

Weighted Norm Inequalities for Bochner-Riesz Operators and Singular Integral Operators

Xianliang Shi, Qiyu Sun

Proceedings of the American Mathematical Society, Volume 116, Issue 3 (Nov., 1992), 665-673.

Your use of the JSTOR database indicates your acceptance of JSTOR's Terms and Conditions of Use. A copy of JSTOR's Terms and Conditions of Use is available at http://www.jstor.org/about/terms.html, by contacting JSTOR at jstor-info@umich.edu, or by calling JSTOR at (888)388-3574, (734)998-9101 or (FAX) (734)998-9113. No part of a JSTOR transmission may be copied, downloaded, stored, further transmitted, transferred, distributed, altered, or otherwise used, in any form or by any means, except: (1) one stored electronic and one paper copy of any article solely for your personal, non-commercial use, or (2) with prior written permission of JSTOR and the publisher of the article or other text.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Proceedings of the American Mathematical Society is published by American Mathematical Society. Please contact the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ams.html.

Proceedings of the American Mathematical Society ©1992 American Mathematical Society

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office. For more information on JSTOR contact jstor-info@umich.edu.

©2000 JSTOR

WEIGHTED NORM INEQUALITIES FOR BOCHNER-RIESZ OPERATORS AND SINGULAR INTEGRAL OPERATORS

XIANLIANG SHI AND QIYU SUN

(Communicated by J. Marshall Ash)

ABSTRACT. Weighted norm inequalities for the Bochner-Riesz operator at the critical index $\frac{1}{2}(n-1)$ are investigated. We also give some weighted norm inequalities for a class of singular integral operators introduced by Fefferman and Namazi.

1. Introduction and statements

The Bochner-Riesz operators in \mathbb{R}^n are defined as

$$(T_{\lambda}^{R}f)^{\hat{}}(x) = (1 - R^{2}|x|^{2})_{+}^{\lambda}\hat{f}(x)$$

and the associated maximal operator is defined as

$$T_{\lambda}^* f(x) = \sup_{R>0} |T_{\lambda}^R f(x)|$$

for $\lambda>0$, where ^ denotes the Fourier transform. It is well known by the works of Carleson and Sjölin [4], Fefferman [8, 9], Tomas [19], and Christ [6] that T^l_{λ} is bounded on $L^p(R^n)$ if and only if $|1/p-1/2|<(1+2\lambda)/2n$ provided $\lambda>0$ in dimension 2 and $\lambda\geq (n-1)/2(n+1)$ in dimension greater than two. Rubio [16] and Hirschman [12] studied the weighted norm inequality for the Bochner-Riesz operator T^l_{λ} and showed that T^l_{λ} is bounded on $L^2(|x|^a)$ provided $|a|<1+2\lambda< n$. In 1988 Andersen [1] gave a sufficient condition and a necessary condition on radial weight w(|x|) such that the inequality

$$\int_{\mathbb{R}^n} |T_{\lambda}^1 f(x)|^2 w(|x|) \, dx \le C \int_{\mathbb{R}^n} |f(x)|^p w(|x|) \, dx$$

holds for all radial functions f in $L^p(w(|x|))$.

Notice that the Bochner-Riesz operator is a summation operator and $T_{\lambda}^R f(x)$ tends to f(x) as R tends to infinity for all Schwartz functions f. Hence it is meaningful to consider the almost everywhere convergence of $T_{\lambda}^R f$ as R tends to infinity for some appropriate function f. In 1986 Lu [14] proved that

$$T_{\lambda}^{R_j} f(x) \to f(x)$$
 a.e. as $j \to \infty$

Received by the editors March 2, 1990 and, in revised form, June 25, 1990 and September 7, 1990.

