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ABSTRACT

In this paper, we give an algorithm to construct semi-orthogonal symmetric and anti-symmetric M-band wavelets.
As an application, some semi-orthogonal symmetric and anti-symmetric M-band spline wavelets are constructed
explicitly. Also we show that if we want to construct symmetric or anti-symmetric M-band wavelets from a
multiresolution, then that multiresolution has a symmetric scaling function.

Keywords: Symmetric and Antisymmetric Wavelets, M Band Wavelets, Spline Wavelets

1. INTRODUCTION

Fix an integer M larger than 2. A multiresolution® is a family of nested subspaces {V;};ez of L? such that

e NjczV; = {0} and UjezVj is dense in L?.
o feV,< f(M:) €V forall j€Z
o V; C Vi forall j€Z.

e There exists a compactly supported function ¢ € Vj such that {¢(- — k) : k € Z} is a Riesz basis of V.

We remark that the function ¢ in the multiresolution of this paper is assumed to be compactly supported
instead of ¢ € L? in most of literature. From the definition of a multiresolution, we have

V= { kel —k): S ldk)P <o}, jez. (L.1)
kEZ keZ

The function ¢ in the multiresolution above is called a scaling function. We remark that there are many scaling
functions for a multiresolution. Actually, ¢ — 2¢(- — 1) is also a scaling function if ¢ is. For a multiresolution
{V;}jez, let W;,j € Z, be the orthogonal complement of V; in Vjyq1. It is well known® that there exist an
orthogonal decomposition of W; into Wj,,1 <s < M —1, i.e,,

W; =W @"‘@Wj(Mfl): (1.2)
and some compactly supported functions ¥s € Wy,s,1 < s < M — 1, such that
Wi = { D d(k)es(M7 - k) : Y |d(k)[? < o0} (1.3)
keZ kEZ

forall j € Z and 1 < s < M —1, and such that {¢s(- — k) : k € Z} is a Riesz basis of Wy,,1 < s < M — 1. The
functions 15,1 < s < M — 1, are called the M-band wavelets constructed from the multiresolution {V;};ez, or
wavelets for short.
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In some applications, we hope that M band scaling functions and wavelets have some special properties, such
as orthonormality, cardinality, symmetry and anti-symmetry.n36-%14-17.19  Here we say that a function f has
orthonormal shifts, or is orthonormal for short, if [p f(x)f(z — k)dz = &, for all k € Z?, where 6§, denotes the
usual Kronecker symbol. A continuous function f is said to be cardinal if f(k) = &, for all k € Z?. We say that
a function f is symmetric if f(xo +-) = f(xo — -) for some zy € R, and anti-symmetric if f(xo + ) = —f(xo — )
for some zg € R. The point zy above is said to be the symmetric (anti-symmetric) point of f.

For M = 2, it is well known that Haar function is the only both symmetric and orthonormal scaling function,*
and that there does not exist both orthonormal and cardinal scaling functions.!* But for M > 3, the situation is
completely different. Heller studied the construction of A band Daubechies’ orthonormal scaling functions,” and
later it was shown that the asymptotic rate of regularity of the M band Daubechies’ orthonormal scaling functions
for odd M is much lower than that for the classical case M = 2.11517 For dilation 3, Chui and Lian constructed
some examples of both orthonormal and (anti)symmetric scaling functions and wavelets,> and for dilation 4, Han
constructed some C! orthonormal scaling functions and wavelets which is symmetric or anti-symmetric.® Bi,
Dai and Sun constructed some both orthonormal and cardinal scaling function for any M > 3, and Ji and Shen
gave some examples of orthonormal scaling functions which are also cardinal and symmetric for dilation 4.°

For M = 2, there is an explicit construction of wavelets from the scaling function.>* For M > 3, some
algorithm to construct M band wavelets from a multiresolution has been given. For instance, Lawton, Lee and
Shen worked out a constructive algorithm to construct M band orthonormal wavelets.!? Han give an algorithm
to construct symmetric and orthonormal wavelets from a multiresolution with dilation 4. In this paper we
shall give a general algorithm to construct semi-orthogonal symmetric or anti-symmetric M band wavelets from a
multiresolution. The wavelet functions obtained from that algorithm would be symmetric or anti-symmetric, but
not orthonormal in general. It is still open to find a constructive algorithm to construct both orthonormal and
(anti)symmetric wavelets from a multiresolution which has both orthonormal and symmetric scaling functions.

