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Abstract. In this paper, it is proved that every s-sparse vector x ∈ Rn

can be exactly recovered from the measurement vector z = Ax ∈ Rm

via some `q-minimization with 0 < q ≤ 1, as soon as each s-sparse vector
x ∈ Rn is uniquely determined by the measurement z. Moreover it is
shown that the exponent q in the `q-minimization can be so chosen to
be about 0.6796× (1− δ2s(A)), where δ2s(A) is the restricted isometry
constant of order 2s for the measurement matrix A.

1. Introduction and Main Results

Define ‖x‖q, 0 ≤ q ≤ ∞, of a vector x = (x1, . . . , xn)T ∈ Rn by the num-
ber of its nonzero components when q = 0, the quantity (|x1|q+· · ·+|xn|q)1/q

when 0 < q < ∞, and the maximum absolute value max(|x1|, . . . , |xn|) of
its components when q = ∞. We say that a vector x ∈ Rn is s-sparse if
‖x‖0 ≤ s, i.e., the number of its nonzero components is less than or equal
to s.

In this paper, we consider the problem of compressive sensing in finding
s-sparse solutions x ∈ Rn to the linear system

(1.1) Ax = z

via solving the `q-minimization problem:

min ‖y‖q subject to Ay = z

where 0 < q ≤ 1, 2 ≤ 2s ≤ m ≤ n, A is an m×n matrix, and z ∈ Rm is the
observation data ([1, 5, 7, 9, 12, 14]).

One of the basic questions about finding s-sparse solutions to the linear
system (1.1) is under what circumstances the linear system (1.1) has a unique
solution in Σs, the set of all s-sparse vectors.

Proposition 1.1. ([12, 15]) Let 2s ≤ m ≤ n and A be an m × n matrix.
Then the following statements are equivalent:

(i) The measurement Ax uniquely determines each s-sparse vector x.
(ii) There is a decoder ∆ : Rm 7−→ Rn such that ∆(Ax) = x for all

x ∈ Σs.
(iii) The only 2s-sparse vector y that satisfies Ay = 0 is the zero vector.
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(iv) There exist positive constants α2s and β2s such that

(1.2) α2s‖x‖2 ≤ ‖Ax‖2 ≤ β2s‖x‖2 for all x ∈ Σ2s.

The first contribution of this paper is to provide another equivalent state-
ment:

(v) There exists 0 < q ≤ 1 such that the decoder ∆ : Rm 7−→ Rn defined
by

∆(z) := argminAy=z‖y‖q

satisfies ∆(Ax) = x for all x ∈ Σs.
The implication from (v) to (ii) is obvious. Hence it suffices to prove

the implication from (iv) to (v). For this, we recall the restricted isometry
property of order s for an m×n matrix A, i.e., there exists a positive constant
δ ∈ (0, 1) such that

(1.3) (1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2 for all x ∈ Σs.

The smallest positive constant δ that satisfies (1.3), to be denoted by δs(A),
is known as the restricted isometry constant [5, 7]. Notice that given a
matrix A that satisfies (1.2), its rescaled matrix B :=

√
2/(α2

2s + β2
2s)A

has the restricted isometry property of order 2s and its restricted isometry
constant is given by (β2

2s−α2
2s)/(β2

2s +α2
2s). Therefore the implication from

(iv) to (v) further reduces to establishing the following result:

Theorem 1.2. Let integers m,n and s satisfy 2s ≤ m ≤ n. If A is an
m× n matrix with δ2s(A) ∈ (0, 1), then there exists q ∈ (0, 1] such that any
s-sparse vector x can be exactly recovered by solving the `q-minimization
problem:

(1.4) min ‖y‖q subject to Ay = Ax.

The above existence theorem about `q-minimization is established in [17]
and [9] under a stronger assumption that δ2s+2(A) ∈ (0, 1) and δ2s+1(A) ∈
(0, 1) respectively, as it is obvious that δ2s(A) ≤ δ2s+1(A) ≤ δ2s+2(A) for
any m× n matrix A.

Having the above existence theorem about `q-minimization in hand, now
we consider the problem how to select the positive exponent q in the `q-
minimization problem (1.4) for a given measurement matrix. Given integers
s,m and n satisfying 2s ≤ m ≤ n and an m× n matrix A, define

qs(A) := sup
{
q ∈ [0, 1]

∣∣ any vector x ∈ Σs can be exactly recovered

by solving the `q −minimization problem (1.4)
}
.

Obviously qs(A) > 0 whenever δ2s(A) < 1 by Theorem 1.2. It is known
that any s-sparse vector x ∈ Rn can be exactly recovered by solving the
`q-minimization problem (1.4) whenever q < qs(A) [18]. This establishes
the equivalence among different exponent q ∈ [0, qs(A)) in recovering s-
sparse solutions via solving the `q-minimization problem (1.4). Hence in
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order to recover sparsest vector x from the measurement Ax, one may solve
the `q-minimization problem (1.4) for some 0 < q ≤ 1 rather than the `0-
minimization problem. Empirical evidence ([9, 22, 23]) strongly indicates
that solving the `q-minimization problem with 0 < q ≤ 1 takes much less
time than with q = 0.

