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Abstract. Let `p be the space of all p-summable sequences on Z. An infinite

matrix is said to have `p-stability if it is bounded and has bounded inverse

on `p. In this paper, a practical criterion is established for the `p-stability of
convolution-dominated infinite matrices.

1. Introduction

Let C be the set of all infinite matrices A := (a(j, j′))j,j′∈Z with

‖A‖C =
∑
k∈Z

sup
j−j′=k

|a(j, j′)| <∞.

Let `p := `p(Z) be the set of all p-summable sequences on Z with the standard
norm ‖ · ‖p. An infinite matrix A := (a(j, j′))j,j′∈Z ∈ C defines a bounded linear
operator on `p, 1 ≤ p ≤ ∞, in the sense that

(1.1) Ac =
(∑
j′∈Z

a(j, j′)c(j′)
)
j∈Z

where c = (c(j))j∈Z ∈ `p. Given a summable sequence h = (h(j))j∈Z ∈ `1, define
the convolution operator Ch on `p, 1 ≤ p ≤ ∞, by

(1.2) Ch : `p 3
(
b(j)

)
j∈Z 7−→

(∑
k∈Z

h(j − k)b(k)
)
j∈Z
∈ `p.

Observe that the linear operator associated with an infinite matrix A ∈ C is domi-
nated by a convolution operator in the sense that

(1.3) |(Ac)(j)| ≤ (Ch|c|)(j) :=
∑
j′∈Z

h(j − j′)|c(j′)|, j ∈ Z

for any sequence c = (c(j))j∈Z ∈ `p, 1 ≤ p ≤ ∞, where |c| = (|c(j)|)j∈Z and the
sequence (supj−j′=k |a(j, j′)|)k∈Z can be chosen to be the sequence h = (h(j))j∈Z
in (1.3). So infinite matrices in the set C are said to be convolution-dominated.

Convolution-dominated infinite matrices were introduced by Gohberg, Kaashoek,
and Woerdeman [12] as a generalization of Toeplitz matrices. They showed that the
class C equipped with the standard matrix multiplication and the above norm ‖ ·‖C
is an inverse-closed Banach subalgebra of B(`p) for p = 2. Here B(`p), 1 ≤ p ≤ ∞,
is the space of all bounded linear operators on `p with the standard operator norm,
and a subalgebra A of a Banach algebra B is said to be inverse-closed if an operator
T ∈ A has an inverse T−1 in B then T−1 ∈ A ([7, 11, 21]). The inverse-closed prop-
erty for convolution-dominated infinite matrices was rediscovered by Sjöstrand [25]
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with a completely different proof and an application to a deep theorem about pseu-
dodifferential operators. Recently Shin and Sun [23] generalized Gohberg, Kaashoek
and Woerdeman’s result and proved that the class C is an inverse-closed Banach sub-
algebra of B(`p) for any 1 ≤ p ≤ ∞. The readers may refer to [5, 10, 20, 23, 25, 27]
and the references therein for related results and various generalizations on the
inverse-closed property for convolution-dominated infinite matrices.

Convolution-dominated infinite matrices arise and have been used in the study
of spline approximation ([8, 9]), wavelets and affine frames ([6, 18]), Gabor frames
and non-uniform sampling ([3, 14, 15, 26]), and pseudo-differential operators ([13,
16, 24, 25] and the references therein). Examples of convolution-dominated infinite
matrices include the infinite matrix

(
a(j − j′)

)
j,j′∈Z associated with convolution

operators, and the infinite matrix
(
a(j − j′)e−2π

√
−1θj′(j−j′))

i,j∈Z associated with
twisted convolution operators, where θ ∈ R and the sequence a = (a(j))j∈Z satisfies∑
j∈Z |a(j)| <∞ ([1, 14, 19, 27, 29]).

A convolution-dominated infinite matrix A is said to have `p-stability if there are
two positive constants C1 and C2 such that

(1.4) C1‖c‖p ≤ ‖Ac‖p ≤ C2‖c‖p for all c ∈ `p.

The `p-stability is one of basic assumptions for infinite matrices arising in the study
of spline approximation, Gabor time-frequency analysis, nonuniform sampling, and
algebra of pseudo-differential operators, see [1, 3, 6, 8, 9, 10, 14, 15, 16, 18, 19, 23,
24, 25, 26, 27, 29] and the references therein. Practical criteria for the `p-stability
of a convolution-dominated infinite matrix will play important roles in the further
study of those topics.