¹⁹⁹¹ Mathematics Subject Classification. Primary 42B15, 42B25.

for all $f \in L^2(|x|^a)$ provided $0 < a < \min(2, 2\lambda) < n-1$ and $\{R_j\}_{j=1}^{\infty}$ being a Hadamard lacunary sequence, i.e., $\underline{\lim}_{j\to\infty}(R_{j+1}/R_j) > 1$. In addition we can reduce almost everywhere convergence of the operator T_{λ}^R to some maximal inequality. In [14] Lu proved

Theorem L [14]. Let $0 < \lambda < \frac{1}{2}(n-1)$, $0 < a < \min(2, 2\lambda)$, and $\{R_j\}_{j=1}^{\infty}$ be a Hadamard lacunary sequence. Then

$$\int \left(\sup_{i} |T_{\lambda}^{R_{j}}f(x)|\right)^{2} |x|^{a} dx \leq C \int |f(x)|^{2} |x|^{a} dx.$$

In 1988 Carbery, Rubio, and Vega proved

Theorem CRV [3]. Let $|a| < 1 + 2\lambda < n$. Then

$$\int |T_{\lambda}^* f(x)|^2 |x|^a \, dx \le C \int |f(x)|^2 |x|^a \, dx.$$

Hence they improved Theorem L.

On other hand, we observe that if λ exceeds the critical index $\frac{1}{2}(n-1)$ then $T_{\lambda}^* f$ is dominated by a multiple of the Hardy-Littlewood maximal function Mf defined by

$$Mf(x) = \sup_{x \in Q} |Q|^{-1} \int_{Q} |f(y)| dy$$
,

where supremum is taken over all cubes with center x and sides parallel to the coordinate axes. Hence a result of Muckenhoupt [11] showed that T_{λ}^* is bounded on $L^p(w)$ provided $w \in A_p$, i.e.,

$$\left(|Q|^{-1} \int_{Q} w(x) \, dx\right) \left(|Q|^{-1} \int_{Q} w(x)^{-(p-1)^{-1}} \, dx\right)^{p-1} \le C$$

holds for all cubes $Q \subset R^n$ with sides parallel to the coordinate axes and some C independent of Q. Then a natural question is whether $T^*_{(n-1)/2}$ is bounded on $L^p(w)$ provided $w \in A_p$ and 1 . In this paper we prove

Theorem 1. Let $1 and <math>w \in A_p$. Then

$$\int |T_{(n-1)/2}^* f(x)|^p w(x) \, dx \le C \int |f(x)|^p w(x) \, dx.$$

We also observe that $T_{(n-1)/2}^1 f$ can be written as

$$\int h(|y|)|y|^{-n}f(x-y)\,dy\,,$$

where

$$h(t) = (2\pi)^{n/2} 2^{(n-1)/2} \Gamma(\frac{1}{2}(n-1)) J_{n-1/2}(t) t^{1/2},$$

 $\Gamma(t)$ denotes the Gamma function and $J_v(t)$ denotes the Bessel function, which is defined by

$$J_v(t) = \frac{(t/2)^v}{\Gamma(v+1/2)\Gamma(v)} \int_0^{\pi/2} \cos(t \sin u) (\cos u)^{2v} du.$$

Therefore the weighted norm inequality for $T_{(n-1)/2}^*$ is closely related to the one for the operator introduced by Fefferman [9] and Namazi [15].

Now let us write the operator introduced by Fefferman and Namazi precisely. Let $h \in L^{\infty}([0,\infty))$ and Ω be an integrable function on the unit sphere S^{n-1} having mean zero, i.e., $\int_{S^{n-1}} \Omega(x) \, d\sigma(x) = 0$, $d\sigma$ is the standard measure on S^{n-1} .

