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We consider the convolution dilation operator

Wc,αf(x) = α

∫
R

c(αx− y)f(y)dy, f ∈ Lp(R),

where α is a real number strictly larger than 1, and c is a compactly supported in-
tegrable kernel with

∫
R
c(x)dx = 1. For any sufficiently large number K the space

Lp([−K,K]) of all Lp-functions with support in the interval [−K,K] is an invariant
space of Wc,α. It is known that Wc,α restricted to Lp([−K,K]) is a compact oper-
ator with eigenvalues α−k, k = 0, 1, . . . , and spectrum {α−k : k = 1, 2, . . .} ∪ {0},
which are independent of c and K. This result is better understood in the context
of weighted Lp space, Lpw(R) that comprises functions f for which fw belong to
Lp(R). We prove that under an oscillation condition on w, Wc,α is a compact oper-
ator on Lpw(R) if and only if lim|x|→∞ w(x)/w(αx) = 0. Further, Wc,α has exactly
the same eigenvalues and spectrum as its restriction to Lp([−K,K]). We also prove
that if lim|x|→∞ w(x)/w(αx) = r for some positive constant r, then the spectrum

of Wc,α on the space Lpw(R) is the closed disc Ds := {λ ∈ C : |λ| ≤ rα1−1/p} in
addition to the set {α−k : k = 1, 2, . . .}, and that all nonzero complex numbers with
absolute value strictly less than r are eigenvalues of the operator Wc,α on Lpw(R).
In particular, for w = 1 the results say that the spectrum of Wc,α on Lp(R) is
the closed disc with centre at the origin and radius α1−1/p, and that all nonzero
complex numbers with absolute value strictly less than 1 are its eigenvalues.

1 Introduction

Take a real number α strictly larger than one, and a compactly supported
function c in L1(R) with

∫
R
c(x)dx = 1. Define a convolution dilation operator

Wc,α : Lp(R)→ Lp(R) by

Wc,αf(x) := α

∫
R

c(αx− y)f(y)dy, f ∈ Lp(R). (1.1)

The operator Wc,α is a continuous analogy of the transfer operator (also known
as Ruelle operator) that arises in a number of different context, such as wavelet
analysis3,15,20, stationary subdivision4,8,12,21, and dynamical systems16,17,18.
It is easy to check that Wc,α is a bounded operator on Lp(R) for any 1 ≤
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p ≤ ∞. For any K > 0, denote by Lp([−K,K]) the space of all Lp-functions
with support in the interval [−K,K], and by Lp0([−K,K]) the space of all
functions f ∈ Lp([−K,K]) with

∫
R
f(x)dx = 0. Let K0 be the smallest

positive number that satisfies supp(c) ⊂ [−(α−1)K0, (α−1)K0]. Then it can
be checked that for any K ≥ K0, the spaces Lp([−K,K]) and Lp0([−K,K])
are invariant subspaces of Wc,α.

An eigenfunction φ of Wc,α with eigenvalue 1 is a solution of the convo-
lution dilation equation

φ = α

∫
R

c(α · −y)φ(y)dy. (1.2)

The simplest convolution dilation equation is one with kernel c = 1
2χ(−1,1] and

dilation α = 2, and it was studied by Kebaya and Iri14 and Rvachev19 inde-
pendently. Recent interests in convolution dilation equations are associated
with nonstationary multiresolution and wavelets5,9, nonstationary subdivi-
sion processes6,7, and invariant densities for model sets and quasicrystals1,2.
It is known that (1.2) has a unique compactly supported solution φ normal-
ized so that

∫
R
φ(x)dx = 1 and the solution φ is infinitely differentiable and

supported in [−K0,K0]13.
For a Banach space X and an operator T on X, we shall denote the

resolvent set, spectrum, the set of all eigenvalues, and the spectral radius of
T on X by P (T,X), σ(T,X), E(T,X) and ρ(T,X) respectively. Then

E(T,X) ⊂ σ(T,X) = C\P (T,X) (1.3)

and

ρ(T,X) = sup{|λ| : λ ∈ σ(T,X)} = lim
n→∞

‖Tn‖1/n. (1.4)

Note that if φ ∈ Lp([−K,K]) is the solution of (1.2), then φ(k), the k-th
derivative of φ, is the eigenfunction of the restricted operator Wc,α|Lp([−K,K])

with eigenvalue α−k for any K ≥ K0. This follows by taking derivatives of
both sides of (1.2). Set

Σ0 := {α−k : k = 0, 1, . . .}.

Then any λ ∈ Σ0 is an eigenvalue of the operator Wc,α on the Banach space
Lp([−K,K]), and any λ ∈ Σ0\{1} is an eigenvalue of the operator Wc,α

on Lp0([−K,K]). Moreover, the operator Wc,α is a compact operator on
Lp([−K,K]) and on Lp0([−K,K]) for any K ≥ K0

13. Therefore, the fol-
lowing result about spectrum of the restricted operator Wc,α|Lp([−K,K]) and
Wc,α|Lp0([−K,K]) follows13.
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Theorem 1.1 Let α > 1, 1 ≤ p ≤ ∞, c be a compactly supported function in
L1(R) with

∫
R
c(x)dx = 1, and let K ≥ K0. Then Wc,α is a compact operator

on Lp([−K,K]) and Lp0([−K,K]). Moreover

E(Wc,α, L
p([−K,K])) = Σ0, (1.5)

σ(Wc,α, L
p([−K,K])) = {0} ∪ Σ0, (1.6)

