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In this note, it is proved that all the M band scaling functions with

minimal support are asymmetric except the Haar functions.

1. INTRODUCTION AND RESULT

Fix an integer M > 2. In this note, a multiresolution with dilation M means a
sequence of nested subspaces V;,j € Z, of L? := L*(R)

--CVcCcVaaiCcVyCcViCcVoC---

such that M7/2¢(M7-—k),k € Z, is an orthonormal bases of V; for some compactly
supported L? function ¢, and such that U;jezV; is dense in L?. The function ¢ in
the above definition of a multiresolution is called an M band scaling function, or a
scaling function for short. Then the scaling function ¢ in this note has orthonormal
integer shifts, i.e.,

/ 6(z)2de =1 and / 6(@)b(z — k)dz =0 ¥ k € Z\{0}.
R R

We say that an L? function f is symmetric if

flxo+ ) = f(wo — )

for some z¢p € R. The symmetry of a scaling function is nice, and asymmetry can
be a nuisance in some applications. For M = 2, it is well known that there is not
any compactly supported symmetric scaling function except the Haar function([6]),
but for M > 3, some compactly supported symmetric non-Haar scaling functions
have been constructed ([1, 4, 7, 9]).

We say that a compactly supported L? function ¢ satisfies the moment conditions
of order N if $(0) = 1 and D*¢(2kx) = 0 for all k € Z\{0} and 0 < a < N — 1,
where N is a positive integer. Here and hereafter, the Fourier transform f of
an integrable function f is defined by f(f) = fR e~ ¢ f(z)dz. A multiresolution
with its scaling function satisfying moment conditions of higher order is nice since
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functions in that multiresolution would provide better approximation to smooth
functions. For M = 2 and N > 1, in the class of scaling functions satisfying
the moment conditions of order N, a scaling function with minimal support was
constructed in [6]. Moreover, that scaling function is asymmetric except N = 1,
and has its asymptotic Holder regularity proportionally to (1 —In3/In4)N as N
tends to infinity ([5, 6, 10, 15]). For M > 3 and N > 1, similar scaling function with
minimal support, which we denoted by ¢nr,n, was constructed in [8]. It was shown
that ¢, n is just the Haar function for N = 1 (hence symmetric for N = 1), has
asymptotic Holder regularity proportionally to In(sin M7 /(2M +2)) *(Iln M)"'N
for even M, and to (4ln M) 1ln N for odd M as N tends to infinity (]2, 11, 13]),
and has explicit expression if N < M —1 ([3, 14]). In this note, we show that the
M band scaling function ¢,y with minimal support is asymmetric for N > 2.

THEOREM 1.1. Let N > 2 and ¢pr, N be the minimal supported M band scaling
function satisfying moment conditions of order N. Then ¢y N is asymmetric.

2. PROOF OF THEOREM 1.1
A compactly supported L? function f is said to be refinable if [ f(x) =1 and

f=>ck)f(M-—k) (1)

keZ

for some sequence {c(k)}rez having finite support. The equation (1) is called a
refinement equation, and the function H(§) = 77 > 1oz c(k)e™*¢ is known as the
symbol of that refinement equation (1), or of the refinable function f. For symmetric
refinable functions f, we have

LEMMA 2.2. Let f be a compactly supported refinable function and H () be cor-
responding symbol. If f is symmetric, then

|H(§)|2:(g(sin2§))2 or cos2g(g(sin23))2

for some polynomial g with g(0) = 1.

A complete proof of Lemma 2.2 was provided in [1]. We omit the detail here. In
particular, for any compactly supported refinable function f and and corresponding
symbol H(€), f is symmetric if and only if H(¢) = e*¢ H(—¢) for some integer k
([1, 12]). Then Lemma 2.2 is an easy consequence of the above claim.

From the nest condition of a multiresolution, any scaling function ¢ can be written
as linear combination of ¢(2 - —k),k € Z, using some square summable sequence
{c(k)}rez. On the other hand, ¢(k) = M [, ¢(x)¢(Mx —k)dz for any k € Z by the
orthonormal condition for the scaling function in the definition of a multiresolution,
which leads to the finite support of the sequence {c(k)}rez. Thus any scaling
function is refinable.