The paper is organized as follows. In Section 3, we show that if we want to construct symmetric or anti-
symmetric wavelets from a multiresolution, then it is necessary to assume that multiresolution has a symmetric
scaling function (Theorem 2.1). Also we reduce the construction of (anti)symmetric wavelets to that of some
Laurent polynomials (Theorem 2.2). The algorithm for the construction of (anti)symmetric wavelets is given
in Section 3. The last section is devoted to some examples of (anti)symmetric spline wavelets obtained by the
algorithm in Section 3.

2. PRELIMINARIES
We say that a compactly supported distribution f has linearly independent shifts if the map

{d(k)}kez — Y d(k)f(- — k)
keZ
is one-to-one. It is obvious that if f has orthonormal shifts and is compactly supported, then f has linearly
independent shifts, since in this case

d(k) = /RF(a:)f(a: —k)dz

for any sequence {d(k)}rez, where F(z) =3, , d(k)f(z — k). It is well known that every compactly supported
function f can be written as finite linear combination of the shifts of a function having compact support and
linearly independent shifts,'®!® i.e., there exist a sequence {d(k)}rez having finite support and a function g
having linearly independent shifts such that f = 7, , d(k)g(- — k). Furthermore g is a scaling function too if
f is. So in this paper, a scaling function is always assumed to be the one having linearly independent shifts.
For a scaling function ¢ of a multiresolution {V;};ez having linearly independent shifts and compact support,
any compactly supported function f € V4 is finitely linear combination of the shifts of ¢. Thus ¢ has minimal
support. Conversely the shifts of a scaling function having minimal support are linearly independent.

Let ¢ be a scaling function having linearly independent shifts. By Vi C V] in the definition of a multiresolution,
the function ¢ satisfies a refinement equation

6= colk)p(M - —Fk). (2.1)

keZ



By the linearly independent shifts of ¢, the real-valued sequence {co(k)}rez in (2.1) is unique and has finite
support, i.e., ¢o(k) = 0 for all but finitely many k& € Z. The sequence {co(k)}rez in (2.1) and the Laurent
polynomial H(z) defined by

H(z) =) co(k)
kEZ
are known as the mask and the symbol of the scaling function ¢ respectively.

Define the Fourier transform of an integrable function f by f(f) = fR f(x)e~Edx. Taking Fourier transform
at both sides of (2.1) leads to

HME) = —H(e )5(6) (22)

Obviously every scaling function ¢ is integrable since ¢ € L? and ¢ has compact support. Thus limg_, o J)(f) =0
by Riemann Lemma and hence ¢(2kx) = 0 for all k € Z\{0} by (2.2). This together with the linearly independent
shifts of ¢ leads to the following properties for the symbol H of the scaling function ¢ having linear independent
shifts,

H(1l)=M and H(w},)=0 V1<j<M-1, (2.3)

where wyy = e 27/M

Let Ny < N, be integers such that co(k) = 0 for all & < Ny or £k > N» and ¢o(N1)co(N2) # 0. Then

[Ni/(M — 1),Ny/(M —1)] is the minimal interval which ¢ is supported in. Therefore the symmetric point of
the scaling function ¢ in (2.1) is (N2 + N1)/(2M — 2) if ¢ is symmetric. By (2.2), the symbol H of the scaling
function ¢ satisfies

H(z)=2"H(z %) (2.4)
if ¢ is symmetric and has symmetric point o/(2M — 2), where « is an integer. Note that [ f(x)dz = 0 for any
anti-symmetric function f. Thus a scaling function ¢ is not anti-symmetric since [g ¢(z)dx = 1.

THEOREM 2.1. Let {V;}jcz be a multiresolution, and let ¢ be its scaling function having linearly independent
shifts and compact support. Assume that ¢ is not a symmetric function. Then there does not exist any compactly
supported symmetric or anti-symmetric function in V; for any j € Z.

From Theorem 2.1, we see that if we want to construct symmetric or anti-symmetric wavelets constructed
from a multiresolution, then that multiresolution must have a symmetric scaling function with minimal support.
The proof of Theorem 2.1 is postponed to the end of this section.

Recall that W C V4. Then by (1.1) and the linearly independent shifts of ¢, there are sequences {¢;(k)}rez, 1 <
s < M — 1, having finite support such that

Yo=Y co(k)$(M-—k), 1<s<M-L1 (2.5)
kEZ

Define
Hy(z) = ch(k)zk, 1<s<M-1
kEZ
Then &S(Mf) = ﬁHs(e*’f)(E(f) by taking Fourier transform at both sides of (2.5). So the construction of
M-band wavelets is closely related to the construction of Laurent polynomial H,,1 < s < M — 1, with certain
properties.

