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ABSTRACT. Weighted norm inequalities for the Bochner-Riesz operator at the
critical index %(n — 1) are investigated. We also give some weighted norm
inequalities for a class of singular integral operators introduced by Fefferman
and Namazi.

1. INTRODUCTION AND STATEMENTS

The Bochner-Riesz operators in R” are defined as
(TRF)~(x) = (1 - R}|x|M)4 f(x)
and the associated maximal operator is defined as
T} f(x) = sup [T} f(x)]
R>0

for A > 0, where = denotes the Fourier transform. It is well known by the
works of Carleson and Sjolin [4], Fefferman [8, 9], Tomas [19], and Christ
[6] that T} is bounded on LP(R") if and only if |1/p — 1/2| < (1 + 24)/2n
provided 4 > 0 in dimension 2 and A > (n —1)/2(n + 1) in dimension greater
than two. Rubio [16] and Hirschman [12] studied the weighted norm inequality
for the Bochner-Riesz operator 7} and showed that 7] is bounded on L?(|x|%)
provided |a| < 1+ 24 < n. In 1988 Andersen [1] gave a sufficient condition
and a necessary condition on radial weight w(|x|) such that the inequality

[ I ferw(xhdx < € [ 1rerw ax
Rn R

holds for all radial functions f in L?(w(|x])).

Notice that the Bochner-Riesz operator is a summation operator and TR f(x)
tends to f(x) as R tends to infinity for all Schwartz functions f . Hence it is
meaningful to consider the almost everywhere convergence of TRf as R tends
to infinity for some appropriate function f. In 1986 Lu [14] proved that

Tf’f(x)—»f(x) a.e. as j — o0
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666 XIANLIANG SHI AND QIYU SUN

forall f € L?(|x|*) provided 0 < a < min(2, 24) < n—1 and {R;}%, beinga
Hadamard lacunary sequence, i.e., lim.  _ (Rj;1/R;) > 1. In addition we can

reduce almost everywhere convergence of the operator 7R to some maximal
inequality. In [14] Lu proved

Theorem L [14]. Let 0 < A< 3(n—1), 0 <a <min(2, 21), and {R;}%*, be
a Hadamard lacunary sequence. Then

/(SgplTlR’f(X)l)zlﬂ“dxs C/If(X)IZIXI“dX-

In 1988 Carbery, Rubio, and Vega proved
Theorem CRYV [3]. Let |a| < 1+2A<n. Then

[ 1T eopixiedx < € [1reoRpe dx.

Hence they improved Theorem L.

On other hand, we observe that if 4 exceeds the critical index %(n —1) then

Ty f is dominated by a multiple of the Hardy-Littlewood maximal function
M f defined by

M1ex) =suplQl™ [ |7wldy.
xX€Q Q
where supremum is taken over all cubes with center x and sides parallel to

the coordinate axes. Hence a result of Muckenhoupt [11] showed that T} is
bounded on L?(w) provided w € 4,, i.e.,

(IQI“/Qw(x)dx) (|Q|-1/Qw(xr‘p—““dx)p_l <c

holds for all cubes Q ¢ R" with sides parallel to the coordinate axes and some
C independent of Q. Then a natural question is whether Ty 2 is bounded
on L?(w) provided w € 4, and 1 < p < co. In this paper we prove

Theorem 1. Let 1 <p < oo and w € A,. Then
[ Tocypfpuds < ¢ [IfePu) dx.

We also observe that T(ln_l) P f can be written as

[ msdlyi e =)y,

where

h(t) = (20)"220=DPT(S(n = 1) Jpo1 a(0)E'2,
I'(¢) denotes the Gamma function and J,(¢) denotes the Bessel function, which
is defined by

_ /"/2 | 20
Jy(t) = o+ 1/2T0) Jo cos(¢sinu)(cosu)=’ du.