The `0-minimization problem is a combinatorial optimization problem
and NP-hard to solve [20], while on the other hand the `1-minimization
is convex and polynomial-time solvable [2]. To guarantee the equivalence
between the `0 and `1-minimization problems (1.4) in finding the sparse
vector x from its measurement Ax, one needs to meet various require-
ments on the matrix A, for instance, δs(A) + δ2s(A) + δ3s(A) < 1 in
[6], δ3s(A) + 3δ4s(A) < 2 in [5], and δ2s(A) < 1/3 ≈ 0.3333,

√
2 − 1 ≈

0.4142, 2/(3 +
√

2) ≈ 0.4531, 2/(2 +
√

5) ≈ 0.4731, 4/(6 +
√

6) ≈ 0.4734 in
[12, 4, 17, 3, 16] respectively. Many random matrices with i.d.d. entries
satisfy those requirements to guarantee the equivalence [7], but lots of de-
terministic matrices do not. In particular, matrices Aε are constructed in
[13] for any ε > 0 such that δ2s(Aε) < 1/

√
2 + ε and that it fails on the

recovery of some s-sparse vectors x by solving the `1-minimization problem
(1.4) with A replaced by Aε.

The `q-minimization problem (1.4) with 0 < q < 1 is more difficult to
solve than the `1-minimization problem due to the nonconvexity and nons-
moothness. In fact, it is NP-hard to find a global minimizer in general but
polynomial-time doable to find local minimizer [19]. Various algorithms have
been developed to solve the `q-minimization problem (1.4), see for instance
[8, 11, 14, 17, 21].

Having shown that s-sparse solutions can be recovered via solving the `q-
minimization problem (1.4) with q ∈ [0, qs(A)), we next study the problem
how the quantity qs(A) depends on the measurement matrix A. For that
purpose, we introduce a quantity

qmax(δ;m, n, s) := inf
δ2s(A)≤δ

qs(A), δ ∈ (0, 1),

that depends on the measurement matrix A of size m×n indirectly. Clearly
given any positive number q < qmax(δ; m,n, s) and any m×n matrix A with
δ2s(A) ≤ δ, any vector x ∈ Σs can be exactly recovered by solving the `q-
minimization problem (1.4). For any 0 < q ≤ 1 and sufficiently small ε,
matrices Aε of size (n− 1)×n are constructed in [13] such that δ2s(Aq,ε) <

ηq

2−q−ηq
+ε and there is an s-sparse vector which cannot be recovered exactly

by solving the `q-minimization problem (1.4) with A replaced by Aq,ε, where
ηq is the unique positive solution to η

2/q
q + 1 = 2(1 − ηq)/q. The above

construction of matrices for which the `q-minimization fails to recover s-
sparse vectors, together with the asymptotic estimate ηq = 1− qx0 + o(q) as
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q → 0, gives that

lim sup
δ→1−

qmax(δ; n− 1, n, s)
1− δ

≤ lim
q→0+

q(2− q − ηq)
2− q − 2ηq

=
1

2x0 − 1
≈ 3.5911,

where x0 is the unique positive solution of the equation e−2x = 2x− 1. The
second contribution of this paper is a lower asymptotic bound estimate for
the quantity qmax(δ; m,n, s) as δ → 1−.

Theorem 1.3. Let qmax(δ; m,n, s) be defined as in (1.5). Then

(1.5) lim inf
δ→1−

qmax(δ; m,n, s)
1− δ

≥ e

4
≈ 0.6796.

The asymptotic bound estimate for the quantity qmax(δ; m,n, s) in Theo-
rem 1.3 would be useful in the sparse recovery problem when we have certain
information about the restricted isometry constant of the measurement ma-
trix. We do not know whether the limit limδ→1− qmax(δ; m,n, s)/(1 − δ)
exists and how it depends on the dimensions m,n and the sparsity s if it
does.

To prove Theorems 1.2 and 1.3, we introduce a function b(q, δ) on the
unit square (0, 1]× (0, 1),

b(q, δ) := δ−1 inf
0<r0<1

max
{ 1 + r0δ

(1 + rq
0δ

q)1/q
, sup√

2(1−r0)δ/2≤y≤1

2y
(
1 + 2−q/2y2+q

)1/q
,

sup√
2(1−r0)δ/2≤y≤1

3y
(
1 + y

)1/q
, sup

1≤y

2y
(
1 + y

)1/q

}
.(1.6)

where 0 < q ≤ 1 and δ ∈ (0, 1), see Figure 1. The third contribution of
this paper is about stable recovery of a compressive signal from its noisy
observation.

Theorem 1.4. Let m,n and s be integers with 2s ≤ m ≤ n, A be an m×n
matrix with δ2s(A) ∈ (0, 1), ε ≥ 0, and let q ∈ (0, 1] satisfy

(1.7) b(q, δ1) < 1

where

δ1 :=

√
1− δ2s(A)
1 + δ2s(A)

.