Define

$$T_{\varepsilon}f(x) = \int_{|y| > \varepsilon} h(|y|) \Omega\left(\frac{y}{|y|}\right) |y|^{-n} f(x - y) \, dy$$

for $\varepsilon > 0$,

$$T_0 f(x) = \lim_{\varepsilon \to 0} T_{\varepsilon} f(x),$$

and the associated maximal operator

$$T^*f(x) = \sup_{\varepsilon > 0} |T_{\varepsilon}f(x)|.$$

There are many works about the operators T_0 and T^* (see [5, 7, 15, 17, 18], etc.). Namazi [15] proved that T_0 is a bounded operator on $L^p(R^n)$ for all $1 when <math>\Omega \in L^q(S^{n-1})$ for some q > 1, Chen [5] proved that T^* is also a bounded operator on $L^p(R^n)$ when $\Omega \in L^q(S^{n-1})$ for some q > 1, and the second author [18] proved that $\Omega \in L\log^+L(S^{n-1})$ (resp. $L(\log^+L)^{3/2}(S^{n-1})$) is a sufficient condition such that T_0 (resp. T^*) is a bounded operator on $L^2(R^n)$. As weighted norm inequalities for the operators T_0 and T^* , Duoandikoetxea and Rubio [7] proved that T^* and T_0 are bounded operators on $L^p(w)$ provided $1 , <math>w \in A_p$, and $\Omega \in L^\infty(S^{n-1})$.

In this paper we prove the following with the complex interpolation method.

Theorem 2. Let $1 < q \le \infty$, $\Omega \in L^{q}(S^{n-1})$, $q(q-1)^{-1} , and <math>w \in A_{p(1-1/q)}$. Then

$$\int |T_0 f(x)|^p w(x) \, dx \le C \int |f(x)|^p w(x) \, dx$$

holds for all f in $L^p(w)$.

Theorem 3. Let $\Omega \in L^{\infty}(S^{n-1})$ and $w \in A_p$. Then

$$\int |T^*f(x)|^p w(x) \, dx \le C \int |f(x)|^p w(x) \, dx$$

holds for all f in $L^p(w)$.

Hence we prove Duoandikoetxea and Rubio's result in another way. The above results are still interesting even when $h \equiv 1$ because in [13] Ω satisfies an L^r -Dini condition for some r > 1.

2. Some Lemmas

Define the Bochner-Riesz operator T_z^R by

$$(T_z^R f)^{\hat{}}(x) = (1 - R^2 |x|^2)_+^z f^{\hat{}}(x)$$

for $\operatorname{Re} z > 0$. Then we have

Lemma 1 [3]. Let Re z > 0 and k = 0, 1. Then

$$\int \sup_{R>0} \left| \left(\frac{\partial}{\partial z} \right)^k T_z^R f(x) \right|^2 dx \le C e^{c|\operatorname{Im} z|} (|\operatorname{Re} z|^{-c} + 1) \int |f(x)|^2 dx$$

holds for a constant C independent of z.

To prove Theorem 1, we will also use

Lemma 2. Let Re $z > \frac{1}{2}(n-1)$. Then the inequality

$$\sup_{R>0} |T_z^R f(x)| \le C (\text{Re } z - \frac{1}{2}(n-1))^{-c} e^{c|\text{Im } z|} M f(x)$$

holds for all $f \in L^1_{loc}(\mathbb{R}^n)$ and an absolutely positive constant C. Proof. Write

$$T_z^R f(x) = \frac{2^{z+1-n/2}\Gamma(z+1)}{\Gamma(n/2)} R^{-n/2+z} \int J_{n/2+z}(R^{-1}|y|) \cdot |y|^{-z-n/2} f(x-y) \, dy.$$

Also we observe from the asymptotic properties of the Bessel function $J_{n/2+z}(t)$ that

$$|J_{n/2+z}(t)| \le Ct^{n/2+\operatorname{Re} z}$$

when $t \le 1$ and

$$|J_{n/2+z}(t)| \le Ct^{-1/2}$$

when t > 1. Therefore for Re $z > \frac{1}{2}(n-1)$ we have

$$|T_z^R f(x)| \le CR^{-n/2 + \operatorname{Re} z} \int_{|y| \le R} |f(x - y)| R^{-n/2 - \operatorname{Re} z} \, dy$$

$$+ CR^{n/2 + \operatorname{Re} z} \int_{|y| > R} |f(x - y)| |y|^{-\operatorname{Re} z - (n+1)/2} R^{-1/2} \, dy$$

$$\le CM f(x)$$

and Lemma 2 holds.