However, up to the knowledge of the author, little is known about practical
criteria for the `p-stability of an infinite matrix. For an infinite matrix A = (a(j −
j′))j,j′∈Z associated with convolution operators, there is a very useful criterion for
its `p-stability. It states that A has `p-stability if and only if the Fourier series
â(ξ) :=

∑
j∈Z a(j)e−ijξ of the generating sequence a = (a(j))j∈Z ∈ `1 does not

vanish on the real line, i.e.,

(1.5) â(ξ) 6= 0 for all ξ ∈ R.

Applying this criterion for the `p-stability, one concludes that the spectrum σp(Ca)
of the convolution operator Ca as an operator on `p is independent of 1 ≤ p ≤ ∞,
i.e.,

(1.6) σp(Ca) = σq(Ca) for all 1 ≤ p, q ≤ ∞

see [4, 17, 22, 23] and the references therein for the discussion on spectrum of var-
ious convolution operators. Applying the above criterion again, together with the
classical Wiener’s lemma ([29]), it follows that the inverse of an `p-stable convolu-
tion operator Ca is a convolution operator Cb associated with another summable
sequence b.

For a convolution-dominated infinite matrix A = (a(j, j′))j,j′∈Z, a popular suffi-
cient condition for its `1-stability and `∞-stability is that A is diagonal-dominated,
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i.e.,

(1.7) inf
j∈Z

(
|a(j, j)| −max

(∑
j′ 6=j

|a(j, j′)|,
∑
j′ 6=j

|a(j′, j)|
))

> 0.

In this paper, we provide a practical criterion for the `p-stability of convolution-
dominated infinite matrices. We show that a convolution-dominated infinite matrix
A has `p-stability if and only if it has certain “diagonal-blocks-dominated” property
(see Theorem 2.1 for the precise statement).

2. Main Theorem

To state our criterion for the `p-stability of convolution-dominated infinite ma-
trices, we introduce two concepts. Given an infinite matrix A, define the truncation
matrices As, s ≥ 0, by

As = (a(i, j)χ(−s,s)(i− j))i,j∈Z

where χE is the characteristic function on a set E. Given y ∈ R and 1 ≤ N ∈ Z,
define the operator χNy on `p by

χNy : `p 3
(
c(j)

)
j∈Z 7−→

(
c(j)χ(−N,N)(j − y)

)
j∈Z ∈ `

p.

The operator χNy is a diagonal matrix diag(χ(−N,N)(j − y))j∈Z.

Theorem 2.1. Let 1 ≤ p ≤ ∞, and A be a convolution-dominated infinite matrix
in the class C. Then the following statements are equivalent.

(i) The infinite matrix A has `p-stability.
(ii) There exist a positive constant C0 and a positive integer N0 such that

(2.1) ‖χ2N
n AχNn c‖p ≥ C0‖χNn c‖p, c ∈ `p,

hold for all integers N ≥ N0 and n ∈ NZ.
(iii) There exist a positive integer N0 and a positive constant α satisfying

(2.2) α > 2(5 + 21−p)1/p inf
0≤s≤N0

(
‖A−As‖C +

s

N0
‖A‖C

)
such that

(2.3) ‖χ2N0
n AχN0

n c‖p ≥ α‖χN0
n c‖p, c ∈ `p,

hold for all n ∈ N0Z.

Taking N0 = 1 in (2.2) and (2.3), we obtain a sufficient condition (2.4), which is
a strong version of the diagonal-domination condition (1.7), for the `∞-stability of
a convolution-dominated infinite matrix.

Corollary 2.2. Let A = (a(j, j′))j,j′∈Z be a convolution-dominated infinite matrix
in the class C. If

(2.4) inf
j∈Z
|a(j, j)| − 2

∑
06=k∈Z

sup
j−j′=k

|a(j, j′)| > 0,

then A has `∞-stability.
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We say that an infinite matrix A = (a(i, j))i,j∈Z is a band matrix if a(i, j) = 0
for all i, j ∈ Z satisfying j > i+k or j < i−k. The quantity 2k+1 is the bandwidth
of the matrix A. For a band matrix A with bandwidth 2k + 1, A− As is the zero
matrix if s > k. Therefore for N > k,

inf
0≤s≤N

(
‖A−As‖C +

s

N
‖A‖C

)
≤ k

N
‖A‖C .

