2n(s− λ))KT (s, t)φ0(2n(t− λ′))dsdt (4.9)

for λ, λ′ ∈ 2−nZd. Therefore we have from (4.4) and (4.8) that for any f ∈ Lr
with 1 ≤ r ≤ ∞,

‖(T − Tn)f‖r≤C
∥∥∥∥ sup
y∈Rd

ω2−n(KT )(y, ·+ y)
∥∥∥∥
W1

‖f‖r

≤C2−nα‖f‖r. (4.10)

By (4.4), (4.6) and (4.10), there exists a sufficiently large integer n0 such that
for all n ≥ n0,

‖f‖p ≤ 2C0‖(I + Tn)f‖p for all f ∈ Lp. (4.11)

Let
An := (an(λ, λ′))λ,λ′∈2−nZd (4.12)

where an(λ, λ′), λ, λ′ ∈ 2−nZd, are given in (4.9). Applying (4.11) to

fn :=
∑

λ∈2−nZd
cn(λ)φ0(2n(· − λ)) with (cn(λ))λ∈2−nZd ∈ `p(2−nZd),
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and noting

‖fn‖p = 2−nd/p‖cn‖`p(2−nZd) (4.13)

and

‖(I + Tn)fn‖p = 2−nd/p‖(I + 2−ndAn)cn‖`p(2−nZd), (4.14)

we obtain the uniform `p-stability of the matrix I + 2−ndAn, i.e.,

‖cn‖`p(2−nZd) ≤ 2C0‖(I + 2−ndAn)cn‖`p(2−nZd) (4.15)

holds for any cn ∈ `p(2−nZd) and n ≥ n0.

Define

An,s = (an,s(λ, λ
′))λ,λ′∈2−nZd (4.16)

where

an,s(λ, λ
′) =

 an(λ, λ′) if ‖λ− λ′‖∞ < s,

0 otherwise.

Then for s ≥ 0,

‖An − An,s‖C ≤
∑

j∈Zd with ‖j‖∞≥s−1

sup
λ,λ′∈2−nZd

|an(λ, λ′)|χj+[0,1)d(λ− λ′)

≤ 22nd
∑

j∈Zd with ‖j‖∞≥s−1

sup
λ,λ′∈2−nZd

χj+[0,1)d(λ− λ′)

×
∫

2−n[0,1)d

∫
2−n[0,1)d

|K(λ+ s, λ′ + t)|dsdt

≤
∑

j∈Zd with ‖j‖∞≥s−1

sup
x∈j+[−1,2)d

|h(x)|

≤ 3d
∑

j∈Zd with ‖j‖∞≥s−3

sup
x∈j+[0,1)d

|h(x)|

where h(x) = supy∈Rd |KT (x+ y, y)|. Thus

inf
0≤s≤N

(
‖An − An,s‖C +

s

N
‖An‖C

)
≤‖An − An,√N‖C +N−1/2‖An‖C

≤C
( ∑
j∈Zd with ‖j‖∞≥

√
N−3

sup
x∈j+[0,1)d

|h(x)|

+N−1/2
∑
j∈Zd

sup
x∈j+[0,1)d

|h(x)|
)

(4.17)

Let N be a sufficiently large integer chosen later and the multiplication oper-
ator ΨN

j be as in the proof of Theorem 2.1. Then for 1 ≤ q ≤ ∞, using the
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similar argument in the proof of Theorem 2.1, we obtain from (2.13), (4.15),
(4.17), and Lemmas 2.6, 2.7 and 2.8 that

∥∥∥∥(‖ΨN
j cn‖`p(2−nZd)

)
j∈NZd

∥∥∥∥
`q(NZd)

≤ 2C0

∥∥∥∥(‖(I + 2−ndAn)ΨN
j cn‖`p(2−nZd)

)
j∈NZd

∥∥∥∥
`q(NZd)

≤ 2−nd+1C0

∥∥∥∥(‖(An − An,N)ΨN
j cn‖`p(2−nZd)