Lemma 3 [11]. For $s \in (1, \infty)$ and $w \in A_s$, there exists a positive number δ such that $w^{1+\delta} \in A_s$.

Lemma 4 (Three-Circles Theorem). Suppose F is a bounded continuous complex-valued function on the closed strip $S = \{x + iy; 0 \le x \le 1\}$ that is analytic in the interior of S. If $|F(iy)| \le m_0$ and $|F(1+iy)| \le m_1$ for all y, then $|F(x+iy)| \le m_0^{1-x} m_1^x$ for all $x+iy \in S$.

To prove Theorems 2 and 3, we need to introduce some notation and use some lemmas. Let $\Omega \subset L^q(S^{n-1})$ for some q > 1.

Define

$$T_{z,\varepsilon}f = \frac{\pi^{(z-1)/2}\Gamma((n-z)/2)}{\Gamma(z/2)}|y|^{-n-z}h(|y|)\Omega\left(\frac{y}{|y|}\right)\chi_{|y|>\varepsilon} * |y|^{-n+z} * f, \qquad \varepsilon > 0,$$

for $-\frac{1}{2}(1-1/q) < \text{Re } z < 1$, where * is the convolution operation. Denote the kernel function of the operator $T_{z,0}$ by K_z . Therefore we have

Lemma 5 [18]. For $-\frac{1}{2}(1-1/q) < \text{Re } z < 1$ and k = 0, 1, the inequality

$$\int \sup_{\varepsilon>0} \left| \left(\frac{\partial}{\partial z} \right)^k T_{z,\varepsilon} f(x) \right|^2 dx$$

$$\leq C \left(|\operatorname{Re} z - 1|^{-c} + \left| \operatorname{Re} z + \frac{1}{2} \left(1 - \frac{1}{q} \right) \right|^{-c} \right) e^{c|\operatorname{Im} z|} \int |f(x)|^2 dx$$

holds.

Lemma 6. For 0 < Re z < 1 and 1 , the inequality

$$\int \sup_{\varepsilon>0} |T_{z,\varepsilon}f(x)|^1 dx \le C(|\text{Re } z|^{-c} + |\text{Re } z - 1|^{-c})e^{c|\text{Im } z|} \int |f(x)|^p dx$$

holds.

Lemma 7. For 0 < Re z < 1, the inequality

$$\left(R^{-n} \int_{R < |x| < 2R} |K_z(x+y) - K_z(x)|^q \, dx\right)^{1/q} \le C(z) R^{-n} \left(\frac{|y|}{R}\right)^{\text{Re } z}$$

holds for all R > 0 and $|y| < \frac{1}{2}R$, where

$$C(z) \le C(|\text{Re } z|^{-C} + |\text{Re } z - 1|^{-C})\exp(C|\text{Im } z|).$$

Lemma 8 [13]. Let $K \in L^1_{loc}(\mathbb{R}^n \setminus \{0\})$, q > 1, and $\delta > 0$. Suppose

$$\left(R^{-n}\int_{R<|x|<2R}|K(x+y)-K(x)|^q\,dx\right)^{1/q}\leq CR^{-n}\left(\frac{|y|}{R}\right)^{\delta}$$

holds for all R > 0 and $|y| < \frac{1}{2}R$. Suppose \overline{T} be defined as $\overline{T}f = K * f$ and \overline{T} be bounded on $L^2(R^n)$. Then the operator \overline{T}^- is bounded on $L^p(w)$ for all $q(q-1)^{-1} and <math>w \in A_{p(1-1/q)}$.

