STABILITY CRITERION FOR CONVOLUTION-DOMINATED
INFINITE MATRICES

QIYU SUN

ABSTRACT. Let ¢P be the space of all p-summable sequences on Z. An infinite
matrix is said to have #P-stability if it is bounded and has bounded inverse
on ¢P. In this paper, a practical criterion is established for the ¢P-stability of
convolution-dominated infinite matrices.

1. INTRODUCTION

Let C be the set of all infinite matrices A := (a(j,j’));,jrez with
|4l =3 sup fa(j. )] < oo

kezl ) =
Let (P := (P(Z) be the set of all p-summable sequences on Z with the standard
norm || - ||,. An infinite matrix A := (a(j,j'));,j7ez € C defines a bounded linear

operator on /7,1 < p < 0o, in the sense that

(1.1) Ae= (D alg.e(i)).

j'ez jet
where ¢ = (¢(j)) ez € 7. Given a summable sequence h = (h(j))jez € ¢*, define
the convolution operator Cy on 7,1 < p < oo, by

(1.2) Ch: 3 (b)), — (Zh(j - kz)b(k)) e

kEZ J
Observe that the linear operator associated with an infinite matrix A € C is domi-
nated by a convolution operator in the sense that

(13) (A) () < (Cule)(G) = Y h(G = )le(i)], G

J'el
for any sequence ¢ = (¢(j))jez € 2,1 < p < oo, where |c| = (|c(j)|)jez and the
sequence (sup;_;—y [a(j,7")|)rez can be chosen to be the sequence h = (h(j)) ez
in (1.3). So infinite matrices in the set C are said to be convolution-dominated.

Convolution-dominated infinite matrices were introduced by Gohberg, Kaashoek,
and Woerdeman [12] as a generalization of Toeplitz matrices. They showed that the
class C equipped with the standard matrix multiplication and the above norm || -||¢
is an inverse-closed Banach subalgebra of B(¢F) for p = 2. Here B(¢F),1 < p < o0,
is the space of all bounded linear operators on ¢P with the standard operator norm,
and a subalgebra A of a Banach algebra B is said to be inverse-closed if an operator
T € Ahas an inverse T~ in B then T~ € A ([7, 11, 21]). The inverse-closed prop-
erty for convolution-dominated infinite matrices was rediscovered by Sjostrand [25]
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with a completely different proof and an application to a deep theorem about pseu-
dodifferential operators. Recently Shin and Sun [23] generalized Gohberg, Kaashoek
and Woerdeman'’s result and proved that the class C is an inverse-closed Banach sub-
algebra of B(¢P) for any 1 < p < oo. The readers may refer to [5, 10, 20, 23, 25, 27]
and the references therein for related results and various generalizations on the
inverse-closed property for convolution-dominated infinite matrices.

Convolution-dominated infinite matrices arise and have been used in the study
of spline approximation ([8, 9]), wavelets and affine frames ([6, 18]), Gabor frames
and non-uniform sampling ([3, 14, 15, 26]), and pseudo-differential operators ([13,
16, 24, 25] and the references therein). Examples of convolution-dominated infinite
matrices include the infinite matrix (a(j — j' ))j’j, <y, associated with convolution
operators, and the infinite matrix (a(j - j')e*%\ﬁej/(j’j/))i ez associated with
twisted convolution operators, where # € R and the sequence a = (a(j)) ez satisfies

ZjeZ la(j)| < oo ([1, 14, 19, 27, 29]).

A convolution-dominated infinite matrix A is said to have ¢P-stability if there are
two positive constants C; and Cy such that

(1.4) Chllellp < || Acllp < Colle|l, for all ¢ € P.

The ¢P-stability is one of basic assumptions for infinite matrices arising in the study
of spline approximation, Gabor time-frequency analysis, nonuniform sampling, and
algebra of pseudo-differential operators, see [1, 3, 6, 8, 9, 10, 14, 15, 16, 18, 19, 23,
24, 25, 26, 27, 29] and the references therein. Practical criteria for the ¢P-stability
of a convolution-dominated infinite matrix will play important roles in the further
study of those topics.

However, up to the knowledge of the author, little is known about practical
criteria for the ¢P-stability of an infinite matrix. For an infinite matrix A = (a(j —
J"));.jrez associated with convolution operators, there is a very useful criterion for
its (P-stability. It states that A has ¢P-stability if and only if the Fourier series
a(§) = z:jeza(j)e_ijf of the generating sequence a = (a(j))jez € ¢* does not
vanish on the real line, i.e.,

(1.5) a(€) #0 forall £ eR.

