LOCALLY FINITE DIMENSIONAL SHIFT-INVARIANT SPACES
IN R4

AKRAM ALDROUBI AND QIYU SUN

ABSTRACT. We prove that a locally finite dimensional shift-invariant linear space
of distributions must be a linear subspace of some shift-invariant space generated
by finitely many compactly supported distributions. If the locally finite dimen-
sional shift-invariant space is a subspace of the Holder continuous space C% or
the fractional Sobolev space LP"Y, then the superspace can be chosen to be C'*
or LP7 | respectively.

1. INTRODUCTION

A function f € L?* belongs to the Paley-Wiener space Bj/; of band-limited

functions if its Fourier transform satisfies f(£) = 0 for all £ ¢ [—3.3]. The Paley-
Wiener space is a prototypical space for sampling theory, and for digital signal
processing, and it was used to construct some of the first examples of wavelets (see
for example [14]). The Whittaker representation of functions in By, ([19]) then

implies that

Bip = {f =Y cli)sine(e = j) : D Ie(i)I* < o0},
JEZ JEZ
sin(mx)

where sinc(z) = #2722 A linear space V' of distributions on R* is called shift-

invariant if f € V implies f(- —j) € V for any j = (j1,... ,74)" € Z% Thus, the
space By, is a shift-invariant space (SIS). Obviously, L* is also an SIS, but it does
not have the same structure as By, i.e., it cannot be generated by span{¢;(- —
7))y om(-— 7)) j € Z} of some functions ¢y, ..., ¢y with M < co.

Since the sinc-function has infinite support and slow decay, the Paley-Wiener
space may be unsuitable for some applications and some numerical implementa-
tions. Moreover, all functions in B;/, have infinite support since they are analytic.
Hence, B;/; cannot be generated by the span of compactly supported functions
{os(-=37): s=1,...,r,j € Z} C Byy. In fact, the restriction of By, to the unit
interval is infinite dimensional, thus, there are no compactly supported functions
¢1,...,¢p such that By C span{éi(- —j),... ,¢m(- —j) : j € Z}. On the other

hand, the shift-invariant space Va(83) = {3;ez d(1)85(- =)+ D ez |d(§)]? < oo},
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generated by the infinitely supported Battle-Lemarié scaling function 32 can be
generated by the integer shifts {32(- — j)} of the compactly supported B-spline
function of order 3. This last representation can be useful in applications. Un-
like the Paley-Wiener space, the space of restrictions of functions in V5(33) to
any bounded open set A is finite dimensional. However, there are shift-invariant
spaces with finite dimensional restrictions on any bounded open set, but that do
not contain any compactly supported function as in the example below.

Example 1. Let (a(j))jez be a sequence such that a(§) = 35 a(j)e™ is a
nonzero 2m-periodic C'*° function and equals zero in a neighborhood of zero. Define
O = Zjez a(J)X1,j+1), Where g denotes the characteristic function on a set F, and
let

V(o) = { 3o =) DI < 0o}

jEZ JEZ
Obviously

Va(9) € { 3 di(i)xpgn I ldi(5)F < oo},
jeZ jeZ
Thus, V5(¢) has finite dimensional restrictions on any bounded open set. Now
we prove, by contradiction, that there is not any compactly supported function
in V3(¢). Assume that there exists a sequence (d(j))jez € ¢* such that g =
> ez d(j)o(- — j) is a nonzero compactly supported function in Va(¢). Then,

§(€) = d(&)¢(&) = d(£)a(€)sine(€) must vanish in a neighborhood of ¢ = 0. On the
other hand, since

v { X dilinsm: LGP <o)

jEZ JEL

and has compact support, g can be written as g = >, 7(j)X[jj+1) Where 7 is a
nonzero finite sequence. Thus, §(£) = ¥(£)sinc(€) cannot vanish in a neighborhood
of £ = 0 since J(£) is a nonzero trigonometric polynomial. This contradicts our
previous assertion that ¢(£) must vanish in a neighborhood of £ = 0.