Lemma 9. Let $\Omega \in L^q(S^{n-1})$ for some q > n. For $n/q < \operatorname{Re} z < 1$, the inequalities

- (i) $|K_z(x)| \le C(z)|x|^{-n}$,
- (ii) $|K_z(x+y) K_z(x)| \le C(z)|x|^{-n-(\text{Re }z-n/q)}|y|^{\text{Re }z-n/q)}$

hold for all $x \neq 0$ and $|y| \leq \frac{1}{2}|x|$, where

$$C(z) \le C(|\text{Re } z - n/q|^{-c} + |\text{Re } z - 1|^{-c})\exp(C|\text{Im } z|).$$

Lemma 10 [11]. Let $K \in L^1_{loc}(\mathbb{R}^n \setminus \{0\})$. Suppose

- (i) $|K(x)| \leq C|x|^{-n}$,
- (ii) $|K(x+y) K(x)| \le C|y|^{\delta}|x|^{-n-\delta}$

hold for all $x \neq 0$, $|y| < \frac{1}{2}|x|$, and some $\delta > 0$. Suppose an operator \overline{T} defined as $\overline{T}f = K * f$ is bounded on $L^2(\mathbb{R}^n)$. Then the operator \overline{T}^* defined as

$$\overline{T}^* f(x) = \sup_{\varepsilon > 0} \left| \int_{|y| > \varepsilon} k(y) f(x - y) \, dy \right|$$

is bounded on $L^p(w)$ provided $1 and <math>w \in A_p$.

The proofs of Lemmas 7 and 9 are elementary and the proof of Lemma 6 is similar to the one in [5]. We omit the details here.

3. Proofs of theorems

Let $p \in (1, \infty)$, $s \in (1, \infty)$, $0 < \lambda \le \frac{1}{2}(n-1)$, and q > n. Denote $\alpha(p) = \frac{1}{p} - \frac{1}{2}$, $p^1 = p(p-1)^{-1}$,

$$\theta_1(p, s, \lambda) = \begin{cases} \frac{2\lambda}{n-1}, & \text{when } p = s = 2, \\ \frac{\alpha(p)}{\alpha(s)} \cdot \frac{p}{s}, & \text{when } 0 < \frac{\alpha(p)}{\alpha(s)} < \frac{2\lambda}{n-1}, & p \neq 2, \\ 0, & \text{otherwise}; \end{cases}$$

$$\theta_2(p, s, q) = \begin{cases} \left(1 + \frac{2n}{q-1}\right)^{-1}, & \text{when } p = s = 2, \\ \frac{\alpha(p)}{\alpha(s)} \cdot \frac{p}{s}, & \text{when } 0 < \frac{\alpha(p)}{\alpha(s)} \le \left(1 + \frac{2n}{q-1}\right)^{-1}, p \ne 2, \\ \frac{1}{2}\left(1 - \frac{\alpha(p)}{\alpha(s)}\right)\left(1 - \frac{1}{q}\right)\frac{p}{s} \cdot \frac{q}{n}, \\ & \text{when } \left(1 + \frac{2n}{q-1}\right)^{-1} < \frac{\alpha(p)}{\alpha(s)} < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Then the following theorems are general versions of Theorems 1 and 3.

Theorem 4. Let $0 < \lambda \le \frac{1}{2}(n-1)$, $|\alpha(p)| < \lambda/(n-1)$, and $w \in A_s$. Then

$$\int |T_{\lambda}^* f(x)|^p w^{\theta_1(p,s,\lambda)}(x) dx \leq C \int |f(x)|^p w^{\theta_1(p,s,\lambda)}(x) dx.$$

Theorem 5. Let $\Omega \in L^q(S^{n-1})$ for some q > n and $w \in A_s$. Then

$$\int |T^*f(x)|^p w^{\theta_2(p,s,q)}(x) \, dx \le C \int |f(x)|^p w^{\theta_2(p,s,q)}(x) \, dx.$$

By Lemma 3 and the fact $|x|^a \in A_s$ for -n < a < n(s-1), we improve Theorem L.