Let ® be the Laurent polynomial such that ®(e=%) =3, , |p(€ +2k7)|2. Recall that for any scaling function
¢, the shifts of ¢ is a Riesz basis of V4. Then for any scaling function ¢, we have

d(e®)>0 VEER. (2.6)

From (2.2) and the definition of ® it follows that

M-1
Z H(zwi ) H(27 wyf)@(2wsy) = M23(2M). (2.7)



Combining (2.6) and (2.7) leads to
C 1< Y H(e *wi)H(e®wy) < C VE€[-m,m,
s=0

where C' is a positive constant independent of &.
Given any Laurent polynomial G such that G(z) = G(z7!) and G(z) > 0 for all |z| = 1, define

M—1

[P,Qla(zM) = Z P2} )Q(z7 w3 )G 2w))

Jj=0

for Laurent polynomials P and ). From the definition, [P, Q](z) is still a Laurent polynomial, and [P, P]¢(z)
is nonzero Laurent polynomial if P is. We say that a nonzero complex number z, is an M -symmetric root of a
Laurent polynomial R if R(zow},) =0 for all 0 < j < M — 1. It is easy to check that if P has no M-symmetric
roots, then [P, P]g(z) > 0 for all complex number z with |z| = 1. For any Laurent polynomials Q1 (z) and @Q2(z)
satisfying Qs(2) = €,2Qs(271),

[Q1,Q2]c(27) = c162[Q1, Q2] (2) (2.8)

by direct computation, where e, = £1,s = 1,2 and o € Z.

THEOREM 2.2. Let {V;}jez be a multiresolution, ¢ be its scaling function with minimal support, and Hy be the
symbol of the function ¢. Assume that

¢(2Ma_2+m) :¢(2Ma_2_m) (2.9)

for some integer a. Let Hy(2),1 < s < M — 1, be Laurent polynomials such that

Hy(z) = €2 Hy(z ") V1<s<M-—1, (2.10)
where €, = £1 and a, € Z,
[Hs,Hilo(2) =0 VO<s#t<M-1, (2.11)
and
[Hs,Hilo(2) >0 V]z|=1 and 1<s<M-1 (2.12)

Then the functions Vs, 1 < s < M — 1, defined by

a(€) = Ha(e™*/M)g(¢/M)
are symmetric or anti-symmetric M-band wavelets constructed from the multiresolution {V;};cz. Furthermore,

as(M —1)+a

as(M —1)+a
7/15( 2M? —2M

IM2 — oM +m):63¢s( —a:) V1i<s<M-1.

From Theorem 2.2, the construction of symmetric and anti-symmetric wavelets reduces to the construction
of Laurent polynomials H(z),1 < s < M — 1, satisfying (2.10), (2.11) and (2.12). The proof of Theorem 2.2 is
routine, we omit the detail here.

2.1. Proof of Theorem 2.1

To prove Theorem 2.1, we need the following lemma about the symbol of a scaling function with minimal support.
The result was proved for M = 2 by Jia and Wang,!! and the generalization of their result to M > 3 is
straightforward.



LEMMA 2.3. Let ¢ be a scaling function with linearly independent shifts and let H(z) be its symbol. Then there
do not exist Laurent polynomials Ry(z) and Ra(2) such that Ry(z) # C12%(1 — 2)® for some C; € R\{0}, a € Z
and B € Z4, and such that

H(z) = Ry(2)R1(2M) /Ry (2).

Proof of Theorem 2.1. By the definition of a multiresolution, it suffices to prove that there does not exist
any nonzero symmetric or (an) anti-symmetric compactly supported function in V5. On the contrary, there exists
a compactly supported function ¢ € Vj such that ¢ # 0 and % is symmetric or anti-symmetric. By (1.1), there
exists a unique sequence {d(k)}rez such that >, ., |d(k)[* < co and

v =" dk)g( k). (2.13)
kEZ

By the linearly independent shifts of ¢, and by the assumption that ¢ has compact support, the sequence
{d(k)}rez in (2.13) has finite support, and hence D(z) = 3", ., d(k)z" is a Laurent polynomial. Taking Fourier
transform at both sides of (2.13) leads to

D) = De )9(9)- (2.14)
By the symmetry or antisymmetry of 1, there exist o € R and € = £1 such that
D(E) = ee” " Y(=0). (2.15)

Combining (2.2), (2.14) and (2.15) leads to

H(e™™) _ $(MEI(-€) _ —i—1)zo¢ DM D(e7)

H(e®) — g(=ME)$(8) D(e=")D(e*)
1

on a neighborhood of the origin. Therefore (M — 1)zq is an integer, and
H(z)D(zM)D(z71) = z(M =Dz {1 D(2~M)D(2) (2.16)

for all nonzero complex number z. Let D;(z) be the maximal common polynomial factor between Laurent
polynomials D(z) and D(z~'). Then
Dy(z) = CZ°Dy(z71) (2.17)

for some C' € R\{0} and 3 € Z. Set D(z) = D(2)/D,(2). Then there do not exist nonzero common roots between
D(z) and D(z71). By (2.16) and (2.17), we obtain