Let D denote the space of compactly supported C* functions on R? with the
usual topology, and let D’ be the corresponding space of distributions. A linear
space V' of distributions having finite dimensional restrictions on any bounded
open set is said to be locally finite dimensional. For locally finite dimensional shift-
invariant spaces, there is a long list of publications on its algebraic structure and its
applications (see for instance [1, 5, 6, 8, 9, 10, 11, 13]). In the univariate case and
under the additional conditions that V is a space of functions, and that it is closed
under uniform convergence on compact sets, de Boor and Devore demonstrated that
a locally finite dimensional SIS V' can be generated by a finite set of compactly
supported functions ¢, ... , ¢y modulo some finite dimensional space [4].
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For 1 < p < oo, denote the space of sequences with finite norm || - [|» by ¢. For
1 < p < oo and any functions ¢q,..., ¢y € LP such that
(1.1) Y d(@)p(-—j)eLP forall 1<s<M and (d(j))jeze € &,
jezd
define
M
(12) Vp(oro s on) = { 3 D diol =)+ (do)seme €2, 1< 5 < M},
s=1 jeZzd
It is obvious that V, (o1, ..., ¢ar) is a shift-invariant subspace of L”.
Let {y denote the space of sequences (d(j));jeze such that d(j) = 0 for all but
finitely many j € Z%. Let ¢y,... , ¢ be compactly supported functions in LP,1 <
p <00, 0r ¢r,...,0n € D'. Define

Soor -+ on) = { D0 D0 @5 =3 (dy()jeme € o}

s:ljgzd

For 1 < p < oo, denote the LP-closure of So(¢1,- -, o) by Sp(or, ..., dum). It
can be checked easily that S,(¢1,...,¢n) is shift-invariant and locally finite di-
mensional. It can also be checked easily that Sy C V, C S,,.

_ Define the Fourier transform f of an integrable function f by
f(€) = [ga f(x)e™?™*¢dx and that of a tempered distribution as usual. For p = 2,

f € Sy(er,... o) if and only if F(€) = S Dy(€)ds(€) for some 2r-periodic
functions Dy(€),1 < s < M, and 3, D, (€)ds(€) is square integrable ([5]). How-
ever, it is not known whether Dy(£),1 < s < M correspond to sequences. Thus
unlike Vo(é1,. .., 0un), So(é1,. .., dn) is not necessarily generated by linear com-
binations of generators and their shifts. Even in the case where we know that
So(¢1,...,¢0n) is generated by such a linear combination, it is not true that the
coefficients of the linear combination are in /P or in some well-defined sequence
space, in general. In fact, the algebraic structure of Sy(¢, ..., ¢pr) is usually very
complicated. For p # 2, there are fewer treatment of the algebraic structure of the
space Sy(¢1, ..., o). For these reasons we consider the following problem.
Problem. Given a topological linear space X of distributions, and a locally finite
dimensional shift-invariant subspace V', can we find a shift-invariant subspace S of
X with a simple algebraic structure such that V' is a subspace of S?

For a linear topological subspace X of D', we say that X has continuous translates
if f(-—y) € X forall f € X and y € R?, and the translation operator 7,

w: X3 fr— f(-—y) €X,

is continuous for any y € R?, and we say that X has continuous D-multiplication
if the multiplication by any function h € D,

X>fr—hfelX,
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is a continuous map from X to X. Let X be a topological linear space having
continuous translates and continuous D-multiplication. In this paper, we shall
prove that if V' is a shift-invariant linear subspace of X and if V is locally finite
dimensional, then V' must be a subspace of some shift-invariant space generated by
finitely many compactly supported distributions in X having linear independent
shifts (Theorem 3.1). Moreover, the intersection between the finitely generated
shift-invariant space above and X has a simple algebraic structure when X is the
space of Holder continuous functions C'*, or X is the fractional Sobolev space L7
(Theorems 4.1 and 4.3).

2. MoDEL CASE: [P

In this section, we discuss the model case of locally finite dimensional shift-
invariant subspaces of LP(R?). The ideas behind the discussion have appeared in
[4, 7], and the result for the model case (Theorem 2.1) was essentially stated in
[11].

Generally the space V,(¢1, ..., ¢a) defined by (1.2) is not a closed subspace of
LP. For 1 < p < oo, let LP be the space of all functions f for which

17ller = || 217G+, e <

jezd

Then £ C £ C LP C LP forany 1 < p < ¢ < oo, L' = L'. Obviously,
any compactly supported LP function belongs to £P. Also it is routine to check
that £P,1 < p < o0, has continuous translates and D-multiplication. For a sin-
gle generator ¢, it can be shown that » . ,.d(j)¢(- —j) € LP for any ¢ € LP
and (d(j))jeze € P (for instance see [13]). For the case of multiple generators,
P1y... 0 € L2 and 1 < p < oo, the closedness of Vj,(¢1, ..., ¢ ) in LP was com-
pletely characterized in [2]. For any functions ¢1,..., ¢y € LP satisfying (1.1),
we say that the set of functions {¢(- —j),...,du(- —j), j € Z?} forms a strong
unconditional basis (also known as stable basis) of V,(¢1,...,¢n) if there exist
two positive constants C; and Cy such that