This, together with Theorem 2.1, gives the following sufficient condition for a band
matrix to have `p-stability.

Corollary 2.3. Let 1 ≤ p ≤ ∞ and A be a convolution-dominated band matrix in
the class C with bandwidth 2k + 1. If there exists an integer N0 > k such that

(2.5) ‖AχN0
n c‖p ≥ α‖χN0

n c‖p, c ∈ `p,

holds for some constant α strictly larger than 2(5 + 21−p)1/pk‖A‖C/N0, then A has
`p-stability.

If we further assume that the infinite matrix A in Corollary 2.3 has the form
A = (a(j − j′))j,j′∈Z for some finite sequence a = (a(j))j∈Z satisfying a(j) = 0
for |j| > k, then ‖A‖C =

∑
|j|≤k |a(j)| and the condition (2.5) can reformulated as

follows:

(2.6) ‖ÃN0c‖p ≥
γk

N0

( ∑
|j|≤k

|a(j)|
)
‖c‖p, c ∈ R2N0+1,

holds for some γ > 2(5 + 21−p)1/p, where

(2.7) ÃN0 = (a(j − j′))−N0−k≤j≤N0+k,−N0≤j′≤N0

and

‖c‖p =
{

(
∑k2
j=−k1 |c(j)|

p)1/p if 1 ≤ p <∞
sup−k1≤j≤k2 |c(j)| if p =∞,

for c = (c(−k1), · · · , c(0), . . . , c(k2))T ∈ Rk1+k2+1. As a conclusion from (2.6) and
(2.7), we see that if A = (a(j − j′))j,j′∈Z does not have `p-stability, then for any
large integer N ,

(2.8) inf
06=c∈R2N+1

‖ÃNc‖p
‖c‖p

≤ 2(5 + 21−p)1/pk

N

( ∑
|j|≤k

|a(j)|
)
.

For the special case p = 2, the above inequality (2.8) can be interpreted as the
minimal eigenvalue of (ÃN )T ÃN is less than or equal to

√
22k2

N2

(∑
|j|≤k |a(j)|

)2
,

and it can also be rewritten as

(2.9) inf
0 6=PN∈ΠN

( ∫ π
−π |â(ξ)|2|PN (ξ)|2dξ

)1/2

( ∫ π
−π |PN (ξ)|2dξ

)1/2
≤
√

22k
N

( ∑
|j|≤k

|a(j)|
)
,

where â(ξ) =
∑
j∈Z a(j)e−ijξ and ΠN is the set of all trigonometrical polynomial

of degree at most N .
If the sequence a = (a(j))j∈Z satisfies a(0) = 1, a(−1) = −1, and a(j) = 0

otherwise, then the bandwidth of the infinite matrix A = (a(j − j′))j,j′∈Z is equal
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to 3, the norm ‖A‖C of the associated infinite matrix A is equal to 2,

(2.10) ÃN =



−1 0 0 · · · 0 0
1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
. . . . . .

...
...

...
...

. . . . . . . . .
...

0 0 0 · · · 1 −1
0 0 0 · · · 0 1


,

and

inf
06=c∈R2N+1

‖ÃNc‖p
‖c‖p

≥ 1
N + 1

,

where the last inequality holds since the matrix

B̃N :=



−1 0 0 · · · 0 0 0 0 · · · 0 0
−1 −1 0 · · · 0 0 0 0 · · · 0 0
−1 −1 −1 · · · 0 0 0 0 · · · 0 0
...

...
...

. . .
...

...
...

...
. . .

...
...

−1 −1 −1 · · · −1 0 0 0 · · · 0 0
0 0 0 · · · 0 0 1 1 · · · 1 1
0 0 0 · · · 0 0 0 1 · · · 1 1
...

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 · · · 0 0 0 0 · · · 1 1
0 0 0 · · · 0 0 0 0 · · · 0 1


.

is a left inverse of the matrix ÃN . Therefore the order N−1 in (2.8) can not be
improved in general, but the author believes that the bound constant 2(5+21−p)1/p

in (2.2) and (2.8) is not optimal and could be improved.