Applying this criterion for the ¢P-stability, one concludes that the spectrum o, (C,)
of the convolution operator C, as an operator on ¢ is independent of 1 < p < oo,
i.e.,

(1.6) 0p(Co) = 04(Cy) foralll <p,qg<oo

see [4, 17, 22, 23] and the references therein for the discussion on spectrum of var-
ious convolution operators. Applying the above criterion again, together with the
classical Wiener’s lemma ([29]), it follows that the inverse of an ¢P-stable convolu-
tion operator C, is a convolution operator C associated with another summable
sequence b.

For a convolution-dominated infinite matrix A = (a(4, j'));.j7ez, & popular suffi-
cient condition for its ¢'-stability and ¢>-stability is that A is diagonal-dominated,
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ie.,
(1.7) inf (Ja(j. )| —max (Y la(G. ), Y la(i'.4)]) ) > 0.
! =y 34
In this paper, we provide a practical criterion for the ¢P-stability of convolution-
dominated infinite matrices. We show that a convolution-dominated infinite matrix

A has ¢P-stability if and only if it has certain “diagonal-blocks-dominated” property
(see Theorem 2.1 for the precise statement).

2. MAIN THEOREM

To state our criterion for the £P-stability of convolution-dominated infinite ma-
trices, we introduce two concepts. Given an infinite matrix A, define the truncation
matrices As,s > 0, by

A, = (a(i,j)x(_w)(i —3))ijez

where y g is the characteristic function on a set E. Given y € R and 1 < N € Z,
define the operator X;I,V on /P by

05 (), — (0N (= 9) e €
The operator Xév is a diagonal matrix diag(x—n,n)(J — ¥))jez-

Theorem 2.1. Let 1 < p < oo, and A be a convolution-dominated infinite matriz
in the class C. Then the following statements are equivalent.

(i) The infinite matriz A has (P -stability.
(ii) There exist a positive constant Coy and a positive integer No such that

(2.1) HX%NAXQ{CHP 2 COHXr]yC”p7 ce P,

hold for all integers N > Ny and n € NZ.
(iii) There exist a positive integer No and a positive constant « satisfying

2.2 25+ 2P)/P inf (A= Adlle + —||A

(22) 0> 25 +2 ) inf (14 = Aulle + 3l Alle)
such that

(2.3) N Axnellp > allxncll,,  ce

hold for all n € NyZ.

Taking No = 1in (2.2) and (2.3), we obtain a sufficient condition (2.4), which is
a strong version of the diagonal-domination condition (1.7), for the ¢*>°-stability of
a convolution-dominated infinite matrix.

Corollary 2.2. Let A = (a(j,]j'));,j7ez be a convolution-dominated infinite matrix
in the class C. If

(2.4) inf a(j,5)|—2 > sup la(j,5")| >0,
JEL =k
0#£kez? 7

then A has £ -stability.
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We say that an infinite matrix A = (a(,7))i jez is a band matriz if a(i, j) = 0
for all 4, j € Z satisfying j > i+ k or j < ¢ —k. The quantity 2k+1 is the bandwidth
of the matrix A. For a band matrix A with bandwidth 2k + 1, A — A, is the zero
matrix if s > k. Therefore for N > k,

S k
. B s _k |
oslgéjv (”A Aslle + N ||A||c) < NHA||C
This, together with Theorem 2.1, gives the following sufficient condition for a band

matrix to have fP-stability.

Corollary 2.3. Let 1 < p < oo and A be a convolution-dominated band matriz in
the class C with bandwidth 2k + 1. If there exists an integer No > k such that

(2.5) [Axnellp > allxncllp, € e,

holds for some constant o strictly larger than 2(5 +2'=P)Y/Pk||A||c/No, then A has
LP -stability.

If we further assume that the infinite matrix A in Corollary 2.3 has the form
A = (a(j — j'))j,jrez for some finite sequence a = (a(j));ez satisfying a(j) = 0
for [j| > k, then [|Allc = >; <4 [a(j)| and the condition (2.5) can reformulated as
follows: -

~ vk )
(2.6) lAnoelly = 2 (D 1)) lellpy e € RN+
Mot iz

holds for some v > 2(5 + 217P)1/?_ where

(2.7) ANy = (a(f = 5')) = No—k<j<No+k,—No<j'<No
and
|M|:{<Zﬁ.hwquw 1< p<oo
P SUp_y, <j<n, [€U) i p = oo,

for ¢ = (c(=k1),- -+ ,¢(0),...,c(ks))T € RF+h2+1 " Ag a conclusion from (2.6) and
(2.7), we see that if A = (a(j — j'));,j7ez does not have ¢P-stability, then for any
large integer N,

(2.8) W i P 2(5”1717)1/%( > \a(j)l).