(2.1) 012||D ||ep<HZZd Jou-=3)| <CQZ||D||@

s= IJeZd
for all Dy,... ,Dy € P, where Dy = (ds(j))jeze € #,1 < s < M. By the
completeness of 7, Vj,(¢1,...,¢n) is a Banach subspace of L? if the set of func-
tions {¢1(- — j),...,du(- —j), j € Z%} forms a strong unconditional basis of

Vo(d1,--., dm).

For a locally finite dimensional shift-invariant linear subspace V' of LP, define
fi = fxpue and V) = {f} : f € V}. By the assumption on V, the space V] is
finite dimensional. Let dim V| = M, then there exists an M-dimensional basis
{¢1,...,dun} for V] such that ¢, ..., ¢a belong to L? with support in [0, 1]%. For
p = 2, the functions ¢q,... , ¢y can be chosen to form an orthonormal basis of
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(V}, L*([0,1]%)), and hence the set {¢1(- —j),... ,dn(- —j), j € Z¢} forms an
orthonormal basis of V3(¢1, ..., ¢u). For a general 1 < p < oo, there exist positive
constants C; and C, such that

< Oy sup A

1<s<M Lr([0,1]¢) 1<s<M

M
(2:2) Cr sup A< || D0 A,
s=1

for all (\y,..., ) € RM™. By the definition of ¢y,..., ¢y, for any f € V there
exist unique sequences (d;(j))jeze, 1 < s < M such that

(2.3) F=Y) d@)es(- -

s:ljezd

Recall that ¢s,1 < s < M, are supported in [0,1]%. Then by (2.3),

(2.4) 171 = | (| Zd

This together with (2.2) yield:

Il e(o 1}d))Jezd o

Theorem 2.1. Let 1 < p < oo, and let V' be a locally finite dimensional shift-
wnwvariant linear subspace of LP. Then there exist compactly supported functions
G1,. .., ¢ar in LP such that {¢1(- —3),...,0m(- —J), j € Z} forms a stable basis
for Vi (1, ..., éum), and such that V' is subspace of Viy(¢p1, ..., o).

3. SHIFT-INVARIANT SPACES OF DISTRIBUTIONS

For any compactly supported distributions ¢1, ... , ¢, define the corresponding
semi-convolution map S from (M) to D’ by

(3.1) S ((dl(j))jezd , (A (3) JGZ‘i) Z Z ds

s=1 JEZ‘i

where (M) is the linear space consisting of ordered M-tuples of sequences. We say
that the compactly supported distributions ¢4, ... , ¢y have linearly independent
shifts if the corresponding map S in (3.1) is one-to-one. The image of the map S
n (3.1), which we denote by S(¢1,..., ), is said to be the shift-invariant space
generated by ¢, ... , ¢ar. It is obvious that S(¢y, ..., dar) is a locally finite dimen-
sional SIS. Moreover, S(¢1,...,¢u) has a simple algebraic structure. However, as
proved by Example 1, locally finite dimensional SIS of distributions need not be
generated by finitely many compactly supported distributions.

In the proof of Theorem 2.1, we use the restrictions of functions in V' to unit cubes
[k, k+1]% k € Z% Generally some properties such as Holder continuity may be
lost when restricting functions in V' to cubes. Moreover, the restriction procedure
cannot be used when the elements in V' are distributions that are not generated by
functions. Hence the procedure in the proof of Theorem 2.1 cannot be generalized in
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a straightforward way to the shift-invariant subspace of C'* and LP?, two important
classes of function spaces. Thus, for a shift-invariant space with its elements in
some linear topological space, we need to develop new methods to construct an
“appropriate” shift-invariant space generated by finitely many distributions.

Theorem 3.1. Let X be a linear topological subspace of D' having continuous
translates and D-multiplication, and let V' be a locally finite dimensional shift-
wnwvariant linear topological subspace of X. Then there exist compactly supported
distributions ¢1, ... , oy € X such that ¢y, ... , ¢ have linearly independent shifts,
and such that V' is a subspace of S(d1, ..., 0um)-

To prove Theorem 3.1, we need the following decomposition of any finite set
of compactly supported distributions, whose proof is given at the end of this sec-
tion. This decomposition is interesting by itself and has been used in the study of
convergence of cascade algorithms and smoothness of refinable distributions ([17]).