)
j∈NZd

∥∥∥∥
`q(NZd)

+2−nd+1C0

∥∥∥∥(‖(An,NΨN
j −ΨN

j An,N)cn‖`p(2−nZd)

)
j∈NZd

∥∥∥∥
`q(NZd)

+2−nd+1C0

∥∥∥∥(‖ΨN
j (An,N − An)cn‖`p(2−nZd)

)
j∈NZd

∥∥∥∥
`q(NZd)

+2C0

∥∥∥∥(‖ΨN
j (I + 2−ndAn)cn)‖`p(Λ)

)
j∈NZd

∥∥∥∥
`q(NZd)

≤C0C
(
‖An − An,N‖C + inf

0≤s≤N

(
‖An − An,s‖C +

s

N
‖An‖C

))
×
( ∑
j∈NZd

‖ΨN
j cn‖

q
`p(Λ)

)1/q

+ C0

( ∑
j∈NZd

‖ΨN
j Ancn‖

q
`p(Λ)

)1/q

≤CC0

( ∑
j∈Zd with ‖j‖∞≥

√
N−3

sup
x∈j+[0,1)d

|h(x)|

+N−1/2
∑
j∈Zd

sup
x∈j+[0,1)d

|h(x)|
) ∥∥∥∥(‖ΨN

j cn‖`p(2−nZd)

)
j∈NZd

∥∥∥∥
`q(NZd)

+2C0

∥∥∥∥(‖ΨN
j (I + 2−ndAn)cn‖`p(2−nZd)

)
j∈NZd

∥∥∥∥
`q(NZd)

, (4.18)

where h(x) = supy∈Rd |KT (y, x + y)| and the uppercase letter C denotes an
absolute constant independent of n ≥ n0 and N ≥ 1 but may be different
at different occurrences. By (4.3) and (4.18) there exists a sufficiently large
integer N0 (independent of n ≥ n0) such that

∥∥∥∥(‖ΨN0
j cn‖`p(2−nZd)

)
j∈N0Zd

∥∥∥∥
`q(N0Zd)

≤ 4C0

∥∥∥∥(‖ΨN0
j (I + 2−ndAn)cn‖`p(2−nZd)

)
j∈N0Zd

∥∥∥∥
`q(N0Zd)

(4.19)

holds for any cn ∈ `q(2−nZd) and n ≥ n0.

Combining (2.24), (2.25) and (4.19) yields

‖cn‖`q(2−nZd) ≤ C12nd|1/p−1/q|‖(I + 2−ndAn)cn‖`q(2−nZd) for all cn ∈ `q(2−nZd),
(4.20)
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where C1 is a positive constant independent of n ≥ n0. This together with
(4.13) and (4.14) proves that

‖fn‖q ≤ C12nd|1/p−1/q|‖(I + Tn)fn‖q (4.21)

holds for any fn =
∑
λ∈2−nZd cn(λ)φ0(2n(·−λ)) with (cn(λ))λ∈2−nZd ∈ `q(2−nZd).

Note that for any f ∈ Lq,

Pnf = 2nd
∑

λ∈2−nZd
φ0(2n(· − λ))×

∫
Rd
f(y)φ0(2n(y − λ))dy (4.22)

with∥∥∥∥(2nd
∫

Rd
f(y)φ0(2n(y − λ))dy

)
λ∈2−nZd

∥∥∥∥
`q(2−nZd)

≤ 2nd/q‖f‖q <∞. (4.23)

Therefore it follows from (4.21) that

‖Pnf‖q ≤ C12nd|1/p−1/q|‖(I + Tn)Pnf‖q for all f ∈ Lq. (4.24)

By (4.13), (4.22) and (4.23), we have

‖Pnf‖q ≤ ‖f‖q for all f ∈ Lq. (4.25)