3. Proof

We say that a discrete subset Λ of Rd is relatively-separated if

(3.1) R(Λ) := sup
x∈Rd

∑
λ∈Λ

χλ+[−1/2,1/2)d(x) <∞

([1, 23, 27]). Clearly, the set Z of all integers is a relatively-separated subset of R
with

(3.2) R(Z) = 1.

Given a discrete set Λ, let `p(Λ) be the set of all p-summable sequences on the set
Λ with standard norm ‖ · ‖`p(Λ) or ‖ · ‖p for brevity.

Given two relatively-separated subsets Λ and Λ′ of Rd, define

C(Λ,Λ′) =
{
A :=

(
a(λ, λ′)

)
λ∈Λ,λ′∈Λ′

∣∣∣ ‖A‖C(Λ,Λ′) <∞},
where

‖A‖C(Λ,Λ′) =
∑
k∈Zd

sup
λ∈Λ,λ′∈Λ′

|a(λ, λ′)|χk+[−1/2,1/2]d(λ− λ′).
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It is obvious that

(3.3) C(Z,Z) = C.

Given an infinite matrix A = (a(λ, λ′))λ∈Λ,λ′∈Λ′ , define its truncation matrices
As, s ≥ 0, by

As =
(
a(λ, λ′)χ(−s,s)d(λ− λ′)

)
λ∈Λ,λ′∈Λ′

.

For any y ∈ Rd and a positive integer N , define the operator χNy on `p(Λ) by

(3.4) χNn : `p(Λ) 3
(
c(λ)

)
λ∈Λ
7−→

(
c(λ)χ(−N,N)d(λ− y)

)
λ∈Λ
∈ `p(Λ).

In this section, we establish the following criterion for the `p-stability of infinite
matrices in the class C(Λ,Λ′), which is a slight generalization of Theorem 2.1 by
(3.2) and (3.3).

Theorem 3.1. Let 1 ≤ p ≤ ∞, the subsets Λ,Λ′ of Rd be relatively-separated,
and the infinite matrix A belong to C(Λ,Λ′). Then the following statements are
equivalent to each other:

(i) The infinite matrix A has `p-stability, i.e., there exist positive constants
C1 and C2 such that

(3.5) C1‖c‖`p(Λ′) ≤ ‖Ac‖`p(Λ) ≤ C2‖c‖`p(Λ′) for all c ∈ `p(Λ′).

(ii) There exist a positive constant C0 and a positive integer N0 such that

(3.6) ‖χ2N
n AχNn c‖`p(Λ) ≥ C0‖χNn c‖`p(Λ′) for all c ∈ `p(Λ′),

where N0 ≤ N ∈ Z and n ∈ NZd.
(iii) There exist a positive integer N0 and a positive constant α satisfying

(3.7)

α > 2(5 + 21−p)d/pR(Λ)1/pR(Λ′)1−1/p inf
0≤s≤N0

(
‖A−As‖C(Λ,Λ′) +

ds

N0
‖A‖C(Λ,Λ′)

)
such that

(3.8) ‖χ2N0
n AχN0

n c‖`p(Λ) ≥ α‖χN0
n c‖`p(Λ′)

hold for all c ∈ `p(Λ′) and n ∈ N0Z.

Using the above theorem, we obtain the following equivalence of `p-stability for
infinite matrices having certain off-diagonal decay, which is established in [2, 28, 23]
for γ > d(d+ 1), γ > 0, and γ ≥ 0 respectively.

Corollary 3.2. Let Λ,Λ′ be relatively-separated subsets of Rd, and A = (a(λ, λ′))λ∈Λ,λ′∈Λ′

satisfy

‖A‖Cγ(Λ,Λ′) =
∑
k∈Zd

(1 + |k|)γ sup
λ∈Λ,λ′∈Λ′

|a(λ, λ′)|χk+[−1/2,1/2]d(λ− λ′) <∞

where γ > 0. Then the `p-stability of the infinite matrix A are equivalent to each
other for different 1 ≤ p ≤ ∞.