Theorem 3.2. Let {g1,...,gn} be any finite set of compactly supported distribu-
tions. Then there exist compactly supported distributions ¢q,... , ¢ such that
(i) @1,..., 0 have linearly independent shifts;
(i) ¢s,1 < s < M, are finite linear combinations of ¢;(- —j) and hyg;(-—j), where
1<i<N,jeZand hy € D, i.e., there exist finitely many hy, € D and
j € Z¢, such that

N N
¢s = Z Z Civs ke jhugi(- —J) + Z Z Cisigi(- —J)
i=1 kj i=1 j
for some coefficients ¢; 515 and ¢ 555
(iii) ¢;,1 < i < N, are finite linear combinations of ¢s(- —j),1 < s < M,j € 27,
i, gi=M, > ieza dis(3)@s(- — §) for some sequences (dis(j))jeze € o
For the moment, we assume that Theorem 3.2 is true and start to prove Theorem
3.1.

Proof of Theorem 8.1. Let Ay = (—1,1)% and let hy € D be so chosen that supp hy C
AO and

(3.2) > hp(x—k)=1 forall xeR"

kecZd
Denote the linear space of restrictions on Ay of all distributions in V' by Vy,. By the
assumption on V', V,, is a finite dimensional linear space. Let N = dim Vj,,, then
there exist finitely many distributions fi,..., fy in V such that their restrictions
on A, are bases of Vy,. Therefore by the shift-invariance of V', we conclude that
for any f € V there exist unique sequences (¢;(k))xeza, @ =1,..., N, such that

N
Fe+Kk) =) c(k)fi=0 on Ay forall ke Z%

=1
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This together with supp hq C A lead to

N
(3.3) ho(- = k) f = _ci(k)ho(- — k) fi(- —k) forall k€ Z".
i=1

Set g; = hgfi,]_ <1 < N, and let d)la"' 7¢)M and (dis(j))jezda 1= ]_, ,N, s =
1,..., M, be the compactly supported distributions and the finitely supported se-
quences in Theorem 3.2 respectively such that ¢q, ... , ¢); have linearly independent
shifts and

M
(3.4) hofi =YY dis(§)¢s(- —j) forall1 <i < N.

s=1 jEZd

Then by (ii) of Theorem 3.2 and the continuous translates and D-multiplication
properties of X, it follows that ¢q,..., ¢y belong to X. Combining (3.2), (3.3)
and (3.4), we get

[ = Z ho(- — k) f = Z Z ci(k)ho(- — k) fi(- — k)

kcZd i=1 kecZd

— ZZ Z Z ¢i(k)dis(3)¢s(- —3 — k) € S(¢1,... . dum)-

i=1 s=1 jeZd keZd

O

For any bounded open set A of R? and compactly supported distributions
G1,--- 9N, let So(g1,...,gn)|a be the space of all restrictions of distributions in
SO(gla s 7gN) on A7 i'e'a

SO(gla"' 7gN)|A = {g|A: g c 50(917"' 7gN)}7

where g|4 is the restriction of g on A.
Denote the N copies of ¢y, by ESN). To prove Theorem 3.2, we need the decom-

position (3.5) of a vector-valued distribution on some shift-invariant open set.

Lemma 3.3. Let ¢y,...,g5 be compactly supported distributions, and let A be
a bounded open set of R% such that its closure has disjoint integer shifts, i.e.,
AN(A+3j) =0 for any j € ZA\{0}. Then there exist compactly supported distribu-
tions s € So(gr, ..., gn) and vector-valued sequences By = (€5(j));eze € EE)N), 1<
s < dim Sy(g1, ... ,9n)|a, such that 1,1 < s < dim So(g1,...,9n)|a, are linear
independent on A, and such that

dim So(g1,...,9n)| A

(35) (g--nom)" = D D e{hp)(-—J) on  Ujeza (A+]),

s=1 jezd

where h € D is so chosen that h =1 on A and h =0 on Ujeza (o3 (A +j).
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Proof. Clearly Sy(g1,--.,9n)|a is a finite dimensional linear space. Let 1,1 <
s < dim Sy(g1,- .., gn)|a, be compactly supported distributions in So(g1, ..., gn)
so chosen that {1s]4 : 1 < s < dimSy(g1,...,9n5)|a} is a basis of Sy(g1,...,9n8)|A-
Then 9,1 < s < dim Sp(g1,...,9n)|a, are linearly independent on A.