ρ(Wc,α, L
p([−K,K])) = 1, (1.7)

and

ρ(Wc,α, L
p
0([−K,K])) = α−1. (1.8)

Observe that the spectrum of Wc,α restricted to Lp([−K,K]) depends
only on α. In particular, it is independent of K as long as K ≥ K0. Therefore,
one would expect that the spectrum of the operator Wc,α on the entire space
Lp(R) to be the same as in (1.6). However, this is not the case, and it turns
out that the spectrum of the operator Wc,α on Lp(R) is the closed disc with
radius α1−1/p, and that all the nonzero complex numbers with absolute value
strictly less than one are eigenvalues of Wc,α (see Corollary 1.5 for detail).
This big difference in the spectra of Wc,α on Lp([−K,K]) and Lp(R) can be
better understood if we consider Wc,α as an operator on the weighted spaces
Lpw(R), 1 ≤ p ≤ ∞, which comprise all functions f with fw ∈ Lp(R). Here
and hereafter, a weight w means a positive measurable function on R, and
the norm ‖ · ‖p,w of a function f on Lpw(R) is the usual Lp norm of fw.

In order to study the spectrum of Wc,α on the space Lpw(R), it must at
least be a bounded operator. This imposes the following restrictions on the
weight w.

(i) There is a positive constant C0 such that

C−1
0 w(x) ≤ w(y) ≤ C0w(x) a.e. for all |x− y| ≤ 1. (1.9)

(ii) There is a positive constant C1 such that

w(x) ≤ C1w(αx) a.e. for all x ∈ R. (1.10)

We shall assume throughout the paper that (1.9) is satisfied. If w satisfies
both (1.9) and (1.10), then Wc,α is a bounded operator on Lpw(R) for any
1 ≤ p ≤ ∞. We remark that if w satisfies (1.9) then (1.10) is a necessary and
sufficient condition for Wc,α to be bounded on Lpw(R) for any 1 ≤ p ≤ ∞. We
state this as
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Theorem 1.2 Let 1 ≤ p ≤ ∞, α > 1, c be a compactly supported function in
L1(R) with

∫
R
c(x)dx = 1, and w be a weight function satisfying (1.9). Then

Wc,α is bounded on Lpw(R) if and only if w satisfies (1.10).

For any K > 0, let Lpw([−K,K]) be the space of all Lpw(R) functions with
support in the interval [−K,K]. Observe that for any weight w that satisfies
(1.9), the norm ‖ · ‖p,w in Lpw([−K,K]) is equivalent to ‖ · ‖p in Lp([−K,K]).
Therefore, part of the results of Theorem 1.1 can be stated as follows.

Theorem 1.3 Let α, p, c, K and Wc,α be as in Theorem 1.1, and suppose
that w satisfies (1.9). Then Wc,α is a compact operator on Lpw([−K,K]).
Moreover

E(Wc,α, L
p
w([−K,K])) = Σ0, (1.11)

σ(Wc,α, L
p
w([−K,K])) = {0} ∪ Σ0, (1.12)

and

ρ(Wc,α, L
p
w([−K,K])) = 1. (1.13)

If

lim
|x|→∞

w(x)
w(αx)

= r > 0, (1.14)

then w satisfies (1.10), and we have

Theorem 1.4 Let 1 ≤ p ≤ ∞, α > 1, c be a compactly supported function in
L1(R) with

∫
R
c(x)dx = 1, and w be a weight function that satisfies (1.9) and

(1.14) for some r > 0. Then

E(Wc,α, L
p
w(R)) ⊃ {λ ∈ C : 0 < |λ| < r} ∪ Σ0,

σ(Wc,α, L
p
w(R)) = {λ ∈ C : |λ| ≤ rα1−1/p} ∪ Σ0,

P (Wc,α, L
p
w(R)) = {λ ∈ C : |λ| > rα1−1/p}\Σ0,

ρ(Wc,α, L
p
w(R)) = max(1, rα1−1/p).

Consider the weight ws(x) = (1 + |x|)s, where s ∈ R. Then
lim|x|→∞ ws(x)/ws(αx) = α−s and Lp(R) = Lpw0

(R). Therefore, by taking
w = ws in Theorem 1.4, we have
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Corollary 1.5 Let p, α, c and Wc,α be as in Theorem 1.4, and let ws(x) =
(1 + |x|)s, s ∈ R. Then

E(Wc,α, L
p
ws(R)) ⊃ {λ ∈ C : 0 < |λ| < α−s} ∪ Σ0,

σ(Wc,α, L
p
ws(R)) = {λ ∈ C : |λ| ≤ α−s+1−1/p} ∪ Σ0,

P (Wc,α, L
p
ws(R)) = {λ ∈ C : |λ| > α−s+1−1/p}\Σ0,

ρ(Wc,α, L
p
ws(R)) = max(1, α−s+1−1/p).

Next, we shall show that if (1.9) is satisfied then

lim
|x|→∞

w(x)
w(αx)

= 0 (1.15)

is a necessary and sufficient condition for Wc,α to be a compact operator on
Lpw(R). This characterization of Wc,α as a compact operator on Lpw(R) as
well as the results on its spectrum (Theorem 1.6 below) put Theorem 1.1 in
a proper perspective.