Proof. Let 1 ≤ p ≤ ∞ and A have `p-stability. Then by Theorem 3.1 there exists
a positive constant C0 and a positive integer N0 such that

(3.9) ‖χ2N
n AχNn c‖`p(Λ) ≥ C0‖χNn c‖`p(Λ′) for all c ∈ `p(Λ′),
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where N0 ≤ N ∈ Z and n ∈ NZd. From the equivalence of different norms on a
finite-dimensional space, we have that

((2N)dR(Λ))min(1/q−1/p,0)‖χNn c‖`p(Λ) ≤ ‖χNn c‖`q(Λ)

≤ ((2N)dR(Λ))max(1/q−1/p,0)‖χNn c‖`p(Λ) for all c ∈ `p(Λ),

where 1 ≤ p, q ≤ ∞, 1 ≤ N ∈ Z and n ∈ NZd ([2, 23]). Therefore for 1 ≤ q ≤ ∞,

‖χ2N
n AχNn c‖`q(Λ) ≥ C0(2N)−d|1/p−1/q|R(Λ′)min(1/p−1/q,0)

×R(Λ)−max(1/p−1/q,0)‖χNn c‖`q(Λ′) for all c ∈ `q(Λ′),(3.10)

where N0 ≤ N ∈ Z and n ∈ NZd. We notice that

inf
0≤s≤N

‖A−As‖C(Λ,Λ′) +
ds

N
‖A‖C(Λ,Λ′) ≤ ‖A‖Cγ(Λ,Λ′) inf

0≤s≤N
sγ +

ds

N

≤ (d+ 1)‖A‖Cγ(Λ,Λ′)N
−γ/(1+γ).(3.11)

Thus for 1 ≤ q ≤ ∞ with d|1/p−1/q| < γ/(1 +γ), it follows from (3.10) and (3.11)
that there exists a sufficiently large integer N0 such that

(3.12) ‖χ2N
n AχNn c‖`q(Λ) ≥ α‖χNn c‖`q(Λ′)

hold for all c ∈ `q(Λ′), N ≥ N0 and n ∈ NZd, where α is a positive constant larger
than 2(5+21−q)d/qR(Λ)1/qR(Λ′)1−1/q inf0≤s≤N0

(
‖A−As‖C(Λ,Λ′) + ds

N0
‖A‖C(Λ,Λ′)

)
.

Then by Theorem 3.1, the infinite matrix A has `q-stability for all 1 ≤ q ≤ ∞
with d|1/q − 1/p| < γ/(1 + γ). Applying the above trick repeatedly, we prove the
`q-stability of the infinite matrix A for any 1 ≤ q ≤ ∞.

�

To prove Theorem 3.1, we first recall some basic properties for infinite matrices
A in the class C(Λ,Λ′) and its truncation matrices As, s ≥ 0.

Lemma 3.3. ([23]) Let 1 ≤ p ≤ ∞, the subsets Λ,Λ′ of Rd be relatively-separated,
A be an infinite matrix in the class C(Λ,Λ′), and As, s ≥ 0, be the truncation
matrices of A. Then

(3.13) ‖Ac‖`p(Λ) ≤ R(Λ)1/pR(Λ′)1−1/p‖A‖C(Λ,Λ′)‖c‖`p(Λ′) for all c ∈ `p(Λ′),

(3.14) lim
s→+∞

‖A−As‖C(Λ,Λ′) = 0,

(3.15) lim
N→+∞

inf
0≤s≤N

‖A−As‖C(Λ,Λ′) +
ds

N
‖A‖C(Λ,Λ′) = 0,

and

(3.16) ‖As‖C ≤ ‖A‖C for all s ≥ 0.

Let ψ0(x1, . . . , xd) =
∏d
i=1 max(min(2− 2|xi|, 1), 0) be a cut-off function on Rd.

Then

(3.17) 0 ≤ χ[−1/2,1/2]d(x) ≤ ψ0(x) ≤ χ(−1,1)d(x) ≤ 1 for all x ∈ Rd,

and

(3.18) |ψ0(x)− ψ0(y)| ≤ 2d‖x− y‖∞ for all x, y ∈ R
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where ‖x‖∞ = max1≤i≤d |xi| for x = (x1, . . . , xd). Define the multiplication opera-
tor ΨN

n on `p(Λ) by

(3.19) ΨN
n : `p(Λ) 3 (c(λ))λ∈Λ 7−→

(
ψ0

(λ− n
N

)
c(λ)

)
λ∈Λ
∈ `p(Λ).