By the shift-invariance of Sy(g, ... ,gn), the restriction of g;(- +j),1 < i < N,
on A belong to So(g1,- . ,gn)|a for any j € Z¢. Thus for any j € Z?, the restriction
of g1(++3j),... ,gn(- +j) on A is finite linear combination of vy, i.e.,

dim So(g1,....9n)| A

(3.6) (91 +3)-on(CHID" = Y e(i)dy on A
s=1
for some N x 1 vectors e(j),1 < s < dim Sp(g1,...,9n)|a. Recall that {1)s,1 <

s < dim So(g1,...,9n)|a} is a basis of Sp(g1,.-.,9n)|a, and that g;,..., gy have
compact support. Hence e,(j) = 0 for all j € Z¢ with sufficiently large |j|. This
proves (€;(j))jez: € é(()N).

Finally we prove (3.5) for the distributions 1, and sequences (ey(j))jcz¢ chosen
above. Let h € D be so chosen that h = 1 on A and the support of A is disjoint from
Ujeza\j03 (A +j). The existence of such a function i follows from the assumption

on the open set A. Therefore it follows from (3.6) that for any j € Z¢,

dim So(g1,.--,9N)|A dim So(g1,---,9n8)| A
(g1, gv)" = oo e@—i = D e —J)
s=1 s=1

dim So(g1,...,9N)|a

_ Z Zes (hps)(- —j) on A+j,

j'ezd

where we have used the fact that h =1 on A and that hy),(- —j') =0 on A+ j for
any j # j'. Then (3.5) follows. O

We remark that the representation (3.6) of a distribution is true for any open
set A. Such a representation has been used in studying the shift-invariant space
S(g1, ... ,9n) generated by g1, ... , gy and in studying linear independence of shifts
of g1,...,gn (see for instance [11, 12, 13]).

Proof of Theorem 3.2. Let Agx,1 < k < K, be bounded open sets such that UkKZIUjezd
(Ar +j) = R? and the closure of A has disjoint integer shifts for any 1 < k < K,
i.e., Ay N (A +j) =0 for any j € Z%\{0}. For instance, A;, = (1/5,4/5) +x;, and
{xk, 1 <k <24 =-{0,1/2}¢ c R is such a family of bounded open sets. Let
hi € D,1 < k < K, be so chosen that iy = 1 on A and kg = 0 on Ujezay (o3 (A +]j)-
Set go; = ¢i;,1 < i < N. Inductively for 1 < k < K, we let 9, and
{er,s(3) }ieza, 1 <'s < Ni, be the compactly supported distributions ¢, and finitely
supported sequences (e(j));cza in Lemma 3.3 with g; replaced by gr_1,,1 <i < N,
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and A by Ag, and define

3.7 (gk1,- - agk,N)T = (Gr-1,1, - -- ,gk—uv - Z Z er,s(J) (M tr,s) (- — J),

s=1 jezd

where we denote Ny = dim So(gk—11,--- » Gk—1.5)|4,-

By Lemma 3.3, for any 1 < k < K, we have
(3.8) Yrs € So(Gre—11,---,gk—1,y) forall 1 <s < N,
(3.9) i, 1 < s < N, are linearly independent on A,
and
(3.10) (k.1,--- ,gk,N)T =0 on Ujega (A +]J)-

Set
(3.11) Oks = hithps, 1<s<Np1<k<K.

It remains to show that ¢, 1 < s < N, 1 < k < K, are the distributions having
linearly independent shifts that we are seeking in Theorem 3.2. By (3.7) and (3.8),

forany 1 <k < K, gk1 — Gi-1,1,--- ,9k,N — gr—1,~ are finite linear combinations
of hi( — j)gr_14(- — j), where 1 < i < N and j,j € Z%. This implies that
for any 0 < k < K, gg1,-.., 9N are finite linear combinations of g¢;(- — j) and
hi1gi(- —j), where hy; € D,1 <i < N, and j € Z%. The same is true for ¢y, since
Vrs € So(Gk-1,15--- ,gk—1,~) and hy, € D. This proves assertion (ii) of Theorem
3.2.

From (3.7), (3.8), and (3.10), we have
(312) (gk:,l; Ce ,gk,N)T =0 on Ui’:l UjeZd (Ak:’ +j)
Taking k = K in (3.12) and using the assumption U}, Ujcza (A4 +j) = R? lead to
(313) (g[(,l,... ,gK,N)T = 0

Assertion (iii) follows from (3.7), (3.11), (3.13) and go; = ¢;, 1 < i < N.