If x is the object we wish to reconstruct, z = Ax + z is the noisy mea-
surement with the noise z satisfying ‖z‖2 ≤ ε, and x∗ is the solution of the
`q-minimization problem:

min
x̃∈Rn

‖x̃‖q subject to ‖Ax̃− y‖2 ≤ ε,

then

(1.8) ‖x∗ − x‖2 ≤ C0s
1/2−1/q‖x− xs‖q + C1ε
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Figure 1. The function min(b(q, δ), 1) on (0, 1)× (0, 1).

and

(1.9) ‖x∗ − x‖q ≤ C2‖x− xs‖q + C3s
1/q−1/2ε,

where xs be the best s-sparse vector in Rn to approximate x, i.e.,

‖xs − x‖q = inf
x′∈Σs

‖x′ − x‖q

and Ci, 0 ≤ i ≤ 3, are positive constants independent on ε,x and s.

The stable recovery of a compressive signal from its noisy observation has
been established under various assumptions on the restricted isometry con-
stant, for instance, δ3s(A)+3δ4s(A) < 2 and q = 1 in [5], and δ2s(A) <

√
2−

1 and q = 1 in [4], δ2t(A) < 2(
√

2−1)(t/s)1/q−1/2/(1+2(
√

2−1)(t/s)1/q−1/2)
for some t ≥ s and 0 < q ≤ 1 in [17], and δks(A)+k2/q−1δ(k+1)s(A) < k2/q−1
for some k ∈ Z/s and 0 < q ≤ 1 in [22, 23]. As pointed in [13], not all com-
pressive signals can be recovered from their noisy measurements approxi-
mately via solving an `1-minimization problem when the restricted isometry
constant of order 2s for the measurement matrix is close to one. From
Theorem 1.4, we see that any compressive signal can be recovered from its
noisy measurements approximately via solving some `q-minimization prob-
lem even if the restricted isometry constant of order 2s for the measurement
matrix is close to one (but not equal to one). The exponent q in the `q-
minimization is required to satisfy (1.7), which implies that the exponent q
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can be chosen to depend only on the restricted isometry constant δ2s(A)
of order 2s for the measurement matrix A (c.f. [17, 22, 23]). Furthermore,
by Theorem 1.3, the exponent q can be chosen to almost proportional to
1− δ2s(A) when the restricted isometry constant δ2s(A) of order 2s is close
to one.

Now let us apply Theorem 1.4 to prove Theorems 1.2 and 1.3. We observe
that b(q, δ) tends to zero as q approaches zero, i.e.,

(1.10) lim
q→0+

b(q, δ) = 0 for all δ ∈ (0, 1),

see Figure 1. Applying Theorem 1.4 with ε = 0 and x = xs, and using the
limit (1.10), we establish Theorem 1.2.

Define

(1.11) q̃max(δ) = sup{q ∈ (0, 1]| b(q, δ) < 1},
see Figure 2. We notice that

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2. The function q̃max(δ) on (0, 1).

(1.12) lim
δ→0+

q̃max(δ)
δ2

=
e

2
,

see Appendix A for the proof. Applying Theorem 1.4 with ε = 0 and x = xs,
we conclude that

qmax(δ,m, n, s) ≥ q̃max(
√

(1− δ)/(1 + δ)).

This together with (1.12) leads to the lower asymptotic estimate (1.5) and
hence proves Theorem 1.3.
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We present a visual interpretation of the requirement on the exponent q
in Theorem 1.4 and [13]. Let

qsucc(δ) = q̃max

(√
(1− δ)/(1 + δ)

)
,

and qfail(δ) be the solution of the equation
((2− q)δ

1 + δ

)2/q
+ 1 =

2− 2δ + 2qδ

q + qδ

if it exists and be equal to one otherwise, see Figure 3. Then when q <

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. The function qsucc(δ) is plotted in continuous line,
while the function qfail(δ) is plotted in dashed line

qsucc(δ2s(A)) (i.e. (q, δ2s(A)) lies in the region below the continuous line in
Figure 3), any s-sparse vector x can be exactly recovered by solving the `q-
minimization problem (1.4) by Theorem 1.4, while if q > qfail(δ) (i.e. (q, δ)
is in the region above the dashed line in Figure 3) by [13] there exists a
matrix A with δ2s(A) ≤ δ and an s-sparse vector x such that the vector x
cannot be exactly recovered by solving the `q-minimization problem (1.4).

The rest of this paper is organized as follows. In the next section, we
give the proof of Theorem 1.4 and a remark on null space property of a
measurement matrix. The proof of the limit (1.12) is given in Appendix A.

2. Proof of Theorem 1.4

For any finite decreasing sequence {aj}j≥1 of nonnegative numbers, it
holds that

∑

k≥1

( s∑

i=1

a2
ks+i

)1/2
≤ s1/2−1/q

(∑

j≥1

aq
j

)1/q
.
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In the following lemma, we are seeking conditions on the decreasing sequence
{aj}j≥1 and the exponent q ∈ (0, 1] for any given r ∈ (0, 1) such that

∑

k≥1

( s∑

i=1

a2
ks+i

)1/2
≤ rs1/2−1/q

(∑

j≥1

aq
j

)1/q
.