Theorem 1.6 Let 1 ≤ p ≤ ∞, α > 1, and c be a compactly supported function
in L1(R) with

∫
R
c(x)dx = 1, and suppose that w is a weight function that

satisfies (1.9). Then Wc,α is a compact operator on Lpw(R) if and only if w
satisfies (1.15). Furthermore, if (1.15) holds, then

E(Wc,α, L
p
w(R)) = Σ0 (1.16)

and

σ(Wc,α, L
p
w(R)) = {0} ∪ Σ0. (1.17)

Now, take positive numbers λ and γ with γ ≤ 1. Since
lim|x|→∞ eλ(1−αγ)|x|γ = 0, by setting w(x) = eλ|x|

γ

in Theorem 1.6, we obtain
the following corollary.

Corollary 1.7 Let p, α, c,Wc,α be as in Theorem 1.6, and let w(x) = eλ|x|
γ

for some λ > 0 and 0 < γ ≤ 1. Then Wc,α is a compact operator on Lpw(R),
and (1.16) and (1.17) hold.

We remark that the spectral properties of Wc,α are reminiscent of
those of the transfer operators and their adjoints, which are the subdivision
operators3,10,11,17,18,21. However our results in Theorems 1.4 and 1.6 for the
continuous case are more precise and complete than those of available in the
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literature. We thank Professor Zhou Ding-Xuan for pointing out the similar-
ity of our results with those of the transfer operators, and for providing the
related references.

This paper is organized as follows. Theorem 1.2 is proved in Section 2,
which deals with the question of boundedness of the operator Wc,α on Lpw(R).
Spectral properties of Wc,α on Lpw(R) are developed and proved in Section
3. Theorem 1.4 is derived from stronger results proved in that section. The
last section is devoted to the characterization in terms of w for Wc,α to be a
compact operator on Lpw(R). It contains a proof of Theorem 1.6.

2 Boundedness of Wc,α on Lpw(R)

The requirement that Wc,α be a bounded linear operator on Lpw(R) entails
constraints on the weight w as given by Theorem 1.2. To develop the proof of
Theorem 1.2, we shall first establish a result, which is also essential in setting
up the proof of Theorem 1.4.

Theorem 2.1 Let 1 ≤ p ≤ ∞, α > 1, c be a compactly supported function
in L1(R) with

∫
R
c(x)dx = 1, and w be a weight function that satisfies (1.9).

Then there exists a positive constant C independent of n and f such that

‖Wn
c,αf‖p,w ≤ Cαn(1−1/p)‖f‖p,w(α−n·)

for all n ≥ 1 and f ∈ Lpw(α−n·)(R).

Rewriting (1.1) as

Wc,αf(x) = α2

∫
R

c(α(x− y))f(αy)dy, (2.1)

and repeated application of (2.1) n times gives

Wn
c,αf(x) =

∫
R

Kn(x− y)αnf(αny)dy for all n ≥ 1, (2.2)

where

Kn(x) = (αc(α·)) ∗ · · · ∗ (αnc(αn·)), (2.3)

and f ∗ g denotes the convolution of two integrable functions f and g.
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Lemma 2.2 Let α and c be as in Theorem 2.1, K0 be chosen so that c is
supported in [−(α−1)K0, (α−1)K0], φ be the solution of (1.2) normalized so
that

∫
R
φ(x)dx = 1, and Kn(x), n ≥ 1, be as in (2.3). Then

supp(Kn(·)) ⊂ [−K0,K0] for all n ≥ 1, (2.4)

and

lim
n→∞

‖Kn − φ‖1 = 0. (2.5)

Proof. Note that αkc(αk·) is supported in [−(α−1)α−kK0, (α−1)α−kK0]
for any k ≥ 0. Therefore Kn(x), n ≥ 1, are supported in [−(α −
1)K0

∑n
k=1 α

−k, (α− 1)K0

∑n
k=1 α

−k] ⊂ [−K0,K0]. This proves (2.4).
To prove (2.5), note that by (1.2), (2.2) and (2.3), we have

Kn − φ = Wn−1
c,α (c− φ). (2.6)

Since
∫
R

(c(x)− φ(x))dx = 0 and supp(c− φ) ⊂ [−αK0, αK0], by (1.8), (2.6)
and the definition of spectral radius, there exists a positive constant C inde-
pendent of n such that

‖Kn−φ‖1 = ‖Wn−1
c,α (c−φ)‖1 ≤ C

(
1 + α−1

2

)n−1

‖c−φ‖1 for all n ≥ 1.

This gives (2.5). ♠

Proof of Theorem 2.1. For 1 ≤ p <∞, it follows from (1.9), (2.2) and
Lemma 2.2 that for any f ∈ Lpw(α−n·)(R),

‖Wn
c,αf‖pp,w =

∫
R

∣∣∣∣∫
R

Kn(x− y)αnf(αny)dy
∣∣∣∣p w(x)pdx

≤ C1α
np

∫
R

∣∣∣∣∫
R

|Kn(x− y)||f(αny)|w(y)dy
∣∣∣∣p dx

≤ C1α
np

∫
R

(∫
R

|Kn(x− y)||f(αny)|p|w(y)|pdy
)

×
(∫

R

|Kn(x− y)|dy
)p−1

dx

≤ C2α
n(p−1)‖f‖pp,w(α−n·) ,

where C1, C2 are positive constants independent of f and n. Similarly for
p =∞, we have

‖Wn
c,αf‖∞,w ≤ Cαn‖f‖∞,w(α−n·), (2.7)
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where C is independent of f and n. ♠

Proof of Theorem 1.2. If (1.10) holds, the boundedness of Wc,α follows
from Theorem 2.1. We shall prove the converse by contradiction. The norm
of the operator Wc,α on Lpw(R) will be denoted by ‖Wc,α‖Lpw(R). Let N0 =
2Cα+2K0+4