This implies that

‖f‖q ≤ ‖f − Pnf‖q + ‖Pnf‖q ≤ 3‖f‖q for all f ∈ Lq. (4.26)

Noting that P 2
n = Pn, (I − Pn)(I + T )f = (I − Pn)f + (I − Pn)T (I − Pn)f +

(I − Pn)TPnf and Pn(I + T )f = Pn(I + T )Pnf + PnT (I − Pn)2f , we obtain
from the second inequality of (4.26) that for any f ∈ Lq,

‖(I + T )f‖q≥
1

3
‖(I − Pn)(I + T )f‖q +

1

3
‖Pn(I + T )f‖q

≥ 1

3
‖(I − Pn)f‖q +

1

3
‖Pn(I + T )Pnf‖q

−1

3
‖(I − Pn)T (I − Pn)f‖q −

1

3
‖(I − Pn)TPnf‖q

−1

3
‖PnT (I − Pn)2f‖q. (4.27)

We note that (I−Pn)T and T (I−Pn) are integral operators with their kernel
bounded by ω2−n(KT ) where KT is the kernel of the integral operator T .
Therefore similar to the argument in (4.10) we have

‖(I − Pn)Tf‖r + ‖T (I − Pn)f‖r ≤ C2−nα‖f‖r for all f ∈ Lr (4.28)
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where 1 ≤ r ≤ ∞ and C is a positive constant independent of n ≥ n0.

For those 1 ≤ q ≤ ∞ satisfying |1/q − 1/p| < α/d, we get from (4.24), (4.25),
(4.26), (4.27), and (4.28) that

‖(I + T )f‖q≥
(

1

3
− C2−nα

)
‖f − Pnf‖q

+
(

(3C1)−12−nd|1/p−1/q| − C2−nα
)
‖Pnf‖q

≥ 1

4
‖f − Pnf‖q + (4C1)−12−nd|1/p−1/q|‖Pnf‖q

≥ (4C1)−12−nd|1/p−1/q|‖f‖q for all f ∈ Lq (4.29)

if we let the integer n be chosen to be sufficiently large. This proves that I+T
has Lq-stability if |1/p− 1/q| < α/d.

Using the above argument iteratively leads to the conclusion that I + T has
Lq-stability for all 1 ≤ q ≤ ∞. 2
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[43] R.-Q. Jia and C. A. Micchelli, Using the refinement equations for the
construction of pre-wavelets. II. Powers of two, In Curves and Surfaces
(Chamonix-Mont-Blanc, 1990), Academic Press, Boston, MA, 1991, 209–246.

25



[44] K. Jörgens, Linear Integral Operators, Pitman, London, 1982.

[45] J. Kovacevic, P. L. Dragotti, and V. Goyal, Filter bank frame expansions with
erasures, IEEE Trans. Inform. Theory, 48(2002), 1439–1450.

[46] V. G. Kurbatov, Functional Differential Operators and Equations, Kluwer
Academic Publishers, 1999.

[47] V. G. Kurbatov, Some algebras of operators majorized by a convolution, Funct.
Differ. Equ., 8(2001), 323–333.

[48] S. G. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1999.

[49] Y. Meyer, Ondelettes et Operateurs, Herman, Paris, 1990.

[50] M. A. Naimark, Normed Algebras, Wolters-Noordhoff Publishing Groningen,
1972.

[51] G. E. Pfander, On the invertibility of “rectangular” bi-infinite matrices and
applications in time-frequency analysis, Linear Algebra Appl. 429(2008), 331–
345.

[52] T. Pytlik, On the spectral radius of elements in group algrebras, Bull. Acad.
Polon. Sci. Ser. Sci. Math., 21(1973), 899–902.

[53] M. A. Rieffel, Projective modules over higher-dimensional noncommutative tori,
Canad. J. Math., 40(1988), 257–338.

[54] F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover Publications, New York,
1990.

[55] L. L. Schumaker, Spline Functions: Basic Theory, John Wiley & Sons, New
York, 1981.
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