Lemma 2.1. Let 0 < q ≤ 1, s ≥ 1 be a positive integer, and let {aj}j≥1 be
a finite decreasing sequence of nonnegative numbers with

(2.1)
∑

k≥1

( s∑

i=1

a2
ks+i

)1/2
≥ δ

( s∑

i=1

|ai|2
)1/2

for some δ ∈ (0, 1). Then

(2.2)
∑

k≥1

( s∑

i=1

a2
ks+i

)1/2
≤ δb(q, δ)s1/2−1/q

(∑

j≥1

aq
j

)1/q
,

where b(q, δ) is defined as in (1.6).

We postpone the proof of the above lemma to the end of this section
as the proof is long and of interest by itself. The contour plotting of the
function δb(q, δ) is given in Figure 4.
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0.7

0.8

0.9

Figure 4. The contour plotting of the function δb(q, δ) on
(0, 1)× (0, 1).

Denote by vS the vector which equals to v ∈ Rn on S and vanishes on
the complement Sc where S ⊂ {1, . . . , n}. Now we start to prove Theorem
1.4. In the first half part of the argument, we follow [4, 5]. Set h = x∗ − x,
and denote by S0 the support of the vector xs ∈ Σs, by Sc

0 the complement
of the set S0 in {1, . . . , n}. Then

(2.3) ‖Ah‖2 = ‖Ax∗ −Ax‖2 ≤ ‖Ax∗ − y‖2 + ‖z‖2 ≤ 2ε
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and

(2.4) ‖hSc
0
‖q

q ≤ ‖hS0‖q
q + 2‖x− xs‖q

q,

since

‖xs‖q
q + ‖x

Sc
0
‖q

q = ‖x‖q
q ≥ ‖x∗‖q

q = ‖xs + hS0
‖q

q + ‖x
Sc
0

+ h
Sc
0
‖q

q

≥ ‖xs‖q
q − ‖hS0

‖q
q + ‖hSc

0
‖q

q − ‖xSc
0
‖q

q.

We partition Sc
0 ⊂ {1, . . . , n} as Sc

0 = S1 ∪ · · · ∪ Sl, where S1 is the set of
indices of the s largest absolute-value component of h in Sc

0, S2 is the set
of indices of the next s largest absolute-value components of h on Sc

0, and
so on. Applying the parallelogram identity, we obtain from the restricted
isometry property (1.3) that

|〈Au,Av〉| ≤ δ2s(A)‖u‖2‖v‖2

for all s-sparse vectors u,v ∈ Σs whose supports have empty intersection
[7]. Then

〈
A

( ∑

i≥2

hSi

)
,A

( ∑

j≥2

hSj

)〉 ≤
∑

i,j≥2

δ2s(A)‖hSi‖2‖hSj‖2 +
∑

j≥2

‖hSj‖2
2

= δ2s(A)
(∑

j≥2

‖hSj‖2

)2
+

∑

j≥2

‖hSj‖2
2

≤ (
1 + δ2s(A)

)(∑

j≥2

‖hSj‖2

)2
.

This together with (1.3) and (2.3) implies that

(1− δ2s(A))
(‖hS0‖2

2 + ‖hS1‖2
2

) ≤ 〈A(hS0 + hS1),A(hS0 + hS1)〉
≤ 〈

Ah−A
( ∑

i≥2

hSi

)
,Ah−A

( ∑

j≥2

hSj

)〉

≤ (
2ε +

√
1 + δ2s(A)

∑

j≥2

‖hSj‖2

)2
.(2.5)

In the following second half part of the argument, we use the improved
inequality (2.2) to obtain the desired estimates (1.8) and (1.9). By the
continuity of the function b(q, δ) about δ ∈ (0, 1) and the assumption (1.7),
there exists a positive number r such that

(2.6) b(q, δ1/(1 + r)) < 1.
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If
∑

j≥2 ‖hSj‖2 ≤ 2ε/(r
√

1 + δ2s(A)), then it follows from (2.4), (2.5) and
the fact that hS0 ∈ Σs that

‖x∗ − x‖2 = ‖h‖2 ≤
(‖hS0‖2

2 + ‖hS1‖2
2)

1/2 +
∑

j≥2

‖hSj‖2

≤ 2
( (1 + r)

r
√

1− δ2s(A)
+

1
r
√

1 + δ2s(A)

)
ε,(2.7)

and

‖x∗ − x‖q
q = ‖hS0‖q

q + ‖hSc
0
‖q

q ≤ 2‖hS0‖q
q + 2‖x− xs‖q

q

≤ 2s1−q/2‖hS0‖q
2 + 2‖x− xs‖q

q

≤ 21+q (1 + r)q

rq(1− δ2s(A))q/2
s1−q/2εq + 2‖x− xs‖q

q.(2.8)

If
∑

j≥2 ‖hSj‖2 ≥ 2ε/(r
√

1 + δ2s(A)), then

(2.9) δ1

(‖hS0‖2
2 + ‖hS1‖2

2

)1/2 ≤ (1 + r)
∑

j≥2

‖hSj‖2

by (2.5), where we set δ1 =
√

(1− δ2s(A))/(1 + δ2s(A)). Using (2.9) and
applying Lemma 2.1 with δ = δ1/(1 + r) give

(2.10)
∑

j≥2

‖hSj‖2 ≤ δ1

1 + r
b(q, δ1/(1 + r))s1/2−1/q‖hSc

0
‖q.