Therefore the weighted norm inequality for TGy P is closely related to the
one for the operator introduced by Fefferman [9] and Namazi [15].
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Now let us write the operator introduced by Fefferman and Namazi precisely.
Let & € L*([0, 00)) and Q be an integrable function on the unit sphere $"~!
having mean zero, i.e., [q,_, Q(x)do(x) =0, do is the standard measure on
Nt

Define

nf@%{éwhmwQG%)WPvu—ywy

for e >0,
Tof(x) = im T,./(x),

and the associated maximal operator

T* f(x) :igngsf(x)l-

There are many works about the operators 7, and 7™ (see [5, 7, 15, 17,
18], etc.). Namazi [15] proved that 7, is a bounded operator on L?(R")
forall 1 < p < oo when Q € LI(S*"!) for some g > 1, Chen [5] proved
that 7* is also a bounded operator on L?(R") when Q € L%(S"!) for
some g > 1, and the second author [18] proved that Q € Llog" L(S*!)
(resp. L(log* L)3/2(S"~1)) is a sufficient condition such that 7, (resp. T*)
is a bounded operator on L?(R"). As weighted norm inequalities for the
operators Ty and T*, Duoandikoetxea and Rubio [7] proved that 7™ and
Ty are bounded operators on LP(w) provided 1 < p < oo, w € A4,, and
Qe Le(S" ).

In this paper we prove the following with the complex interpolation method.

Theorem 2. Let 1 < g < oo, Q € LI(S"™ 1), q(g —1)"! < p < oo, and
w EAp(l—l/q)- Then

[ msepwidx < ¢ [irmpw)ds

holds for all f in LP(w).
Theorem 3. Let Q € L>(S"!) and w € A,. Then

[T spwdx < ¢ [1rpw) dx

holds for all f in LP(w).

Hence we prove Duoandikoetxea and Rubio’s result in another way. The
above results are still interesting even when 4 = 1 because in [13] Q satisfies
an L'-Dini condition for some r > 1.

2. SOME LEMMAS
Define the Bochner-Riesz operator TR by
(TR (x) = (1= Rx|))7f"(x)

for Rez > 0. Then we have
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Lemma 1 [3]. Let Rez >0 and k=0, 1. Then

| () 72

holds for a constant C independent of z .

dx < Cel™zl(|Re z|~¢ + 1)/|f(x)|2dx

To prove Theorem 1, we will also use

Lemma 2. Let Rez > 4(n —1). Then the inequality
sup TR f(x)| < C(Re z — §(n — 1))~ e ™M f(x)
R>0

holds for all f € L. (R") and an absolutely positive constant C.

Proof. Write

2z+1=n20(z 4 1)
I'(n/2)

Also we observe from the asymptotic properties of the Bessel function J,/5.,(f)
that

TRf(x) = R+ / o2z (R - 9|52 1 (x — y)dy .

|Jnj242(8)] < Cen/3HRez

when <1 and
IJn/2+z(z)| < Cl_l/z

when ¢ > 1. Therefore for Rez > 1(n — 1) we have

TR 0] < R [ =y Rona-Rez gy

[yI<R

+ CRn/2+Rez /H . |f(x _y)||y|——Rez~(n+1)/2R—l/2 dy
y[>

< CMf(x)
and Lemma 2 holds.

Lemma 3 [11]. For s € (1, ) and w € Ay, there exists a positive number o
such that w'*® € Ay.

Lemma 4 (Three-Circles Theorem). Suppose F is a bounded continuous com-
plex-valued function on the closed strip S = {x +iy; 0 < x < 1} that is analytic
in the interior of S. If |F(iy)| < mo and |F(1 + iy)| < my for all y, then
|F(x +iy)| < my™*m forall x+iy€S.

To prove Theorems 2 and 3, we need to introduce some notation and use
some lemmas. Let Q c L4(S""!) for some g > 1.
Define
nz=D2((n - 2)/2)
I'(z/2)

Tonf = |y|—"*2h(|y|>n(l)x|y|>s AW, e 0,

[yl

for —%(1 —1/q) <Rez < 1, where x is the convolution operation. Denote the
kernel function of the operator 7, o by K. Therefore we have
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Lemma 5 [18]. For —4(1—-1/q) <Rez <1 and k=0, 1, the inequality

[ (3%) 7eereo

<C (|Rez~ 17+

2
dx

1 1
Rez + ‘2- (1 — E)
holds.