Applying (3.17) and (3.18) for the cut-off function ψ0, we obtain the following
properties for the multiplication operators ΨN

n , n ∈ NZ.

Lemma 3.4. Let 1 ≤ N ∈ Z, Λ be a relatively-separated subset of Rd, and the
multiplication operators ΨN

n , n ∈ NZd, be as in (3.19). Then

(3.20) ‖ΨN
n c‖`p(Λ) ≤ ‖χNn c‖`p(Λ) for all c ∈ `p(Λ)

where 1 ≤ p ≤ ∞,

(3.21) ‖c‖`p(Λ) ≤
( ∑
n∈NZd

‖ΨN
n c‖

p
`p(Λ)

)1/p

≤ 2d/p‖c‖`p(Λ) for all c ∈ `p(Λ)

(3.22)

4d/p‖c‖`p(Λ) ≤
( ∑
n∈NZd

‖Ψ4N
n c‖p`p(Λ)

)1/p

≤ (5 + 21−p)d/p‖c‖`p(Λ) for all c ∈ `p(Λ),

where 1 ≤ p <∞, and

(3.23) ‖c‖`∞(Λ) = sup
n∈NZd

‖ΨN
n c‖`∞(Λ) = sup

n∈NZd
‖Ψ4N

n c‖`∞(Λ) for all c ∈ `∞(Λ).

To prove Theorem 2.1, we also need the following result.

Lemma 3.5. ([23]) Let N ≥ 1, the subsets Λ,Λ′ of Rd be relatively-separated, A
be an infinite matrix in the class C(Λ,Λ′), AN be the truncation matrix of A, and
ΨN
n , n ∈ NZd, be the multiplication operators in (3.19). Then

(3.24) ‖ΨN
n AN −ANΨN

n ‖C(Λ,Λ′) ≤ inf
0≤s≤N

(
‖AN −As‖C(Λ,Λ′) +

2ds
N
‖As‖C(Λ,Λ′)

)
.

Now we start to prove Theorem 3.1.

Proof of Theorem 3.1. (i)=⇒(ii): By the `p-stability of the infinite matrix A,
there exists a positive constant C0 (independent of n ∈ NZd and 1 ≤ N ∈ Z) such
that

(3.25) ‖AχNn c‖`p(Λ) ≥ C0‖χNn c‖`p(Λ′) for all c ∈ `p(Λ′),

where n ∈ NZd and N ≥ 1. Noting

(3.26) χ2N
n ANψ

N
n = ANψ

N
n

and applying (3.13) yield

‖AχNn c− χ2N
n AχNn c‖`p(Λ)

= ‖(I − χ2N
n )(A−AN )χNn c‖`p(Λ)

≤ R(Λ)1/pR(Λ′)1−1/p‖A−AN‖C(Λ,Λ′)‖χNn c‖`p(Λ′),(3.27)

where I is the identity operator. Combining the estimates in (3.25) and (3.27)
proves that

(3.28) ‖χ2N
n AχNn c‖`p(Λ) ≥

(
C0 −R(Λ)1/pR(Λ′)1−1/p‖A−AN‖C(Λ,Λ′)

)
‖χNn c‖`p(Λ′)
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hold for all c ∈ `p(Λ′), where n ∈ NZd and N ≥ 1. The conclusion (ii) then follows
from (3.14) and (3.28).

(ii)=⇒(iii): The implication follows from (3.15).

(iii)=⇒(i): Let 1 ≤ p < ∞. Take any n ∈ N0Zd and c ∈ `p(Λ′). By the
assumption (iii) for the infinite matrix A,

(3.29) ‖χ2N0
n AΨN0

n c‖`p(Λ) = ‖χ2N0
n AχN0

n ΨN0
n c‖`p(Λ) ≥ α‖ΨN0

n c‖`p(Λ′).