Noting the fact that hS0 ∈ Σs and then applying (2.4), (2.9) and (2.10) yield

‖hS0‖q
q ≤ s1−q/2‖hS0‖q

2 ≤
(
b(q, δ1/(1 + r))

)q‖hSc
0
‖q

q

≤ (
b(q, δ1/(1 + r))

)q‖hS0‖q
q + 2

(
b(q, δ1/(1 + r))

)q‖x− xs‖q
q.

This, together with (2.6), leads to the following crucial estimate:

(2.11) ‖hS0‖q
q ≤

2(b(q, δ1/(1 + r)))q

1− (b(q, δ1/(1 + r)))q
‖x− xs‖q

q.

Combining (2.4), (2.9), (2.10) and (2.11), we obtain

‖x∗ − x‖2 ≤ (‖hS0‖2
2 + ‖hS1‖2

2)
1/2 +

∑

j≥2

‖hSj‖2

≤ 21/q(1 + r + δ1)b(q, δ1/(1 + r))
(
1− (b(q, δ1/(1 + r)))q

)1/q
s1/2−1/q‖x− xs‖q,(2.12)

and

‖x∗ − x‖q
q ≤ 2‖hS0‖q

q + 2‖x− xs‖q
q

≤ 2 + 2(b(q, δ1/(1 + r)))q

1− (b(q, δ1/(1 + r)))q
‖x− xs‖q

q.(2.13)
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The desired error estimates (1.8) and (1.9) follow from (2.7), (2.8), (2.12)
and (2.13).

Remark 2.2. We say that an m× n matrix A has the null space property
of order s in `q if there exists a positive constant γ such that

(2.14) ‖hS‖q ≤ γ‖hSc‖q

holds for all h satisfying Ah = 0 and all sets S with its cardinality #S less
than or equal to s ([12]). The minimal constant γ in (2.14), to be denoted by
γs,q(A), is known as the null space constant of order s in `q. Recall that any
s-sparse signal x can be recovered from its measurement Ax via solving the
`q-minimization (1.4) if and only if γs,q(A) < 1. This together with Theorem
1.4 implies that γs,q(A) < 1 whenever b

(
q,

√
(1− δ2s(A))/(1 + δ2s(A))

)
<

1. In the next theorem, we show that

(2.15) γs,q(A) ≤ b
(
q,

√
(1− δ2s(A))/(1 + δ2s(A))

)

holds for all measurement matrices A with δ2s(A) ∈ (0, 1).

Theorem 2.3. Let q be a positive number in (0, 1], integers m,n and s
satisfy 2s ≤ m ≤ n, A be an m×n matrix with δ2s(A) ∈ (0, 1). Then A has
the null space property of order s in `q, and its null space constant γs,q(A)
satisfies (2.15).

Proof. Let h satisfy Ah = 0, and S0 be a subset of {1, . . . , n} with car-
dinality #S0 less than or equal to s. We partition Sc

0 ⊂ {1, . . . , n} as
Sc

0 = S1∪ · · ·∪Sl, where S1 is the set of indices of the s largest components,
in absolute value, of h in Sc

0, S2 is the set of indices of the next s largest
components, in absolute value, of h in (S0 ∪ S1)c, and so on. Using similar
argument to the one used in establishing (2.5), we obtain

(1− δ2s(A))
(‖hS0‖2

2 + ‖hS1‖2
2

) ≤ 〈
A

( ∑

i≥2

hSi

)
,A

( ∑

j≥2

hSj

)〉

≤ (
1 + δ2s(A)

)(∑

j≥2

‖hSj‖2

)2
,(2.16)

which implies that
∑

j≥2 ‖hSj‖2 ≥ δ1‖hS1‖2, where δ1 =
(1−δ2s(A)

1+δ2s(A)

)1/2. Ap-
plying Lemma 2.1 gives∑

j≥2

‖hSj‖2 ≤ δ1b(q, δ1)s1/2−1/q‖hSc
0
‖q.

Then substituting the above estimate for
∑

j≥2 ‖hSj‖2 into the right hand
side of the inequality (2.16) and recalling that hS0 is an s-sparse vector lead
to

‖hS0‖q ≤ s1/q−1/2‖hS0‖2 ≤ s1/q−1/2

δ1

∑

j≥2

‖hSj‖2 ≤ b(q, δ1)‖hSc
0
‖q,

and hence (2.15) is proved. ¤
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We conclude this section by the proof of Lemma 2.1.

2.1. Proof of Lemma 2.1. To prove it, we need two inequalities (2.17)
and (2.21).

Lemma 2.4. Let 0 < q ≤ 1, 0 ≤ c ≤ 1 and a, b > 0. Then

(2.17) a +
m∑

k=1

tk ≤ max
{

max
1≤k≤m

k + a

(k + b)1/q
,

a + c

(b + cq)1/q

}(
b +

m∑

k=1

tqk

)1/q

hold for all (t1, . . . , tm) ∈ [0, 1]m with t1 + · · ·+ tm ≥ c.