Finally, we prove assertion (i), i.e., ¢ps,1 < s < Ni, 1 < k < K, have linear
independent shifts. Let Cy s = (cs(J))jeza, 1 < 5 < Ni, 1 < k < K, be sequences
such that

K N

(3.14) Y3 si)grs(-—j)=0 on R™

k=1 s=1 jezd
Then it suffices to prove
(3.15) Chs=0 V1<s<N, and 1<k<K.
We prove (3.15) by contradiction. Assume that,
(3.16) Chroso 70 forsome 1<sy <Ny and 1<k <K,
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and

(3.17) Crs=0 forall 1<s< N, and 1<k <hk.

Set Fj, = Y.k, > ez Crs(§)Br,s (- —J) for any 1 <k < K. Using (3.17) we get that
(3.18) Fo=0 Y1<Fk<h.

Moreover, using (3.8), (3.11), and (3.12), we conclude that

(3.19) F,=0 on Ujega (Ap, +j) forallky <k < K.

Combining (3.14), (3.18), and (3.19), we obtain

(3.20) Fi, =0 on  Ujeza (Ak, +1J)-

Recall that ¢, s = 0 on Ay, + j for any j € Z4\{0}, and ¢y, = thg,s on Ay, by
(3.11). Using (3.20), it follows that

Ni,

Fko - Z Cko,s(j)wko,s(' - j) on Ako +j
i=1

for any j € Z? which together with (3.9) lead to cg, s(j) = 0 for all 1 < i < Ny,
and j € Z%. Thus Cj, ,, is a zero sequence, which contradicts (3.16). This proves
(3.15), and hence assertion (i) of the theorem. O

4. HOLDER CONTINUOUS AND SOBOLEV SHIFT-INVARIANT SPACES

For any locally finite dimensional shift-invariant subspace V' of a topological lin-

ear space X , by Theorem 3.1, we can find a shift-invariant space S(¢1, ... , ¢ar) such
that V C S(¢1,...,0n) N X, where ¢1,..., ¢y € X have compact support and
linearly independent shifts. The algebraic structure of the space S(¢1,...,dn)NX
is not clear even though S(¢1,... ,¢y) has a very simple algebraic structure. For
the case X = LP and ¢y,..., ¢y in Theorem 2.1, we have

(4.1) S(p1, .- o) NLP =V (b1,-..,00m)

([11, Theorem 7.2]). In particular, the equality S(¢1, ..., ¢p)NLP = Sp(o1, ..., dum)
was proved in [11]. As a consequence, assertion (4.1) holds since Vj(¢1,... ,dn) =
Sp(@1,...,¢um) for all 1 < p < oo under the assumption that ¢y, ..., @y has sta-
ble shifts. This inspires us to discuss the algebraic structure of S(¢1, ... ,dn)NX
for the Holder continuous functions X = C¢, and the fractional Sobolev space
X = LP7. For a linear topological space X of distributions and ¢q,...,¢y € X
such that

M
YN du§)da(-—j) € X for all (dy(j))jezs € ¢ and 1 < 5 < M,

s=1 jezd
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let

V(drr o 00) = {30 D Ao =3+ (du(i))jeme € 0,1 <5 < MY,

s=1 jeZzd
We shall prove the following results: Let ¢q,... , ¢y be compactly supported dis-
tributions in X and have linearly independent shifts. If X = C'* for some o > 0,
then

S(¢17 7¢)M)mX = Voo(d)la 7¢M)
If instead X = LP*7 for some 1 < p < oo and —oo < v < 00, then

S(¢17 7¢M)mX:V;7(¢17 7¢M)

4.1. Holder Continuous Space. Take a nonnegative real number «, and let «y
be the greatest integer smaller than or equal to @ and 6 = o — a. Let C* be the
space of all continuous functions f on R? such that f has continuous k-th derivative
D¥f for any k satisfying Z?:l k; < ap, and such that || f||ce < 00, where

Ifllea:= > ID*flloe+ sup DX f(x) = DXf(¥)|/I1x - ¥I".

>4 ki<ag x,yeRd,ELl ki=ao
and k = (ki,...,ky) € Z¢ satisfies k; > 0 for i = 1,... ,d. We say that compactly
supported distributions ¢, ... , ¢ have stable shifts if the restriction of the semi-

convolution map S in (3.1) to the space of all vector-valued bounded sequences is
one-to-one.