This together with (3.13) and (3.26) implies that

‖AN0ΨN0
n c‖`p(Λ)

= ‖χ2N0
n (AN0 −A+A)ΨN0

n c‖`p(Λ)

≥ ‖χ2N0
n AχN0

n ΨN0
n c‖`p(Λ) − ‖χ2N0

n (AN0 −A)ΨN0
n c‖`p(Λ)

≥
(
α−R(Λ)1/pR(Λ′)1−1/p‖A−AN0‖C(Λ,Λ′)

)
‖ΨN0

n c‖`p(Λ′).(3.30)

From (3.13) and (3.24) it follows that

‖(ΨN0
n AN0 −AN0ΨN0

n )c‖`p(Λ)

= ‖(ΨN0
n AN0 −AN0ΨN0

n )Ψ4N0
n c‖`p(Λ)

≤ R(Λ)1/pR(Λ′)1−1/p‖ΨN0
n AN0 −AN0ΨN0

n ‖C(Λ,Λ′)‖Ψ4N0
n c‖`p(Λ′)

≤ R(Λ)1/pR(Λ′)1−1/p

× inf
0≤s≤N0

(
‖AN0 −As‖C +

2ds
N0
‖AN0‖C

)
‖Ψ4N0

n c‖`p(Λ′).(3.31)

Combining (3.21), (3.22), (3.30) and (3.31), we get

2d/p‖AN0c‖`p(Λ) ≥
( ∑
n∈N0Z

‖ΨN0
n AN0c‖

p
`p(Λ)

)1/p

≥
(
α−R(Λ)1/pR(Λ′)1−1/p‖A−AN0‖C(Λ,Λ′)

)( ∑
n∈N0Z

‖ΨN0
n c‖p`p(Λ′)

)1/p

−R(Λ)1/pR(Λ′)1−1/p inf
0≤s≤N0

(
‖AN0 −As‖C(Λ,Λ′) +

2ds
N0
‖AN0‖C(Λ,Λ′)

)
×
( ∑
n∈N0Z

‖Ψ4N0
n c‖p`p(Λ′)

)1/p

≥
(
α−R(Λ)1/pR(Λ′)1−1/p‖A−AN0‖C(Λ,Λ′) − (5 + 21−p)1/pR(Λ)1/pR(Λ′)1−1/p

× inf
0≤s≤N0

(
‖AN0 −As‖C(Λ,Λ′) +

2ds
N0
‖AN0‖C(Λ,Λ′)

))
‖c‖`p(Λ′).
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Therefore

‖Ac‖`p(Λ) ≥ ‖AN0c‖`p(Λ) − ‖(A−AN0)c‖`p(Λ)

≥ 2−1/p
(
α− (1 + 2d/p)R(Λ)1/pR(Λ′)1−1/p‖A−AN0‖C(Λ,Λ′)

−(5 + 21−p)d/pR(Λ)1/pR(Λ′)1−1/p

× inf
0≤s≤N0

(
‖AN0 −As‖C(Λ,Λ′) +

2ds
N0
‖AN0‖C(Λ,Λ′)

))
‖c‖`p(Λ′)

≥ 2−d/p
(
α− 2(5 + 21−p)1/pR(Λ)1/p

×R(Λ′)1−1/p inf
0≤s≤N0

(
‖A−As‖C(Λ,Λ′) +

ds

N0
‖A‖C(Λ,Λ′)

))
‖c‖`p(Λ′),

and the conclusion (i) for 1 ≤ p <∞ follows.
The conclusion (i) for p = ∞ can be proved by similar argument. We omit the

details here.

�

The author thanks Professors Deguang Han, Zuhair M. Nashed, Xianliang Shi,
and Wai-Shing Tang for their discussion and suggestions in preparing the manu-
script.
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[15] K. Gröchenig and M. Leinert, Symmetry of matrix algebras and symbolic calculus for infinite
matrices, Trans, Amer. Math. Soc., 358(2006), 2695–2711.
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[19] R.-Q. Jia and C. A. Micchelli, Using the refinement equations for the construction of pre-

wavelets. II. Powers of two, In Curves and Surfaces (Chamonix-Mont-Blanc, 1990), Academic

Press, Boston, MA, 1991, 209–246.
[20] V. G. Kurbatov, Algebras of difference and integral operators, Funktsional. Anal. I.

Prilozhen., 24(1990), 87–88.

[21] M. A. Naimark, Normed Algebras, Wolters-Noordhoff Publishing Groningen, 1972.
[22] T. Pytlik, On the spectral radius of elements in group algrebras, Bull. Acad. Polon. Sci. Ser.

Sci. Math., 21(1973), 899–902.

[23] C. E. Shin and Q. Sun, Stability of localized operators, J. Funct. Anal., 256(2009), 2417–
2439.
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