0 ‖Wc,α‖Lpw(R), where C0 is the constant in (1.9). Suppose on the
contrary that there is a set E with positive measure such that

w(x) ≥ N0w(αx), x ∈ E. (2.8)

Let k be an integer such that [k, k + 1] ∩ E has a positive measure. It then
follows from (1.9) and (2.8) that

w(x) ≥ C−α−2
0 N0w(αx) x ∈ [k, k + 1]. (2.9)

Let φ be the solution of (1.2) normalized so that
∫
R
φ(x)dx = 1, and set

φk = φ(· − αk), k ≥ 1. By (1.1), we have

Wc,αgt = Wc,αg( · − t/α), g ∈ Lpw(R), (2.10)

where gt = g( · − t), t ∈ R. This together with (1.2) lead to

Wc,αφk = φ(· − k). (2.11)

Now (2.11), (1.9) and (2.9) give

‖Wc,αφk‖p,w = ‖φ(· − k)‖p,w ≥ C−K0−1
0 w(k)‖φ‖p

≥ 2CK0+1
0 ‖Wc,α‖Lpw(R)w(αk)‖φ‖p ≥ 2‖Wc,α‖Lpw(R)‖φk‖p,w 6= 0,

which is a contradiction. ♠

3 Spectrum of Wc,α on Lpw(R)

The main object of this section is to prove Theorem 1.4. In particular, we
shall prove a slightly stronger result.

Theorem 3.1 Let 1 ≤ p ≤ ∞, α > 1, c be a compactly supported function in
L1(R) with

∫
R
c(x)dx = 1, and w be a weight function that satisfies (1.9) and

(1.10). If

lim inf
|x|→∞

w(x)
w(αx)

= r1 > 0, (3.1)

then

E(Wc,α, L
p
w(R)) ⊃ {λ ∈ C : 0 < |λ| < r1} ∪ Σ0 (3.2)
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and

P (Wc,α, L
p
w(R)) ⊂ {λ ∈ C : |λ| > r1α

1−1/p}\Σ0. (3.3)

Theorem 3.2 Let 1 ≤ p ≤ ∞, α > 1, c be a compactly supported function in
L1(R) with

∫
R
c(x)dx = 1, and w be a weight function that satisfies (1.9) and

(1.10). If

lim sup
|x|→∞

w(x)
w(αx)

= r2 > 0, (3.4)

then

P (Wc,α, L
p
w(R)) ⊃ {λ ∈ C : |λ| > r2α

1−1/p}\Σ0. (3.5)

It is clear that Theorem 1.4 follows directly from (1.3), (1.4) and Theorems
3.1 and 3.2. To set up the proofs of Theorems 3.1 and 3.2, we need some
elementary properties on the support of Wn

c,αf, the asymptotic behavior of
the weights that satisfy (3.1) or (3.4), and the relationship between the norms
in Lp(R) and Lpw(R) for compactly supported functions. These properties
follow directly from (1.1), (3.1) and (3.4), and the definition of the weighted
space Lpw(R) respectively. We shall state these results but omit the details of
their proofs.

Lemma 3.3 Let α > 1, c be an integrable function with
∫
R
c(x) = 1, K0 be

the smallest positive number such that supp(c) ⊂ [−(α−1)K0, (α−1)K0], and
let Wc,α be defined as in (1.1). Then

supp(Wn
c,αf) ⊂ [α−na− (1− α−n)K0, α

−nb+ (1− α−n)K0]

⊂ [α−na−K0, α
−nb+K0]

for any function f with support in [a, b] and for all n ≥ 1.

Lemma 3.4 Let w(x) be a weight function that satisfies (1.9) and (1.10).

(i) If w satisfies (3.1), then for any 0 < δ < 1/2 there exists a positive
constant C1 independent of x such that

w(x) ≤ C1(1 + |x|)− ln r1/ lnα+δ for all x ∈ R. (3.6)
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(ii) If w satisfies (3.4), then for any 0 < δ < 1/2, there exist positive constants
C2 and C3 independent of x and n such that

w(αnx) ≥ C2r
−n
2 (1 + δ)−nw(x), |x| ≥ 1, (3.7)

w(αnx) ≥ C3 min(1, r−n2 (1 + δ)−n)w(x), |x| ≤ 1, (3.8)

for all n ≥ 1.

Lemma 3.5 Let w(x) be a weight function that satisfies (1.9). Then

( min
x∈[a,b]

w(x))‖f‖p ≤ ‖f‖p,w ≤ ( max
x∈[a,b]

w(x))‖f‖p (3.9)

for any function f ∈ Lpw([a, b]), 1 ≤ p ≤ ∞.

Proof of Theorem 3.1. To prove (3.2), we note that Lpw([−K,K]) ⊂
Lpw(R), for any 1 ≤ p ≤ ∞ and K > 0. Then every eigenvalue of the operator
Wc,α restricted to Lpw([−K,K]) is an eigenvalue of Wc,α restricted to Lpw(R).
This together with Theorem 1.3 gives

Σ0 = E(Wc,α, L
p
w([−K0,K0])) ⊂ E(Wc,α, L

p
w(R)). (3.10)

Let λ be any complex number that satisfies 0 < |λ| < r1 and λ 6∈ Σ0. Then
by (3.10), the proof of (3.2) reduces to proving that λ ∈ E(Wc,α, L

p
w(R)). By

(1.3) and (1.12), λ ∈ P (Wc,α, L
p
w([−K0 − 1,K0 + 1])). Thus, there exists a

compactly supported function ψλ such that

(Wc,α − λI)ψλ = φ( · − 1) (3.11)

and

ψλ ∈ Lpw([−K0 − 1,K0 + 1]), (3.12)

where φ is the solution of (1.2) normalized so that
∫
R
φ(x)dx = 1.