Proof. Define

(2.18) Fq,a,b,c(m,n) = sup
(t1, . . . , tm) ∈ [0, 1]m

t1 + · · ·+ tm ≥ c

n + a +
∑m

k=1 tk

(n + b +
∑m

k=1 tqk)
1/q

.

By the method of Lagrange multiplier, the function (n + a +
∑m

k=1 tk)(n +
b +

∑m
k=1 tqk)

−1/q attains its maximum on the boundary or on those points
(t1, . . . , tm) whose components are the same, i.e.,

Fq,a,b,c(m,n) = max
{

Fq,a,b,0(m− 1, n + 1), Fq,a,b,c(m− 1, n),

sup
c/m≤t≤1

n + a + mt

(n + b + mtq)1/q

}
.

As the function (n+ a+mt)(n+ b+mtq)−1/q has at most one critical point
and the second derivative at that critical point (if it exists) is positive, we
then have

Fq,a,b,c(m,n) = max
{

Fq,a,b,0(m− 1, n + 1), Fq,a,b,c(m− 1, n),

n + m + a

(n + m + b)1/q
,

n + a + c

(n + b + m1−qcq)1/q

}
.(2.19)
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Applying (2.19) iteratively we obtain

Fq,a,b,c(m,n) = max
{

Fq,a,b,0(m− 2, n + 2), Fq,a,b,0(m− 2, n + 1),

Fq,a,b,c(m− 2, n),
n + 1 + a

(n + 1 + b)1/q
,

n + m− 1 + a

(n + m− 1 + b)1/q
,

n + m + a

(n + m + b)1/q
,

n + a + c

(n + b + (m− 1)1−qcq)1/q

}

= · · ·
= max

{
Fq,a,b,0(1, n + m− 1), · · · , Fq,a,b,0(1, n + 1),

Fq,a,b,c(1, n),
n + a + c

(n + b + 21−qcq)1/q
,

n + m + a

(n + m + b)1/q
, . . . ,

n + 2 + a

(n + 2 + b)1/q
,

n + 1 + a

(n + 1 + b)1/q

}

= max
{

max
1≤k≤m

n + k + a

(n + k + b)1/q
,

n + a + c

(n + b + cq)1/q

}
.(2.20)

Then the conclusion (2.17) follows by letting n = 0 in the above estimate.
¤

Lemma 2.5. Let 0 < q ≤ 1, c1, c2 ∈ [0, 1] and di, bi > 0 for i = 1, 2, 3.
Then

d1 + d2x + d3y +
m∑

k=1

tk

≤ max
{ d1 + d2

(b1 + b2)1/q
,

d1 + d2c1

(b1 + b2c
q
1)1/q

, sup
0≤l≤m

d1 + d2 + (d3 + l)c2

(b1 + b2 + (b3 + l)cq
2)1/q

,

sup
0≤l≤m

d1 + d2c1 + (d3 + l)c2

(b1 + b2c
q
1 + (b3 + l)cq

2)1/q

}
×

(
b1 + b2x

q + b3y
q +

m∑

k=1

tqk

)1/q
(2.21)

hold for all 0 ≤ t1, . . . , tm ≤ y, c1 ≤ x ≤ 1 and 0 ≤ y ≤ c2.

Proof. Note that the maximum values of the function (a + bt)/(c + dtq)1/q

on any closed subinterval of [0,∞) are attained on its boundary. Then

d1 + d2x + d3y +
∑m

k=1 tk

(b1 + b2xq + b3yq +
∑m

k=1 tqk)
1/q

= sup
0≤l≤m

d1 + d2x + (d3 + l)y
(b1 + b2xq + (b3 + l)yq)1/q

= max
{ d1 + d2x

(b1 + b2xq)1/q
, sup
0≤l≤m

d1 + (d3 + l)c2 + d2x

(b1 + (b3 + l)cq
2 + b2xq)1/q

}

≤ max
{ d1 + d2

(b1 + b2)1/q
,

d1 + d2c1

(b1 + b2c
q
1)1/q

, sup
0≤l≤m

d1 + d2 + (d3 + l)c2

(b1 + b2 + (b3 + l)cq
2)1/q

,

sup
0≤l≤m

d1 + d2c1 + (d3 + l)c2

(b1 + b2c
q
1 + (b3 + l)cq

2)1/q

}
,
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and (2.21) follows. ¤

Now we start to prove Lemma 2.1. The proof is quite technical. For better
understanding, the reader may consider the illustrated example s = 1 at the
beginning. Clearly the conclusion (2.2) holds when as+1 = 0 for in this case
the left hand side of (2.2) is equal to 0. So we may assume that as+1 6= 0
from now on. Let r0 be an arbitrary number in (0, 1). To establish (2.2),
we consider two cases.