1
0#ceR2N+L ¢l T N e

For the special case p = 2, the above inequality (2.8) can be interpreted as the

. . < < 2 2
minimal eigenvalue of (Ax)T Ay is less than or equal to \/]2?2]“ (lelfk la(5)])7,
and it can also be rewritten as

1/2

(S la@PIPv @) Pd) ™y |
1 = la(i)]),
(f;|PN(§)|2d§) " N <|j§§:k ! )

where (&) = Y.y a(j)e”" and Ty is the set of all trigonometrical polynomial
of degree at most N.

If the sequence a = (a(j)) ez satisfies a(0) = 1,a(—1) = —1, and a(j) = 0
otherwise, then the bandwidth of the infinite matrix A = (a(j — j')); 7z is equal

(2.9)

0#PN€Elly
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to 3, the norm ||A||¢ of the associated infinite matrix A is equal to 2,

-1 0 0 -~ 0 0

1 -1 0 -~ 0 0

0o 1 -1 -~ 0 0
(2.10) Ay = :

0 0 0 1 -1

0 0 0 0 1
and

A 1
vl 1
0#£ceR2N+1 ||| N+1

where the last inequality holds since the matrix

-1 0 0 - 0 000 -~ 00
-1 -1 0 -+ 0 000 -~ 0 0
-1 -1 =1 «+ 0 0 0 0 -~ 0 0
Be_| -1 -1 -1 . -1000 - 0
N 0 0 0 0O 01 1 -~ 1 1
0 0 0 0 0 0 1 1 1
O 0 0 -+ 0 000 -~ 11
O 0 0 -~ 0 000 -~ 0 1

is a left inverse of the matrix Ay. Therefore the order N1 in (2.8) can not be
improved in general, but the author believes that the bound constant 2(54-2'—7)1/P
in (2.2) and (2.8) is not optimal and could be improved.

3. PROOF

We say that a discrete subset A of R? is relatively-separated if
(3.1) R(A) := sup Z Xat[-1/2,1/2)¢(2) < 00
#€R \en

([1, 23, 27]). Clearly, the set Z of all integers is a relatively-separated subset of R
with

(3.2) R(Z) = 1.
Given a discrete set A, let £P(A) be the set of all p-summable sequences on the set
A with standard norm || - ||g»(a) or || - ||, for brevity.

Given two relatively-separated subsets A and A’ of R%, define

C(AN) = {A = (a(A\, X))

AEA N EN ”A”C(A,A/) < oo}7

where

Alleiarny = sup  |a(A N | Xar— a(A=N).
H HC( A7) kgdAeA,A’eA'| ( )| k+[—1/2,1/2] ( )
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It is obvious that

(3.3) C(z,Z) = C.
Given an infinite matrix A = (a(X, N))xea,vens, define its truncation matrices
As,8>0, by

AS = (a()\, )\/)X(,S’s)d ()\ - )\/)>
For any 3 € R? and a positive integer N, define the operator Xév on (P(A) by

B4) XN 23 () — (XN M=) ep € EP(A).

In this section, we establish the following criterion for the /P-stability of infinite
matrices in the class C(A, A’), which is a slight generalization of Theorem 2.1 by
(3.2) and (3.3).

AEANEA

Theorem 3.1. Let 1 < p < oo, the subsets A, A’ of R% be relatively-separated,
and the infinite matriz A belong to C(A,\’). Then the following statements are
equivalent to each other:

(i) The infinite matriz A has €P-stability, i.e., there exist positive constants
C1 and Cy such that

(3.5) Cillellerary < [[Acller(ay < Callcller(ary  for all e € £7(A).
(ii) There exist a positive constant Cy and a positive integer Ny such that
(3.6) XN Axy ellen(a) = Collxg ellen(ary  for all e € P(A'),

where Ny < N € Z and n € NZ°.
(iii) There exist a positive integer No and a positive constant « satisfying
(3.7)

_ _ . ds
a> 2(5 + 21 p)d/PR(A)l/PR(A/)l 1/p 0<19n<fN0 (HA — ASHC(A,A’) —+ FO”AHC(A’A/))

such that
(3-8) XN Axpeellencay 2 allxn®ellencar
hold for all c € ¢P(A") and n € NoZ.