Set

φλ = −ψλ +
∞∑
n=1

λn−1φ( · − αn). (3.13)

Then

φλ 6≡ 0, (3.14)
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because φ( · − αn) are supported in the sets [−K0,K0] + αn, n = 1, 2, . . . ,
which are mutually disjoint for sufficiently large n. Let δ0 > 0 be chosen that
α2δ0 |λ| = r1. Using (3.6), (3.12) and (3.13) with δ0 chosen as δ leads to

‖φλ‖p,w ≤ ‖ψλ‖p,w +
∞∑
n=1

|λ|n−1‖φ(· − αn)‖p,w

≤ C + C

∞∑
n=1

|λ|nr−n1 αδ0n‖φ‖p

= C

(
1 +

‖φ‖p
αδ0 − 1

)
<∞,

where C is a positive constant independent of n. This shows that

φλ ∈ Lpw(R). (3.15)

Applying Wc,α − λI to (3.13), and using (1.2), (2.10) and (3.11) lead to

(Wc,α − λI)φλ = −(Wc,α − λI)ψλ + φ( · − 1) = 0. (3.16)

It follows from (3.14), (3.15) and (3.16) that λ is an eigenvalue of Wc,α re-
stricted to Lpw(R). This completes the proof of (3.2).

To prove (3.3), recall that σ(Wc,α, L
p
w(R)) is closed and contains {0}∪Σ0.

Then, by (1.3) and (3.2), it suffices to prove that for any λ 6∈ Σ0 with 0 <
|λ| < r1α

1−1/p, there exists fn ∈ Lpw(R), n ≥ 1, such that fn 6= 0 and

lim
n→∞

‖(Wc,α − λI)fn‖p,w
‖fn‖p,w

= 0. (3.17)

Let φ be the solution of (1.2) normalized so that
∫
R
φ(x)dx = 1, and let m0

be the minimal positive integer so that αm0(1− α−1) ≥ 4K0 and

sup
|δ|≤2K0α−m0

‖φ(· − δ)− φ‖p ≤ ‖φ‖p/2. (3.18)

The existence of such an integer m0 follows from the fact that φ is a compactly
supported continuous function. For any integer n ≥ 2m0 + 1, let

gn =
∑

0≤k<αn−2m0−1

φ(· − 2kK0 − αn).

Then gn is supported in [αn −K0, (1 + 2K0α
−2m0−1)αn +K0], and hence

‖gn‖p,w ≤ C1r
−n
1 αδ0n‖gn‖p (3.19)
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by (3.6), where C1 is a positive constant independent of n, and δ0 satisfies
|λ|α2δ0 = r1α

1−1/p. Note that φ(· − 2kK0 − αn), 0 ≤ k < αn−2m0−1, have
mutually disjoint support. Therefore,

‖gn‖p ≤ Cαn/p‖φ‖p (3.20)

for some positive constant C independent of n. Combining (3.19) and (3.20)
leads to

‖gn‖p,w ≤ Cr−n1 αδ0n+n/p. (3.21)

Define fn = φ for 1 ≤ n ≤ 2m0, and

fn = −
n∑
i=0

λ−i−1W i
c,αgn + λ−n−1(Wc,α − λI)−1Wn+1

c,α gn (3.22)

for n ≥ 2m0 + 1. Note that

W i
c,αgn =

∑
0≤k<αn−2m0−1

φ(· − 2kK0α
−i − αn−i) (3.23)

by (1.2), and

supp(W i
c,αgn) ⊂ [αn−i −K0, (1 + 2K0α

−2m0−1)αn−i +K0] (3.24)

for all 0 ≤ i ≤ n + 1. Therefore, the functions fn, n ≥ 1, in (3.22) are well
defined because of (3.24), Theorem 1.3 and the assumption that λ 6∈ Σ0. By
(3.24), the term λ−n+m0−1Wn−m0

c,α gn in the sum on the right of (3.22) has
support that is disjoint from the supports of all the other terms. Therefore,
Wn−m0
c,α gn and fn + λ−n+m0−1Wn−m0

c,α gn have disjoint supports. These facts,
together with (3.18), (3.22), (1.9), (3.23) and (3.24), lead to

‖fn‖p,w ≥ C1|λ|−n+m0−1‖Wn−m0
c,α gn‖p,w ≥ C2|λ|−n+m0−1‖Wn−m0

c,α gn‖p

≥ C3|λ|−n
(∥∥∥ ∑

0≤k<αn−2m0−1

φ(· − αm0)
∥∥∥
p

−
∑

0≤k<αn−2m0−1

‖φ(· − 2K0kα
−n+m0 − αm0)− φ(· − αm0)‖p

)
≥ C4|λ|−nαn‖φ‖p for all n ≥ 2m0 + 1, (3.25)

where Ci, 1 ≤ i ≤ 4, are positive constants independent of n.
Applying Wc,α − λI to both sides of (3.22) gives

(Wc,α − λI)fn = gn for all n ≥ 2m0 + 1. (3.26)
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Combining (3.21), (3.25) and (3.26), and using the assumption that |λ|α2δ0 =
r1α

1−1/p, we obtain

lim sup
n→∞

‖(Wc,α − λI)fn‖p,w
‖fn‖p,w

≤ C lim sup
n→∞

(|λ|r−1
1 α−1+1/p+δ0)n = 0.