Proof of Theorem 4. Let f, h be two nonnegative smooth functions with compact support and R(x) be any arbitrary positive measurable function bounded below and above, i.e., $R(x)^{-1}$ and R(x) bounded. Suppose $w \in A_s$ and ε_1 and ε_2 are sufficiently small positive constants chosen later, without loss of generality we assume $\theta_1(p, s, \lambda) > 0$. Let

$$p^{-1} = \frac{1}{2}(1-\theta) + s^{-1}\theta$$
, $\lambda = (1+\theta)\varepsilon_1 + \theta(\frac{1}{2}(n-1) + \varepsilon_2)$, $0 < \theta < 1$.

Denote
$$s(z)^{-1} = \frac{1}{2}(1-z) + s^{-1}z$$
 for $0 < \text{Re } z < 1$ and $f_0(x) = \exp(-|x|^2)$.

Define

$$\begin{split} f^z_{\delta_1,\,\delta_2}(x) &= (f(x) + \delta_1 f_0(x))^{ps(z)^{-1} - 1} (w(x) + \delta_2)^{-s^{-1}z} f(x) \,, \\ h^z_{\delta_3}(x) &= (h(x) + \delta_3 f_0(x))^{p'(1 - s(z)^{-1}) - 1} h(x) \,, \\ w_N(x) &= \left\{ \begin{array}{ll} w(x) \,, & \text{when } w(x) \leq N \,, \\ N \,, & \text{when } w(x) > N \,, \end{array} \right. \end{split}$$

and

$$\widetilde{T}^{R(x)}_{z,\,\varepsilon_1,\,\varepsilon_2,\,\delta_3,\,N}(f)(x) = T^{R(x)}_{\varepsilon_1+z((n-1)/2+\varepsilon_2-\varepsilon_1)}f(x)(w_N(x)+\delta_2)^{zs^{-1}}e^{-z^2}$$

where N^{-1} , δ_i (i = 1, 2, 3) are small positive numbers.

Hence by Lemma 1 we can show easily

$$g(z) = \int \widetilde{T}_{z, \varepsilon_1, \varepsilon_2, \delta_2, N}^{R(x)}(f_{\delta_1, \delta_2}^z)(x) h_{\delta_3}^z(x) dx$$

is analytic in the strip 0 < Re z < 1 and continuous on the closed strip $0 \le \text{Re } z \le 1$. In addition g(z) is bounded function, hence by Lemma 4 we have

$$|g(\theta)| \le C \left(\sup_{t \in R} |g(it)| \right)^{1-\theta} \left(\sup_{t \in R} |g(1+it)| \right)^{\theta}.$$

On the other hand by Lemma 1 we get

$$\sup_{t \in R} |g(it)| \le C_{\varepsilon_1, \varepsilon_2} \sup_{t \in R} e^{-t^2} e^{c|t|} \left(\int |f(x)|^p dx \right)^{1/2} \left(\int |h(x)|^{p'} dx \right)^{1/2}$$

$$\le C_{\varepsilon_1, \varepsilon_2} ||f||_p^{p/2} ||h||_{p'}^{p'/2}$$

and by Lemma 2

$$\sup_{t \in R} |g(1+it)| \le C_{\varepsilon_{1}, \varepsilon_{2}} \sup_{t \in R} e^{-t^{2}} \left(\int |T_{1+it, \varepsilon_{1}, \varepsilon_{2}, \delta_{2}, N}^{R(x)}(f_{\delta_{1}, \delta_{2}}^{1+it})(x)|^{s} dx \right)^{1/s} \\
\times \left(\int |h_{\delta_{3}}^{1+it}(x)|^{s(s-1)^{-1}} \right)^{s-1/3} \\
\le C_{\varepsilon_{1}, \varepsilon_{2}} ||f||_{p}^{ps^{-1}} ||h||_{p'}^{p's^{-1}(s-1)}.$$