Lemma 6. For 0 <Rez < 1 and 1 < p < oo, the inequality

/sug|Tz,sf(x)|1dx < C(Rez|™ +|Rez — 1|~¢)ecIm=l /|f(x)|" dx

_c) oclim 2| / |f(x)|2 dx

holds.
Lemma 7. For 0 < Rez < 1, the inequality

1/q Rez
—n _ —n (]
(R /R<|x|<2R IK;(x +y)— K (x)|? a’x) < C(2)R (R )

holds for all R >0 and |y| < 1R, where
C(z) < C(|Rez|~C + |Rez — 1|7 %)exp(C|Im z]).
Lemma 8 [13]. Let K € L! (R"\{0}), ¢ > 1, and 6 > 0. Suppose

loc

1/q 5
—n 3 —n (Y]
(R /R<M<2R [K(x+y)—K(x)? a’x) < CR ( R >

holds for all R >0 and |y| < $R. Suppose T be defined as Tf = K « f and
T be bounded on L*(R"). Then the operator T  is bounded on LP(w) for all
q(q - 1)_1 <p<x and w € Ap(l—l/q) .
Lemma 9. Let Q € LI(S*™!) for some q > n. For n/q < Rez < 1, the
inequalities

(1) [K:(x)] < C(2)x]7",

(i) |K:(x +y) — K:(x)| < C(2)|x| 7"~ Rez=n/a)|y|Rez=n/a)
hold for all x # 0 and |y| < %|x|, where

C(z) <C(|Rez—n/q|™°+ |Rez — 1|7 )exp(C|Im z|).

Lemma 10 [11]. Let K € L} (R"\{0}). Suppose

(i) |K(x)| < Clx|™",

(ii) |K(x +y)—K(x)| < Cly[°lx|™"~°
hold for all x # 0, |y| < 1|x|, and some 6 > 0. Suppose an operator T defined
as Tf =K % f is bounded on L*(R"). Then the operator T defined as

T f(x) = sup

e>0

/|| k(y)f(x —y)dy
y|>e

is bounded on LP(w) provided 1 < p < oo and w € A4,.
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The proofs of Lemmas 7 and 9 are elementary and the proof of Lemma 6 is
similar to the one in [5]. We omit the details here.

3. PROOFS OF THEOREMS

Let p € (1,00), s € (1,0), 0 <4< §(n—1), and g > n. Denote

ap)=1-3%,p'=pp-17",

22
P whenp=s=2,
01(p,s, ) =14 a@) P a(p) _ 24
_a(s) 5’ when0<———a(s) <n—l’ p#2,
0, otherwise;
( 2 -1
(1+q—1> , whenp=s=2,
op) p op) 2n \™
.=z < -
OREE when0<a(s)_ 1+q—1 , D#2,
62(p,s,q9)=4 1 a(p) 1\p ¢
(122 ) (1-=)2- 2,
2 a(s) q)s n
-1
when (1+ 2n <Py
qg-1 a(s)
( 0, otherwise.

Then the following theorems are general versions of Theorems 1 and 3.

Theorem 4. Let 0 < A < %(n —1), la(p)| <4/(n—1), and w € As. Then
/ITIf(X)I”we‘(”’”)(x)dxS C/If(X)I”we‘(”’s")(X)dX-
Theorem 5. Let Q € L4(S""!) for some q > n and w € As. Then

[ reputies i dx < € [1eopwto @ ds.

By Lemma 3 and the fact |x|? € 4; for —n < a < n(s — 1), we improve
Theorem L.

Proof of Theorem 4. Let f, h be two nonnegative smooth functions with com-
pact support and R(x) be any arbitrary positive measurable function bounded
below and above, i.e., R(x)"! and R(x) bounded. Suppose w € 4; and ¢
and ¢, are sufficiently small positive constants chosen later, without loss of
generality we assume 60;(p, s, A) > 0. Let

pl=31-0)+s7"6, A=(1+0)e+0(3(n—1)+e), 0<f<1.

Denote s(z)~' = 1(1—z)+s7!z for 0<Rez <1 and fo(x) = exp(—|x|?).