This proves (3.17) and hence Theorem 3.1. ♠

Our proof of Theorem 3.6 requires two lemmas, one on the spectral radius
of the operator Wc,α on Lpw(R) (Lemma 3.6) and the other on an estimate of
the set of eigenvalues, E(Wc,α, L

p
w(R)) (Lemma 3.7).

Lemma 3.6 Let p, α, w, c and Wc,α be as in Theorem 3.2. For any δ, σ ∈
(0, 1), there exists a positive constant C independent of f and n for which

‖Wn
c,αf‖p,w ≤ Cαn−n/p max(1, rn2 (1 + δ)n)‖f‖p,w (3.27)

for all n ≥ 1 and f ∈ Lpw(R), and

‖Wn
c,αf‖p,w ≤ C(1 + δ)nαn−n/prn2 ‖f‖p,w (3.28)

for all n ≥ 1 and f ∈ Lpw(R) with support in R\[−σαn, σαn].

Proof. For any 0 < δ, σ < 1, by (3.7) and (3.8), there exists a positive
constant C independent of n such that

‖f‖p,w(α−n·) ≤ Crn2 (1 + δ)n‖f‖p,w for all f ∈ Lpw(R \ [−σαn, σαn]), (3.29)

and

‖f‖p,w(α−n·) ≤ C max(1, rn2 (1 + δ)n)‖f‖p,w for all f ∈ Lpw(R). (3.30)

Thus (3.27) and (3.28) follow from (3.29), (3.30) and Theorem 2.1. ♠

Lemma 3.7 Let p, α, w, c and Wc,α be as in Theorem 3.2. Then

E(Wc,α, L
p
w(R)) ⊂ {λ ∈ C : |λ| ≤ r2α

1−1/p} ∪ Σ0. (3.31)

Proof. Suppose on the contrary that there exists a complex number λ ∈
E(Wc,α, L

p
w(R)) with |λ| > r2α

1−1/p, λ /∈ Σ0. Then

Wc,αf = λf (3.32)

for some nonzero f ∈ Lpw(R). Since λ 6∈ Σ0, f does not have compact support
by Theorem 1.3. Hence there exists an integer n0 such that |n0| ≥ 1/(α −
1) + 2K0/(α − 1)2 and f 6≡ 0 on [n0, n0 + 1]. Define Ω0 = [n0, n0 + 1] and
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Ωk = [αkn0 − K0

∑k−1
j=0 α

j , αk(n0 + 1) + K0

∑k−1
j=0 α

j ] for k ≥ 1, and set
fk = fχΩk . Then Ωk, k ≥ 1, are mutually disjoint. By Lemma 3.3, Wc,αg
is supported in R\Ωk−1 for any function g with support in R\Ωk, k ≥ 1.
Therefore from (3.32),

W k
c,αfk = λkf −W k

c,α(f − fk)

= λkf0 + (f − f0)−W k
c,α(f − fk) = λkf0 + f̃k, (3.33)

where f̃k, k ≥ 1, are supported in R\Ω0. This implies that

‖W k
c,αfk‖p,w ≥ |λ|k‖f0‖p,w. (3.34)

Since fk is supported in Ωk for any k ≥ 1, by Lemma 3.6, there exists a
positive constant C independent of k ≥ 1 such that

‖W k
c,αfk‖p,w ≤ C(1 + δ0)krk2α

k(1−1/p)‖fk‖p,w, (3.35)

where δ0 is a positive constant so chosen that |λ| = (1 + δ0)2r2α
1−1/p. Com-

bining (3.34) and (3.35), we obtain

‖fk‖p,w ≥ C(1 + δ0)k‖f0‖p,w, (3.36)

for sufficiently large k, where C is a positive constant independent of k and f.
Since ‖f‖p,w ≥ ‖fk‖p,w for all k ≥ 1, (3.36) implies that ‖f‖p,w = ∞, which
is a contradiction. ♠

Proof of Theorem 3.2. Let λ be a complex number that satisfies |λ| >
r2α

1−1/p and λ 6∈ Σ0. By Lemma 3.7, λ 6∈ E(Wc,α, L
p
w(R)). Therefore, (Wc,α−

λI) is injective on Lpw(R). Then it remains to show that for any f ∈ Lpw(R),
we can find g ∈ Lpw(R) such that

‖g‖p,w ≤ C‖f‖p,w (3.37)

and

(Wc,α − λI)g = f, (3.38)

where C is a positive constant independent of f.
Write

f = fχ[−α,α] +
∞∑
j=1

(
fχ(αj ,αj+1] + fχ[−αj+1,−αj)

)
=
∑
j∈Z

fj ,

where f0 = fχ[−α,α], fj = fχ(αj ,αj+1] and f−j = fχ[−αj+1,−αj) for j ≥ 1.
Then the support of fj , j ∈ Z, are mutually disjoint and

‖f‖p,w = ‖(‖fj‖p,w)j∈Z‖`p (3.39)
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by the definition of the norm in Lpw(R). Here and hereafter, for any countable
index set Λ and 1 ≤ p ≤ ∞, we let

`p(Λ) := {D = (dj)j∈Λ : dj ∈ C},

and define the norm on `p(Λ) by

‖D‖`p :=
{

(
∑
j∈Λ |dj |p)1/p if 1 ≤ p <∞

supj∈Λ |dj | if p =∞.

Note that W j
c,α(fj + f−j) is supported in [−α −K0, α + K0] by Lemma 3.3.