Therefore

$$|g(\theta)| \le C_{\varepsilon_1, \varepsilon_2} ||f||_p ||h||_{p'}$$

where $C_{\varepsilon_1, \varepsilon_2}$ is independent of δ_1 , δ_2 , δ_3 , and N. Write $g(\theta)$ as

(2)
$$g(\theta) = \int \widetilde{T}_{\theta, s_1, s_2, \delta, N}^{R(x)} (f(w + \delta_2)^{-\theta s^{-1}})(x) h(x) dx \\ = \int T_{\lambda}^{R(x)} (f(w + \delta_2)^{-\theta s^{-1}})(x) (w_N(x) + \delta_2)^{\theta s^{-1}} h(x) dx.$$

Notice that for every $f \in L^{p'}$ there exist two nonnegative smooth function sequences $\{f_n^1\}$ and $\{f_n^2\}$ with compact supports such that

$$||f_n^i||_{p'} \le C||f||_{p'}, \qquad i=1, 2, \ n \in \mathbb{N},$$

and

$$||f_n^1 - f_n^2 - f||_{p'} \to 0$$
, as $n \to \infty$.

Hence by (1) and (2) we get

$$\int |T_{\lambda}^{R(x)}(f(w+\delta_2)^{-\theta s^{-1}})(x)|^p(w_N(x)+\delta_2)^{p\theta s^{-1}}\,dx \le C\int |f(x)|^p\,dx\,.$$

Let N tend to infinity in the inequality above. Then we have

$$\int |T_{\lambda}^{R(x)}(f(w+\delta_2)^{-\theta s^{-1}})(x)|^p(w(x)+\delta_2)^{p\theta s^{-1}}\,dx \le C\int |f(x)|^p\,dx\,.$$

Notice that C is independent of δ_2 and R(x) being a measurable function bounded below and above. Therefore

(3)
$$\int |T_{\lambda}^* f(x)|^p w^{p\theta s^{-1}}(x) \, dx \le C \int |f(x)|^p w^{p\theta s^{-1}}(x) \, dx$$

holds for all $\theta < \theta_1(p, s, \lambda) \neq 0$ by choosing appropriate ε_1 and ε_2 . By Lemma 3 we can replace w in (3) by $w^{1+\delta}$. Hence Theorem 4 holds by choosing $\theta = \theta_1(p, s, x)/(1+\delta) \neq 0$.

Proof of Theorem 2. By Lemmas 7 and 8, T_z is bounded on $L^p(w)$ provided $w \in A_{p(1-1/q)}$ and Re z > 0. In addition T_z is bounded on $L^2(\mathbb{R}^n)$ when $|\text{Re }z| < \frac{1}{2}(1-1/q)$. By the complex interpolation theorem (see [10]) and Lemma 3, T_0 is bounded on $L^p(w)$ provided $p>q(q-1)^{-1}$ and $w\in$ $A_{p(1-1/q)}$. Therefore Theorem 2 holds.

Proof of Theorem 5. Define

$$T_z^* f(x) = \sup_{\varepsilon > 0} \left| \int_{|y| > \varepsilon} K_z(y) f(x - y) \, dy \right|.$$

Then by Lemmas 9 and 10 we get

$$\int |T_z^* f(x)|^p w(x) \, dx \le C(z) \int |f(x)|^p w(x) \, dx$$

provided $w \in A_p$ and n/q < Re z < 1. In addition the pointwise estimate

$$\sup_{\varepsilon>0} |T_{z,\varepsilon}f(x)| \le C(z)\mu f(x) + T_z^* f(x)$$

holds for all x in R^n , n/q < Re z < 1, and

$$C(z) \le C(|\text{Re } z - 1|^{-c} + |\text{Re } z - n/q|)^{-c}e^{c|\text{Im } z|}.$$