BOCHNER-RIESZ AND SINGULAR INTEGRAL OPERATORS 671

Define
fE 5,00 = (f(x) + 31 fo(x))P @7 " Hw(x) + 62) 2 f(x),
h,;3< ) = (h(x) + 83 fo(x))P 1@~ h(x),
w(x), when w(x)< N,
N, when w(x) > N,
and

~R -1 _.2
TR w0 = T 1) e /) WN(X) + 62)= 7>

where N-1,d; (i=1, 2, 3) are small positive numbers.
Hence by Lemma 1 we can show easily

g(z) = [ TR o WG 5) 65 () dx

is analytic in the strip 0 < Rez < 1 and continuous on the closed strip 0 <
Rez < 1. In addition g(z) is bounded function, hence by Lemma 4 we have

0

1-6
£(0) < C (g}gw(z‘m) (ggg|g(1 n iz)|)

On the other hand by Lemma 1 we get

supg(i0) < Cuusupe~e ( [ 1700 dx)m ([mcor ax) "

<G, slufu"”uhuz/z
and by Lemma 2

1/s
. R
sup|g(1 +if)] < C;, ., SUDe -t (/ITff?e,,eZ,az (f;l+g2)(x)|3dx)

</|h1+”( )|S(S—1)—1)s—1/3

—1 [ T
< Cop e llA12 IAIEST Y.
Therefore

(1) 18(0)] < Corex | A1 1 2l

where C;, ., is independent of J,, d,, d3, and N.

Write g(6) as
0) = [ T35 s wFw + 8 (o) dx
(2)
_ /Tl O fw + 82)~0") o) (wa () + 62)% h(x) dx.

Notice that for every f € LP' there exist two nonnegative smooth function
sequences {f!} and {f?} with compact supports such that

1filp < CINfllprs i=1,2, nEN,
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and
Ify = f2 =Sl =0, asn—oco.
Hence by (1) and (2) we get

[+ )70 () + 9% dx < € [ 1700 dx.
Let N tend to infinity in the inequality above. Then we have
/ TR (w +8) 70 ) (x)P (w(x) + &))" dx < C / |f(x)IP dx.

Notice that C is independent of J, and R(x) being a measurable function
bounded below and above. Therefore

3) [z sexpwr @ dx < € [1repw () dx

holds for all 8 < 6,(p,s,A) # 0 by choosing appropriate & and & . By
Lemma 3 we can replace w in (3) by w!'*®. Hence Theorem 4 holds by
choosing 6 = 0,(p, s, x)/(1+J) #0.

Proof of Theorem 2. By Lemmas 7 and 8, 7T, is bounded on L”(w) provided
w € Ap1-1/q) and Rez > 0. In addition T is bounded on L?(R") when
|Rez| < %(1 —1/q). By the complex interpolation theorem (see [10]) and

Lemma 3, 7, is bounded on L?(w) provided p > q(q — 1)~! and w €
Ap(1-1/q) - Therefore Theorem 2 holds.

Proof of Theorem 5. Define

K.(y)f(x—y)dy

ly|>e

T; f(x) = sup

e>0

Then by Lemmas 9 and 10 we get
[z r@puax < @ [If@Po ) dx
provided w € 4, and n/q <Rez < 1. In addition the pointwise estimate
i‘:ngz,ef(x” < C)uf(x)+ T f(x)
holds for all x in R", n/g<Rez< 1, and
C(z) < C(|Rez — 1|~ +|Re z — n/g|)~¢ectmzl
Hence we have
(4) /§23|Tz,gf(x)|1’w(x)dx < C(z)/|f(x)|”w(x)dx

for n/q < Rez <1 and w € 4,. By (4), Lemmas 3, 5, and 6 we can prove
the following in such a way as we prove Theorem 4,

/ sup T, f (x)PwRe /9 (x) dx
>0

<C(z) / /)P ®e 4 (x) dx
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ded 0<Rez<n/q, we 45, and C(z) < C|Rez| " Cexp(2[Imz|?).

Hence

holds

[suplTs, oot 0(x dx < € [1fPwho:so) dx
e>0

for 1<p<oo, g>n,and w € A; and Theorem 5 holds.
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