Therefore, by Theorem 1.3 and the assumption that λ 6∈ Σ0 ∪{0}, there exist
functions ψj ∈ Lpw([−α−K0, α+K0]), j ≥ 0, such that{

(Wc,α − λI)ψ0 = f0,
‖ψ0‖p,w ≤ C‖f0‖p,w,

(3.40)

and {
(Wc,α − λI)ψj = W j

c,α(fj + f−j),
‖ψj‖p,w ≤ C‖W j

c,α(fj + f−j)‖p,w,
(3.41)

where j ≥ 1, and C is a positive generic constant, which is independent of j
and f.

Let δ1 be a positive constant chosen so that

|λ| = (1 + δ1)2r2α
1−1/p. (3.42)

Since fj+f−j is supported in R\[−αj , αj ], by (3.41) and Lemma 3.6, we have

‖ψj‖p,w ≤ C(1 + δ1)jαj−j/prj2‖fj + f−j‖p,w (3.43)

for j ≥ 1, where C is independent of j and f ∈ Lpw(R). Therefore, it follows
from (3.40), (3.42) and (3.43) that∥∥∥ ∞∑

j=0

λ−jψj

∥∥∥
p,w
≤
∞∑
j=0

|λ|−j‖ψj‖p,w

≤ C‖f0‖p,w + C

∞∑
j=1

(1 + δ1)−j(‖fj‖p,w + ‖f−j‖p,w). (3.44)

Combining (3.39) and (3.44) gives∥∥∥ ∞∑
j=0

λ−jψj

∥∥∥
p,w
≤ C‖f‖p,w + C‖f‖p,w

∞∑
j=1

(1 + δ1)−j

= C(1 + δ−1
1 )‖f‖p,w. (3.45)
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We now define

φj =
∞∑
i=1

W j
c,α(fi+j + f−i−j), j ≥ 0. (3.46)

By Lemma 3.3, W j
c,α(fi+j + f−i−j) is supported in [−αi+1−K0,−αi +K0]∪

[αi−K0, α
i+1 +K0], which have finite overlaps for any given j. This together

with (3.39) and Lemma 3.6 leads to

‖φj‖p,w ≤ C1‖(‖W j
c,α(fi+j + f−i−j)‖p,w)i≥1‖`p

≤ C2r
−j
2 α(1−1/p)j(1 + δ1)j‖(‖fi+j‖p,w + ‖f−i−j‖p,w)i≥1‖`p

≤ C3r
−j
2 α(1−1/p)j(1 + δ1)j‖f‖p,w for all j ≥ 0, (3.47)

where C1, C2 and C3 are positive constants independent of j and f . Combin-
ing (3.42) and (3.47), we obtain∥∥∥ ∞∑

j=0

λ−j−1φj

∥∥∥
p,w
≤
∞∑
j=0

|λ|−j−1‖φj‖p,w

≤ C3

∞∑
j=0

(1 + δ1)−j‖f‖p,w = C3(1 + δ−1)‖f‖p,w. (3.48)

By (3.45), (3.48) and (3.49), the function

g =
∞∑
j=0

λ−jψj −
∞∑
j=0

λ−j−1φj . (3.49)

belongs to Lpw(R). Furthermore

‖g‖p,w ≤ C‖f‖p,w
for some positive constant C independent of f ∈ Lpw(R). This proves (3.37).

Applying Wc,α − λI to (3.49) and using (3.40), (3.41) and (3.46) give

(Wc,α − λI)g

= f0 +
∞∑
j=1

λ−jW j
c,α(fj + f−j)−

∞∑
j=0

∞∑
i=1

λ−j−1W j+1
c,α (fi+j + f−i−j)

+
∞∑
j=0

∞∑
i=1

λ−jW j
c,α(fi+j + f−i−j)

= f0 −
∞∑
j=1

∞∑
i=1

λ−jW j
c,α(fi+j + f−i−j) +

∞∑
j=0

∞∑
i=1

λ−jW j
c,α(fi+j + f−i−j)
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= f0 +
∞∑
i=1

(fi + f−i) = f.

This proves (3.38), and hence completes the proof of Theorem 3.2. ♠

4 Characterization of Compactness of Wc,α on Lpw(R)

It is known that Wc,α restricted to the invariant subspace Lp([−K,K]) is a
compact operator for all sufficiently large K. One would expect that it is also
a compact operator if restricted to a subspace of Lp(R) comprising functions
with fast decay. This result is contained in Theorem 1.6. A proof is given
below.

Proof of Theorem 1.6. We first prove the compactness of the operator
Wc,α on Lpw(R) under the assumption that w satisfies (1.15). Let fn, n ≥ 1, be
any bounded sequence in Lpw(R). Since Lpw(R) is a Banach space, it suffices
to prove the existence of a subsequence gn, n ≥ 1 of fn, n ≥ 1, such that
Wc,αgn is a Cauchy sequence in Lpw(R).

By the assumption on fn, n ≥ 1, the set {fnχ[−αkK0,αkK0] : n ≥ 1} is a
bounded set in Lpw([−αkK0, α

kK0]) for k ≥ 1. Setting fn,0 := fn for all n ≥ 1,
an inductive argument using Theorem 1.3 shows that there exist sequences
fn,k, n ≥ 1, for k ≥ 0, such that fn,k, n ≥ 1, is a subsequence of fn,k−1, n ≥ 1,
for any k ≥ 1, and Wc,α(fn,kχ[−αkK0,αkK0]), n ≥ 1, is a Cauchy sequence in
Lpw([−αkK0, α

kK0]). Then gn := fn,n, n ≥ 1, is a subsequence of fn, n ≥ 1,
and also gn, n ≥ k, is a subsequence of the sequences fn,k, n ≥ 1, for any
k ≥ 1.