Theorem 4.1. Let a > 0, and let ¢q, ..., ¢y be compactly supported distributions
in C% and have stable shifts. Then

S(@1,- - o) NC* = V(@15 -, dm).-
Proof of Theorem /.1. Tt is easy to show that any function in Vi (¢1,..., o)
belongs to C'“. Hence
(4.2) Voo @1, s 0m) C S(¢1,...,0m) NC™.
From C* C L* and Theorem 7.2 in [11], it follows that

(4.3)  S(é1,-.. ,drr) NC%C S(ry...,das) VL™ = Vie (b1, ..., dnr)-
Combining (4.2) and (4.3) leads to the desired assertion. O

By the definition of Hélder continuous space, C'* has continuous translates and
D-multiplication. Hence, by Theorems 3.1 and 4.1, we have the following result for
a locally finite dimensional shift-invariant subspace of C*“.

Corollary 4.2. Let « > 0 and V' be a locally finite dimensional shift-invariant
subspace of C*. Then there exist compactly supported functions ¢y, ..., oy € C°
such that ¢1, ..., ¢y have linearly independent shifts, and such that V' is a subspace

Of Voo(qﬁl, Ce 7¢M)
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4.2. Fractional Sobolev Space. For any real number v, define the Bessel poten-
tial operator [J, on the space of tempered distributions by

I f = (f(l +]- |2)7/2>

Here fY is the inverse Fourier transform of a tempered distribution f. For any
1 < p < o0 and real number v, let LP7 denote the fractional Sobolev space that
consists of all distributions f with ||f||,, < oo, where || f||,, =: [|T5f]|p- Obviously,
LPY = [P and for d = 1, the ¢ distribution belongs to L?7 for any v < —1. It is
known that LP72 C LP" if v; < 7. If 7 is a nonnegative integer, and 1 < p < oo,
then

\Y

(4.4) LPY = {f:D¥f e P forall k| <~}

Let A = 3%, 33—;? denote the Laplacian. Results in [16, 18] show that for any
k > —v/2, there exists a positive constant C' such that

(4.5) 11 = 2)"gll, < Cliglly, ¥ g € L.

Theorem 4.3. Let 1 < p < 00, —o0 < 7 < 00, and let ¢1,...,Pr be compactly

supported distributions in LPY and have linearly independent shifts. Then

S(¢17 s 7¢M) NLP = ‘/;7(¢17 cee 7¢M)
By direct computation, /(- — ¥)lly = |/l for any y € RY. By classical

multiplier theorem([16], p. 96) and the fact that hf = Jra h(n)f(- = n)dn, we
obtain

Whfllpr, < /Rd |ﬁ(77)| X H (mnf(l +- |2)7/2)v

b [ I+ )12 < ol

for all h € D, where m, (£) = (14 £[%)7/2(1+|£+n|?)?/2. Therefore the fractional
Sobolev space LY has continuous translates and D-multiplication for any 1 < p <
oo and —oo < v < oo. This together with Theorems 3.1 and 4.3 lead to the
following result:

dn

p

< Gy||f

Corollary 4.4. Let 1 < p < 00,—0 < 7 < 00, and V be a locally finite di-
mensional shift-invariant subspace of LPY. Then there exist compactly supported
distributions ¢1, ..., 0 € LP7 such that ¢,..., ¢y have linearly independent
shifts, and V' is a subspace of Vy(¢1,. .., dum).

Let 1 < p < o0 and —00 < 7 < 00. Since the space LP? has continuous trans-
lates and D-multiplication, by Theorem 3.2, any compactly supported distribution
in LP"7 can be decomposed as a finite linear combination of the shifts of some com-
pactly supported distributions in L”? having linear independent shifts. Therefore
using the above decomposition for LP7 distributions instead of the decomposition
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for L? functions in [11] (or instead of (2.3)), the assertion in Theorem 4.3 instead of
an estimate in [11] similar to (2.4), and the ideas about compatibility of linear sys-
tem in the proof of Theorem 7.2 in [11], we have the following slight generalization
of Theorem 4.3.