Case I:
∑

k≥2 aks+1 ≥ r0δas+1.
In this case,

∑
k≥1

(∑s
i=1 a2

ks+i

)1/2

(∑
j≥1 aq

j

)1/q
≤ s1/2

∑
k≥1 aks+1

s1/q
(∑

k≥1 aq
ks+1

)1/q

= s1/2−1/q
1 +

∑
k≥2 aks+1/as+1(

1 +
∑

k≥2(aks+1/as+1)q
)1/q

≤ s1/2−1/q max
{ 1 + r0δ

(1 + rq
0δ

q)1/q
, max

k≥1

k + 1
(k + 1)1/q

}

= s1/2−1/q(1 + r0δ)(1 + rq
0δ

q)−1/q,(2.22)

where the first inequality holds because {aj}j≥1 is a decreasing sequence of
nonnegative numbers, the second inequality follows from Lemma 2.4, and
the last equality is true as (1 + t)(1 + tq)−1/q is a decreasing function on
(0, 1].

Case II:
∑

k≥2 aks+1 < r0δas+1.
Let s0 be the smallest integer in [1, s] satisfying as+s0+1/as+1 ≤ (s0/s)1/2.

(For the illustrated example s = 1, we have that s0 = 1.) The existence
and uniqueness of such an integer s0 follow from the decreasing property of
the sequence {as+s0+1/as+1}s

s0=1, the increasing property of the sequence
{(s0/s)1/2}s

s0=1, and as+s0+1/as+1 ≤ (s0/s)1/2 when s0 = s. Then from
(2.1), the decreasing property of the sequence {aj}j≥1 and the definition of
the integer s0 it follows that

(2.23)
as+s0

as+1
≥ (s0 − 1

s

)1/2
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and
√

2s
1/2
0 as+1 ≥ (

s0a
2
s+1 + (s− s0)

s0

s
a2

s+1

)1/2

≥ (s0a
2
s+1 + (s− s0)a2

s+s0+1)
1/2 ≥

( s∑

i=1

a2
s+i

)1/2

≥ δ
( s∑

i=1

a2
i

)1/2
−

∑

k≥2

( s∑

i=1

a2
ks+i

)1/2

≥ δs1/2as+1 − s1/2
∑

k≥2

aks+1 ≥ (1− r0)δs1/2as+1,

which implies that

(2.24) s0 ≥ (1− r0)2δ2

2
s.

Applying the decreasing property of the sequence {aj} and using the in-
equality (θa2 + (1 − θ)b2)1/2 ≤ θ1/2a + (1 − θ1/2)b where a ≥ b ≥ 0 and
θ ∈ [0, 1], we obtain

s−1/2
∑

k≥1

( s∑

i=1

a2
ks+i

)1/2

≤ s−1/2
(
(s0 − 1)a2

s+1 + a2
s+s0

+ (s− s0)a2
s+s0+1

)1/2

+s−1/2
∑

k≥2

(
s0a

2
ks+1 + (s− s0)a2

ks+s0+1

)1/2

≤
√

s0

s

(s0 − 1
s0

a2
s+1 +

1
s0

a2
s+s0

)1/2
+

(
1−

√
s0

s

)
as+s0+1

+
∑

k≥2

(√
s0

s
aks+1 +

(
1−

√
s0

s

)
aks+s0+1

)

≤
√

s0 − 1
s

as+1 +
√

s0 −
√

s0 − 1√
s

as+s0 +
∑

k≥1

aks+s0+1,(2.25)

and
∑

j≥1

aq
j ≥ (s + 1)aq

s+1 + (s0 − 1)aq
s+s0

+aq
s+s0+1 + s

∑

k≥2

aq
ks+s0+1.(2.26)

(For the illustrated example s = 1, the above two inequalities become equal-
ities.) Combining (2.25) and (2.26), recalling (2.23) and the definition of the
integer s0, and applying Lemma 2.5 with c1 =

√
(s0 − 1)/s and c2 =

√
s0/s,
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we get

s1/q−1/2

∑
k≥1

( ∑s
i=1 a2

ks+i

)1/2

(∑
j≥1 aq

j

)1/q

≤

√
s0−1

s as+1 +
√

s0−
√

s0−1√
s

as+s0 + as+s0+1 +
∑

k≥2 aks+s0+1

(
(1 + 1/s)aq

s+1 + (s0 − 1)aq
s+s0

/s + aq
s+s0+1/s +

∑
k≥2 aq

ks+s0+1

)1/q

≤ max
{ √

s0
s(

1 + s0/s
)1/q

,

√
s0−1

s

(
1 +

√
s0−

√
s0−1√

s

)

(
1 + 1/s + ((s0 − 1)/s)1+q/2

)1/q
,

sup
l≥0

(l + 2)
√

s0
s(

1 + s0/s + (l + 1/s)
√

s0
s

)1/q
,

sup
l≥0

(l + 1)
√

s0
s +

√
s0−1

s

(
1 +

√
s0−

√
s0−1√

s

)

((
(l + 1/s)

√
s0
s + 1 + 1/s

)
+ ((s0 − 1)/s)1+q/2

)1/q

}
.(2.27)