We now prove that Wc,αgn, n ≥ 1, is a Cauchy sequence in Lpw(R).
Without loss of generality, we assume that

‖fn‖p,w ≤ 1 for all n ≥ 1. (4.1)

For any positive integers n and k, let gn,k = gnχ[−αkK0,αkK0]. Then by (4.1),
we have

‖gn‖p,w + ‖gn,k‖p,w ≤ 2 for all n ≥ 1 k ≥ 1.

This, together with Theorem 2.1, lead to

‖Wc,αgn‖p,w(α·) + ‖Wc,αgn,k‖p,w(α·) ≤ C0, (4.2)

where C0 is a positive constant independent of positive integers n and k. Since
gn − gn,k is supported in R\[−αkK0, α

kK0], Wc,α(gn − gn,k) is supported in
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R\[−αk−2K0, α
k−2K0]. Hence for any n, k ≥ 1, it follows from that (4.2) that

‖Wc,α(gn − gn,k)‖p,w ≤
{

max
|x|>αk−2K0

w(x)
w(αx)

}
‖Wc,α(gn − gn,k)‖p,w(α·)

≤ C0

{
max

|x|>αk−2K0

w(x)
w(αx)

}
, (4.3)

where C0 is the positive constant in (4.2). By (1.15), for any ε > 0 there
exists a positive integer kε so that

max
|x|>αk−2K0

w(x)
w(αx)

≤ C−1
0 ε for all k ≥ kε. (4.4)

Therefore, (4.3) and (4.4) give

‖Wc,α(gn − gn,k)‖p,w ≤ ε for all k ≥ kε and n ≥ 1. (4.5)

Recall that Wc,αgn,kε , n ≥ 1, is a Cauchy sequence in Lpw([−αkεK0, α
kεK0]),

and Wc,αgn,kε , n ≥ 1, are supported in [−αkεK0, α
kεK0]. Then Wc,αgn,kε ,

n ≥ 1, is a Cauchy sequence in Lpw(R). Therefore there exists an integer nε
such that for all n,m ≥ nε,

‖Wc,αgn,kε −Wc,αgm,kε‖p,w ≤ ε. (4.6)

Combining (4.5) and (4.6), we obtain

‖Wc,αgn −Wc,αgm‖p,w ≤ 3ε for all m,n ≥ nε.

This proves that the sequence Wc,αgn, n ≥ 1, is a convergent sequence in
Lpw(R), and hence Wc,α is a compact operator in Lpw(R).

We now prove that if Wc,α is a compact operator on Lpw(R), then w sat-
isfies (1.15). If (1.15) does not hold, then by (1.9) there exists an ε0 > 0
independent of n such that limn→∞ xn =∞, [xn−K0, xn +K0] are mutually
disjoint, and w(x) ≥ ε0w(αx) for almost all x ∈ [xn − K0, xn + K0]. Define
φn := φ(· − αxn)/‖φ(· − αxn)‖p,w, where φ is the compactly supported eigen-
function of Wc,α with eigenvalue 1. Then φn, n ≥ 1, is a bounded sequence in
Lpw(R), and

Wc,αφn = φ(· − xn)/‖φ(· − αxn)‖p,w

by (1.2) and (2.10). Therefore Wc,αφn converges to zero pointwise since it is
supported in [xn −K0, xn +K0] and limn→∞ xn =∞.

On the other hand,

‖Wc,αφn‖p,w = ‖φ(· − xn)‖p,w/‖φ(· − αxn)‖p,w ≥ Cw(xn)/w(αxn) ≥ Cε0,
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for some constant C independent of n. Therefore there is no convergent sub-
sequence of {Wc,αφn}n≥1 in Lpw(R), which contradicts the compactness of the
operator Wc,α on Lpw(R).

Finally, we prove (1.16) and (1.17). Note that (1.17) follows from (1.16)
and the compactness of the operator Wc,α on Lpw(R). Hence it suffices to
prove (1.16). Since Lpw([−K,K]) ⊂ Lpw(R), every eigenvalue of Wc,α with
eigenfunctions in Lpw([−K,K]) is an eigenvalue of Wc,α restricted to Lpw(R).
Therefore,

Σ0 = E(Wc,α, L
p
w([−K,K])) ⊂ E(Wc,α, L

p
w(R)). (4.7)

For any nonnegative number s and weight w that satisfies (1.9) and (1.15),
there exists a positive constant Cs such that w(x) ≥ Cs(1+ |x|)s. This implies
that Lpw(R) ⊂ Lp(1+|·|)s(R) for any s ≥ 1. Hence any eigenvalue of the operator
Wc,α restricted to Lpw(R) is an eigenvalue of the operator Wc,α restricted to
Lp(1+|·|)s(R). Therefore by Corollary 1.5,

E(Wc,α, L
p
w(R)) ⊂ E(Wc,α, L

p
(1+|·|)s(R)) ⊂ σ(Wc,α, L

p
(1+|·|)s(R))

⊂ Σ0 ∪ {λ ∈ C : |λ| ≤ α−s+1−1/p}

for all s ≥ 1, which implies

E(Wc,α, L
p
w(R)) ⊂ Σ0 ∪ {0}. (4.8)

Note that 0 /∈ E(Wc,α, L
p
w(R)) since Lpw(R) ⊂ L1(R). This together with

(4.7) and (4.8) lead to (1.16). ♠
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