Theorem 4.5. Let 1 < p < 00, —o0 < 7 < 00, and let ¢y1,...,Pr be compactly
supported distributions in LPY and have stable shifts. Then

S(¢1,... ,gzﬁM)ﬂLp”:V},(d)l,... 3¢M)

For the special case v = 0, the assertion of Theorem 4.5 was proved in [11,
Theorem 7.2]. To prove Theorem 4.3, we need the inclusion

(46) S(d)l, ,¢M)QLP,7C‘/;)(¢1,... 3¢M)

and the estimate

(4.7) > d( € LP

jezd

for any sequence D = (d(j))jez € ¢ and any compactly supported distribution
¢ € LP7. The proof of (4.6) is non-trivial when 7 is a negative number (when
v > 0, (4.6) follows easily from LP*Y C LP and a consequence of [11, Theorem
7.2]). The estimate (4.7) is also non-trivial when 7 is a real number other than
a nonnegative integer (when v is a nonnegative integer, (4.7) follows easily from
(4.4) and the fact that D¥¢,,... , DX¢, have compact support for any [k| < 7).

Denote the pairing action between a distribution in D’ and a function in D by
(-,-), and the convolution fxg between f in D and gin D' by fxg(x) = (f(z—"), 7).
To prove Theorem 4.3, we need a result in [3, 20|, and a characterization of the
fractional Sobolev space LP>Y in the time domain ([18], p.15).

Lemma 4.6. Let ¢y, ..., ¢p be compactly supported distributions having linearly
independent shifts. Then there exist 1, ...,y € D such that

<¢sa wt( _j)> - 6st6j0-
Here ¢ stands for the Kronecker symbol.

Lemma 4.7. Let1 < p < 00,—00 < v < 00, and let V_; and Yy € D be so chosen
that |Wo(€)| < 01|5|M+1 and

O+ [Wo(27¢)| > €, forall &R,
1>0
where C\ is a positive constant independent of €. Set U, = 24Uy(2") for [ > 0.
Then there exists C' > 0 such that

B 1/2
Ol < | ( 22 22000 1) 7| < Cllf

>—1
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Proof of Theorem /.3. Let g be any distribution in S(¢y,...,¢n) N LP7. Then
g€ P and g =", Y ez As(3)¢s(-—j) for some sequences Dy = (ds(j))jeze, 1 <
s < M. Let 7 be the smallest nonnegative integer bigger than —v/2, and let
Y1,...,%y € D be the functions in Lemma 4.6. Then by Lemma 4.6,

ds(§) = (9, ¥s(- =) = (1 = B)7°g, (1 = A)s(- = j))
for all j € Z¢ and 1 < s < M. This leads to

wip) 1P _
(X 1a,G)) ™ <= 2) gl i1 = A4 llex <00 ¥ 1<s <M,

jezd

where we have used (4.5) and the fact that (1 — A)?¢), € D forall 1 < s < M.
Thus, Dy € ?,1 < s < M, and g € V(¢1,...,¢n). This proves (4.6).

Let ¢ € P and D = (d(j))jeze € #,1 < s < M. Let ¥;,;l > —1, be as in
Lemma 4.7. Then V¥, % ¢ are supported in a compact set K independent of [>—1.
Therefore by Lemma 4.7 and using Holder’s inequality,

>1/2

| X e -3 < af(Xe2 S divisot )
o 3146 ( 2ot i),

jezd >-1
Ca(Zid )" <[( X 2mwesor) ),

jezd
< Cull@llpl1(d(G))jezeller,

where Cy, Cy, C3, Cy are positive constants independent of the sequence (d(j));ez: €
¢?. This proves (4.7) and hence

(48) ‘/})(Qﬁl; 7¢M) - S(¢17 ,¢M)HLP,’Y.
Combining (4.6) and (4.8) leads to the desired result. O

p

IN

IN

Remark A shift-invariant space V' is said to be injectable if there exist finitely
many compactly supported distributions such that they have linear independent
shifts, and such that V is a subspace of the space spanned by their shifts. In particu-
lar, as a consequence of Theorem 3.1, every locally finite dimensional shift-invariant
space of distributions is injectable. The concept of injectability was recently intro-
duced by Ron in [15], and we became aware of this definition after we submitted this
manuscript. In his recent preprint [15], Ron states that “At the time this article
s written, ... we do not know of a general technique for smoothness-preserving
injection.” He also states that “ ... local FSI spaces that are generated by com-
pactly supported functions are injectable as well. It is safe to conjecture that the
results here are valid for spaces generated by compactly supported distributions, and
it would be nice to find a neat way to close this small gap.” But one of the main



LOCALLY FINITE DIMENSIONAL SHIFT-INVARIANT SPACES IN R? 15

results of our paper is to give an injection that preserves smoothness. Moreover,
this smoothness-preserving injection s also valid in shift-invariant spaces of com-
pactly supported distributions, and even in locally finite dimensional shift-invariant
spaces.

Acknowledgment The authors thank the anonymous referee for insightful com-
ments.
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