Using the above theorem, we obtain the following equivalence of ¢P-stability for
infinite matrices having certain off-diagonal decay, which is established in [2, 28, 23]
for v > d(d+1),7 > 0, and v > 0 respectively.

Corollary 3.2. Let A, A’ be relatively-separated subsets of R?, and A = (a(\, \'))axea.ren:
satisfy

A n = 1+ k)Y  su a(\, N _ A=) < oo
Il a0 = 3+ )T, s I8N er-yaa3 =)

where v > 0. Then the (P-stability of the infinite matriz A are equivalent to each
other for different 1 < p < co.

Proof. Let 1 < p < oo and A have (P-stability. Then by Theorem 3.1 there exists
a positive constant Cj and a positive integer Ny such that

(3.9) Ix2N AxYcllew(ay = Collxi cllen(ary for all ¢ e P(A),
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where Ny < N € Z and n € NZ¢. From the equivalence of different norms on a
finite-dimensional space, we have that
(2N) R(A))™ ™ /=20y W el ay < [l €lleaca
< ((QN)dR(A))maX(l/Q71/P,0) ||ch||zp(/\) for all ¢ € £P(A),

where 1 < p,q < o00,1 <N € Z and n € NZ¢ (]2, 23]). Therefore for 1 < q < oo,

|‘X$LNAX’£LVC||EQ(A) Z CO(ZN)—d|1/P—1/Q|R(A/)min(l/P—l/%O)
(3.10) x R(A) ™ max(/p=L/a0) |\ Nl hy for all ¢ € £7(A),
where Ng < N € Z and n € NZ?. We notice that

. ds : ds
odf A= Adlenny + FlAlleany = Alle,any dnf 057+ 5
(3.11) < (d+ )| Ale,@aan N

Thus for 1 < ¢ < co with d|1/p—1/q| < v/(1+7), it follows from (3.10) and (3.11)
that there exists a sufficiently large integer Ny such that

(3.12) XY Axy elleacay > allxay elleacary

hold for all ¢ € £4(A’), N > Ny and n € NZ%, where « is a positive constant larger
than 2(5 —+ 21—q)d/qR(A)1/QR(A/)1—1/q infOSSSNo (HA — AS ||C(A,A’) —+ %HAHC(A,A’)) .
Then by Theorem 3.1, the infinite matrix A has ¢9-stability for all 1 < ¢ < o

with d|1/qg — 1/p| < v/(1 + ). Applying the above trick repeatedly, we prove the
{2-stability of the infinite matrix A for any 1 < ¢ < oo.

O

To prove Theorem 3.1, we first recall some basic properties for infinite matrices
A in the class C(A, A’) and its truncation matrices Ag, s > 0.

Lemma 3.3. ([23]) Let 1 < p < oo, the subsets A, A’ of R? be relatively-separated,
A be an infinite matriz in the class C(A,A'), and As,s > 0, be the truncation
matrices of A. Then

(3.13) || Acllw(ay < RIA)YPRA)' P Alleaanllcllm(ary  for all ¢ € £2(A"),

(3.14) Jim [JA = Asllea,an =0,

(3.15) li inf ||A— Al + ﬁHA|| =0
: N oo 0ds<N sICAAD Ty IHle(AA) = 55

and

(3.16) lAsllc < ||Alle for all s > 0.

Let vo(x1,...,2q) = H‘Ll max(min(2 — 2|z;],1),0) be a cut-off function on R%.
Then

(3.17) 0 < X[—1/2,1/214(x) < o(w) < x(—1ya(w) <1 forall z € R?,
and

(3.18) [tho(2) = tho(y)] < 2d||z —ylloo  forall z,y € R
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where ||z]|co = maxi<;<q |z;| for x = (21,...,2q). Define the multiplication opera-
tor ¥V on /P(A) by

319) e 0)3 (Wer — () €A

Applying (3.17) and (3.18) for the cut-off function )y, we obtain the following
properties for the multiplication operators ¥, n € NZ.