To study the asymmetry of the minimal supported scaling function ¢ar N, we
need some knowledge about corresponding symbol Hys,n. For N > 1, let

Pyn(§) = Nz__:l Z H ( ~l+n, ) (sin %)72”3 sin®" g (2)

ctnypy—1=n s=1

Then PM,N(g) Z PM,N(O) = 1, and

M-1 sin? M¢/2 N 2smy
Z%(M%m%02+wMﬂ> G+7w)—1 for any ¢ € [—7,7].(3)

Moreover, Py n(£) has minimal degree of sin?£/2 in the class of polynomials of
sin® £/2 satisfying (3) (see for instance [1, 2, 8]). By Riesz Lemma([6]), there exist
trigonometric polynomials Qar,n(€) with real coefficients such that

Qumn(0)=1 and Qun(§)QrmN(—E) = Pu,n(§)- (4)
Define
_emiMe \ N
(@ = (5= ) Quv(©): 6

Then we have

LEMMA 2.3. Let ¢pr N be the minimal supported M band scaling function satis-
fying moment conditions of order N, and let Har,n be defined by (5). Then ¢ur,n
is the refinable function with corresponding symbol e*¢ Hyy n(€) for some integer

k.
The proof of Lemma 2.3 can be found in [8], see also [1], we omit the detail here.
Now we reach the stage to start the proof of Theorem 1.1.

Proof of Theorem 1.1 ~ On the contrary, ¢ar,n is symmetric for some M > 3 and
N > 2. Then by Lemmas 2.2 and 2.3,

[Harn () = (9(sin”€/2))* or  cos® £/2 (g(sin” £/2))” (6)

for some polynomial g with g(0) = 1. Note that

.92 M M—1 .2
e . 25 = H (1 - . Sgln € ) ’ (7)
M?sin"¢§ sin® sw/M

which follows from comparing the roots and values at the origin of both sides of
the above equation. Then combining (4), (5), (6) and (7) leads to

Prr,n(€) = (h(sin€/2))* or  cos®€/2 (h(sin® £/2))? (8)

for some polynomial h with h(0) = 1. This together with the fact that Py,n (&) is
a polynomial of degree N — 1 about sin® £/2 leads to

P,y (€) = cos® €/2 (h(sin® €/2))? (9)



for even N, and

P,n(€) = (h(sin® €/2))* (10)

for odd N. Moreover, the polynomials A in (9) and (10) have degree ko and satisfy
h(0) = 1, where kg is the largest integer smaller than or equal to (N —1)/2 .

For even N, it follows from (9) that Py n(7) = 0, which is a contradiction since
Pyr,n(m) > 1 by (2). Therefore it remains to prove the assertion for odd N. In that
case, substituting (10) into (3), and using the fact that for any 1 < s < M —1,

sin® M¢/2 ( 28 ) B
M2 sin®(¢ + 2sm /M) A 2 as £=0,
we get
in2 Mg/ \ 2ot .
(7;[2 sin2£f//2> (h(sin®¢/2))> =1+ 0 (sin4’”°+2 g) (11)

as £ — 0. Here and hereafter, A(§) = O(B(£)) as £ — 0 means that A(£)/B(¢) is
bounded in a small neighborhood of the origin. Then taking square root at both
sides of (11), using 1(0) = 1, and multiplying (sin? M¢/2)~Fo—1/2(M? sin? £ /2)ko+1/2
lead to

2 —ko—1/2
h(sin? £/2) = <A22TA1142£§//22> +0 <sin4k°Jr2 g) , E—0. (12)

By (7) and the Taylor expansion of the function (1 + ¢)~! at the origin,

ko+1
(1—t) ' =D t"+0(t"*?) as t—0,
n=0
we obtain
( sin® M¢/2 )‘1
M?2sin? £/2
M—1 [ko+1 . n
-1l (ﬁfi) Lo (Sm%o+4 é)
5\ = \sin® s /M 2
w né £
= Z Bar,n(n)sin? —|— ) (sin%o"'4 5) as £ —0, (13)
n=0

where B, n(n),0 <n < ko + 1, are real numbers. Hence it follows from (13) that
ﬂMJv(O):l and ﬂM7N(n)>O VO<n<ky+1. (14)

Substituting (13) in (12), and using Bar,n(0) = 1 from (14) and Taylor expansion
for the function (1 + t)*0*1/2 at the origin,

k +1 n—l
(1 +t)kot/2 =1 4 02: (k0+1/2 /)

n'=1

"+ O(t*?) ast — 0,



we get

L T, (ko +1/2— )

h(sm )—1+Z T

,n/ff
o e\ ¢
X 7; Bar,n (n) sin®" 5 +0 (sin%o"'4 5) , £—0. (15)
Write
ot T (ko + 1/2 — ) (Fotl "
1+Z ] 0 ( 0” / ) ZﬁMW(n)sinz”_
n'=1 ’ n=1
™ ¢ ¢
Z Ym,n(n) sin®” 5+ O (sin2k°+4 5) . £—0. (16)
n=0
Then it follows from (14) and (16) that
’YM,N(8)>0 VO<s<ky+1. (17)

Combining (15) and (16), and using the fact that h is a polynomial with degree kg,
we obtain

ko+1

h(sm ) Z v, ( sin2” %

and v, n(ko+1) = 0, which contradicts (17). This completes the proof of Theorem
1.1.
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