Hence we have

(4)
$$\int \sup_{\varepsilon>0} |T_{z,\varepsilon}f(x)|^p w(x) dx \le C(z) \int |f(x)|^p w(x) dx$$

for $n/q < \operatorname{Re} z < 1$ and $w \in A_p$. By (4), Lemmas 3, 5, and 6 we can prove the following in such a way as we prove Theorem 4,

$$\int \sup_{\varepsilon>0} |T_{z,\varepsilon}f(x)|^s w^{(\operatorname{Re}z)n/q}(x) \, dx$$

$$\leq C(z) \int |f(x)|^s w^{(\operatorname{Re}z)n/q}(x) \, dx$$

provided 0 < Re z < n/q, $w \in A_s$, and $C(z) \le C |\text{Re } z|^{-C} \exp(2|\text{Im }z|^2)$. Hence

$$\int \sup_{\varepsilon>0} |T_{s,\varepsilon}f|^p(x) w^{\theta_2(p,s,q)}(x) dx \le C \int |f(x)|^p w^{\theta_2(p,s,q)}(x) dx$$

holds for 1 , <math>q > n, and $w \in A_s$ and Theorem 5 holds.

ACKNOWLEDGMENTS

The authors would like to thank the referee for some corrections.

REFERENCES

- 1. K. F. Andersen, Weighted norm inequalities for Bochner-Riesz spherical summation multipliers, Proc. Amer. Math. Soc. 103 (1988), 165-170.
- 2. A. Carbery, A weighted inequality for the maximal Bochner-Riesz operator on R², Trans. Amer. Math. Soc. 289 (1985), 673-680.
- 3. A. Carbery, J. L. Rubio de Francia, and L. Vega, Almost everywhere summability of Fourier integrals, J. London Math. Soc. (2) 38 (1988), 513-524.
- L. Carleson and P. Sjolin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287–299.
- 5. L.-K. Chen, On a singular integral, Studia Math. 85 (1987), 61-72.
- 6. M. Christ, Weak type endpoint bounds for Bochner-Riesz multiplier, Rev. Mat. Iberboamericana 3 (1987), 25-31.
- 7. J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimate, Invent. Math. 84 (1986), 541-561.
- 8. C. Fefferman, *Inequalities for strongly singular convolution operators*, Acta Math. **124** (1970), 9–36.
- 9. R. Fefferman, A note on singular integral, Proc. Amer. Math. Soc. 74 (1979), 266-270.
- 10. J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985.
- 11. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
- 12. I. I. Hirschman, Multiplier transforms. II, Duke Math. J. 28 (1961), 45-50.
- 13. D. S. Kurtz and R. L. Wheeden, *Results on weighted norm inequalities for multiplier*, Trans. Amer. Math. Soc. 255 (1979), 343–362.
- S.-Z. Lu, A class of maximal functions on spherical Riesz means, Sci. Sinica 29 (1986), 113-137.
- 15. J. Namazi, On a singular integral, Proc. Amer. Math. Soc. 96 (1986), 421-424.
- 16. J. L. Rubio de Francia, Weighted norm inequalities and vector valued inequalities, Lecture Notes in Math., vol. 908, Springer-Verlag, Berlin and New York, 1982, pp. 86-101.
- 17. X. Shi, Some remarks on singular integrals, Indiana Univ. Math. J. 35 (1986), 103-116.
- Q. Sun, Two problems about singular integral operators, Approx. Theory Appl. 7 (1991), 83–98.
- 19. P. Tomas, Restriction theorem for the Fourier transform, Proc. Sympos. Pure Math., vol. 35, Amer. Math. Soc., Providence, RI, 1979, pp. 111-114.

Department of Mathematics, Hangzhou University, Hangzhou, Zhejiang 310028, People's Republic of China

Current address, X. Shi: Department of Mathematics, Texas A & M University, College Station, Texas 77843-3368

E-mail address: shi@wavelet1.math.tamu.edu