Lemma 3.4. Let 1 < N € Z, A be a relatively-separated subset of R?, and the
multiplication operators WN n € NZ9, be as in (3.19). Then

(3.20) 1N ellooiny < XD ellercay for all e € £P(A)

where 1 < p < 00,

1/p
(3:21)  leller(ay < ( Zd ||\I/,J;[c||§p(A)) < 2%P||c|may  for all ¢ € £P(A)
neNZ

(3.22)
1/p
4d/P||cng(A)§( > H\If;ﬁNcwgp(A)) < (542" P)P||cl|go(a) for all ¢ € £7(A),
neNZ?

where 1 < p < oo, and

(3.23) |lclle=(ay = sup [[UNellpeay = sup [[UpNellpe(ny for all c € £(A).
neNZ neNZI

To prove Theorem 2.1, we also need the following result.
Lemma 3.5. ([23]) Let N > 1, the subsets A, A’ of R? be relatively-separated, A

be an infinite matriz in the class C(A,A'), Ay be the truncation matriz of A, and
UN n e NZ9, be the multiplication operators in (3.19). Then

n

. 2ds
(3.24) WV AN — ANT [leann < Ogﬂsﬂng (||AN — Asllea,an + WHASHC(A,A’))-

Now we start to prove Theorem 3.1.
Proof of Theorem 3.1.  (i)==(ii): By the ¢P-stability of the infinite matrix A,

there exists a positive constant Cy (independent of n € NZ% and 1 < N € Z) such
that

(3.25) [AXY cller(ay = Collxn cller(ary  for all ¢ € £P(A),
where n € NZ% and N > 1. Noting
(3.26) XV AN = ANy

and applying (3.13) yield
HAXr]:/C - XiNAXgCHZP(A)
= (=2 (A = An)xS ellera)
(3.27) < R(A)YPR(A)TYPA - Anlleaan X ellesan,

where T is the identity operator. Combining the estimates in (3.25) and (3.27)
proves that

(3.28) [IX2N AxYeller(ay = (Co — R(A)YPR(A)V TP A— Anlleann) X5 eller(an
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hold for all ¢ € £P(A’), where n € NZ¢ and N > 1. The conclusion (ii) then follows
from (3.14) and (3.28).

(ii)=(iii): The implication follows from (3.15).

(iil)==(i): Let 1 < p < oo. Take any n € NyZ? and ¢ € ¢P(A’). By the
assumption (iii) for the infinite matrix A,
(3.29) X ARl () = XN Axn R cllen(ay = @l UR0clloncary-
This together with (3.13) and (3.26) implies that

[ Ane nocllen(a)
X2 (Any — A+ A)Woc] o a)

> N AT el (a) — XY (Any — A) T o)
(3.30) > (o= RN)YPRA) VA= An,lleann) 1R cllenan-

\%

From (3.13) and (3.24) it follows that

1(EN° Any — AngWR0)ell oo (a)
‘(\IINOANO - ANU\IIQIO)\II;ILNOC”@P(A)

n

< ROYPRA)VPIUY Ay, — Ay U leqaan 1Y el
< R(A)YPR(AHY/P
(3.31) x inf (JlAn, = Alle + S 205 ) A, e ) 1%3ocllen .
0<s<No ° Ny °

Combining (3.21), (3.22), (3.30) and (3.31), we get

1/p
2d/p||ANOC||zp(A) Z( Z ||‘1JN0ANOC||[P(A))

neNyZ
1/p
> (a _ R(A)l/PR(A/)l—l/pHA — ANO HC(A,A’)) ( Z H\IJNOCHZP(A/ )
neNoZ
—~R(A)YPR(N)'7Y/Pinf (HA — Alleany + 2 A, e )
0<Bn, No slle(a,A) No Nollc(a,A%)
1/p
X( Z ||\Il4NOC||ZP(A’))
neNoZ
> (a . R(A)l/pR(A’)l_l/pHA _ ANUHC(A,A’) — G+ 21—1))1/1)R(A)1/PR(A/)1—1/10

2ds

X o (14n = Aullea ) + F 4% llen.a) )lellera,
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Therefore
HAﬂ@m)ZH&%ﬂﬂmy—MA—Amkmmm
> 27l (a — (14 27P)R(A)VPR(A) P A = A, llecan
—(5+ 21 P)YPR(A)V/PR(A) /P
. 2ds
X OgﬂggA% (Hf1A% — Asllea,ary + ZQE;H14AR>”C(A4A/)))“CHKP(A’)
> 9~d/p (a —2(5 + 21-P)UPR(A) /P

_ . ds
xRN inf (14 = Adllecnan + - I14lleca nn)) el

and the conclusion (i) for 1 < p < co follows.
The conclusion (i) for p = co can be proved by similar argument. We omit the
details here.

O

The author thanks Professors Deguang Han, Zuhair M. Nashed, Xianliang Shi,
and Wai-Shing Tang for their discussion and suggestions in preparing the manu-
script.
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