Therefore
∑

k≥1

( ∑s
i=1 a2

ks+i

)1/2

( ∑
j≥1 aq

j

)1/q

≤ s1/2−1/q max
{ √

s0/s
(
1 + s0/s

)1/q
,

√
s0/s

(
1 + 2−q/2(s0/s)1+q/2

)1/q
,

sup
l≥0

(l + 2)
√

s0/s
(
1 + s0/s + l

√
s0/s

)1/q
, sup

l≥0

(l + 2)
√

s0/s
(
1 + l

√
s0/s + 2−q/2(s0/s)1+q/2

)1/q

}

≤ s1/2−1/q max
{ 2

√
s0/s

(
1 + 2−q/2(s0/s)1+q/2

)1/q
, sup

l≥1

(l + 2)
√

s0/s

(1 + l
√

s0/s
)1/q

}

≤ s1/2−1/q max
{

sup√
2(1−r0)δ/2≤y≤1

2y
(
1 + 2−q/2y2+q

)1/q
,

sup√
2(1−r0)δ/2≤y≤1

3y
(
1 + y

)1/q
, sup

1≤y

2y
(
1 + y

)1/q

}
,(2.28)

where the third inequality is valid by (2.24) and the first inequality follows
from the following two inequalities:

(2.29)

√
t− 1

s

(
1 +

√
t−√t− 1√

s

)
≤

√
t

s

and
(2.30)
1
s

+
( t− 1

s

)1+q/2
≥

(1
s

)1+q/2
+

( t− 1
s

)1+q/2
≥ 2−q/2

( t

s

)1+q/2
, 1 ≤ t ≤ s.
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The conclusion (2.2) follows from (2.22) and (2.28). (For the illustrated
example s = 1,

s1/q−1/2

∑
k≥1

( ∑s
i=1 a2

ks+i

)1/2

( ∑
j≥1 aq

j

)1/q
=

a2 +
∑

j≥3 aj

(aq
1 + aq

2 +
∑

j≥3 aq
j)1/q

≤ (1 + r0δ)a2

(aq
1 + aq

2)1/q
≤ (1 + r0δ)2−1/q

by (2.1), the assumption that
∑

k≥2 aks+1 ≤ r0δas+1, and the monotonicity
of the function t(1 + tq)−1/q on (0, 1). This together with (2.22) yields

(2.31) s1/2−1/q
∑

k≥1

( s∑

i=1

a2
ks+i

)1/2 ≤
(

min
0<r0<1

1 + r0δ

(1 + rq
0δ

q)1/q

)
×

(∑

j≥1

aq
j

)1/q

which provides an improvement of the estimate (2.2) for the illustrated ex-
ample s = 1.)

Appendix A. Proof of the limit (1.12)

Take sufficiently small ε > 0. Note that

sup√
2(1−r0)δ/2≤y≤1

2y
(
1 + 2−q/2y2+q

)1/q
(A.1)

=





√
2(1−r0)δ(

1+2−1−q((1−r0)δ)2+q
)1/q if q < (1− r0)2+qδ2+q,

q1/(2+q)
(
1 + q

2

)−1/q2(1+3q/2)/(2+q) if 1 ≥ q ≥ (1− r0)2+qδ2+q.

Then for any small q > (e/2 + ε)δ2 and sufficiently small δ > 0, we have
that q ≥ (1 − r0)2+qδ2+q for all r0 ∈ (0, 1). Then applying (1.6) and (A.1)
yields

b(q, δ) ≥ δ−1 inf
0<r0<1

sup√
2(1−r0)δ/2≤y≤1

2y
(
1 + 2−q/2y2+q

)1/q

= δ−1q1/(2+q)
(
1 +

q

2
)−1/q2(1+3q/2)/(2+q)

≥ (1 + ε/e)1/2 > 1,

where the last inequality holds since

(A.2) lim
q→0

q−q/(4+2q)
(
1 +

q

2
)−1/q2(1+3q/2)/(2+q) = (2/e)1/2.

Thus

(A.3) lim sup
δ→0

q̃max(δ)
δ2

≤ lim sup
δ→0

(e/2 + ε)δ2

δ2
≤ e

2
+ ε

for any sufficiently small ε > 0.
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Take r0 = 1−√2/4 and sufficiently small ε > 0. Then for q ≤ (e/2− ε)δ2

and sufficiently small δ > 0,



(1 + r0δ)(1 + rq
0δ

q)−1/q ≤ 2(3/2)−1/q ≤ (1− ε/e)1/2δ,

supy≥1 y(1 + y)−1/q ≤ supy≥1(1 + y)1−1/q ≤ 21−1/q ≤ (1− ε/e)1/2δ/2,

supy≥√2(1−r0)δ/2
y

(1+y)1/q = δ/4

(1+δ/4)1/q ≤ (1− ε/e)1/2δ/3,

and

sup√
2(1−r0)δ/2≤y≤1

2y
(
1 + 2−q/2y2+q

)1/q
≤ (1− ε/e)1/2δ

by (1.6), (A.1) and (A.2). Thus

b(q, δ) ≤ (1− ε/e)1/2 < 1

whenever q ≤ (e/2 − ε)δ2 and δ ∈ (0, 1) is sufficiently small, which implies
that

q̃max(δ) ≥ (e/2− ε)δ2

when δ is sufficiently small. Hence

(A.4) lim inf
δ→0

q̃max(δ)
δ2

≥ lim sup
δ→0

(e/2− ε)δ2

δ2
≥ e

2
− ε.

Combining (A.3) and (A.4) and recalling that ε > 0 is a sufficiently small
number chosen arbitrarily proves the limit (1.12).
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