H(2)D(z™MD(27™') = 22H(z"")D(2~™)D(z) V z € C\{0}, (2.18)
where « is an integer. Comparing M symmetric roots of both sides of (2.18) leads to
H(z)D(z™') = D(z~M)R(z)
for some Laurent polynomial R(z). Hence
D(z) = C2%(1 — 2)? (2.19)
for some C' € R\{0},a € Z and 8 € Z; by Lemma 2.3. Using (2.18) and (2.19), we have
H(z) =2"H(—z) for some ~ € Z.

Therefore, ¢ is symmetric since

which is a contradiction. O



3. ALGORITHM

In this section, we shall give an algorithm to construct symmetric and anti-symmetric wavelets. Let ¢ be a
symmetric scaling function with symmetric point a/(2M — 2), and let H be its symbol, where « is an integer.
Write @ = —2y + § where v € Z and § = 0 or 1. Then 27H(z) = 27 H(z71).

Initial Step Define Hyo = H, and Hy 5,1 <s< M —1, by

Hou( =2 =757 1<s <[V
s(2) =2
0, GM—s _ s—M [ _;1} <s<M-1
if6=0,
B Zs+1_|_2*5 ]_<S<M/2—].
— o =
Hys(2) =2 {ZM3_21+SM M/2<s<M-—1

if 6 =1 and M is even, and

s 1—s
_ =y Ptz 1<s<(M-1)/2
HO,s(Z)—Z { SM—s _ l+s—M (M‘f‘l)/QSSSM—l
if 6 =1 and M is odd, where [x] is the greatest integer smaller than or equals to x.

For the functions Hy,,0 < s < M — 1, constructed above, we have the following properties which proof is
postponed to the end of this section.

PROPOSITION 3.1. Let Hy 4(2),0 < s < M — 1, be Laurent polynomials defined in the initial step. Then

2"Hy 5(2) = esz§77H0,s(zfl) VO<s<M-1, (3.1)
where €, = £1, and det (H073(zw%/1)) is a nonzero Laurent polynomial.
0<s,j<M—1
Main Step For 1 <t < M —1, we inductively define H; s = H; 1,5 for all0 < s <t—1, and Hy 5, t <s < M -1,

by
H;s(z) = [Htfl,tfl,;Htfl,tfl]é(z_M)Htfl,s(z) - [Htfl,tflaHtfl,s]':b(Z_M)Htfl,tfl(Z)-

For the above functions Hy s, we have the following properties, which proof is postponed to the end of this
section.

PROPOSITION 3.2. Let H; 5(2),1 <t <M —1,0< s <M —1, be defined above. Then for any 1<t <M —1,
2THy s(2) = 632577Hf/,s(z*1) VO<s<M-1, (3.2)
where €, = £1 independent of t,
[His,His]o(z2) =0 VO0<s<t-—1l,s<s <M-1, (3.3)

and det(Hts(zwj))ggs,jSM,l is a monzero Laurent polynomial.
Last Step  Write
Har1 5(2) = Hy(2)Hprs(zM), 1<s <M -1 (3.4)
such that Hg,1 < s < M — 1, have no M -symmetric roots.
For the functions Hy,1 < s < M — 1, in the last step, we have

PROPOSITION 3.3. Let Hs(z),1 < s < M —1, be as in (3.4). Then Hs,1 < s < M — 1, satisfies (2.10), (2.11)
and (2.12).



3.1. Proofs

Proof of Proposition 3.1 Obviously (3.1) follows from the definition of Hy s,1 < s < M — 1. The assertion

det(Hg,s(zwf‘V‘,))ggs,jSM,l # 0 for the case 6 = 1, and for the case § = 0 and odd integer M, can be proved in
the same way as the proof for the case § = 0 and even integer M. So we only give the proof for the case § = 0
and even integer M in detail. In this case,

Ho pp2(2) = (1 - M)z =M/[2=y
Hos(z)+ Hop—s(2) =227 V1<s<M/2-1
Hos(z) —Hopm—s(2) =227 V1<s<M/2-1

Write 27 H (z) = Ejf‘i/f;;/z 21 Pj(zM). Then P;j(1) = 1 for all —M/2 < j < M/2 —1 by (2.3) and the assumption
on H(z). Therefore,

J
det (HO’S(ZWM))ogs,ngfl
= Clzi(Mil)v(l — ZM) X

J J \—M/2 J -1 J J \M/2—1
det (H(sz),(sz) yeen (zwy) T (2way)s e, (2W03) )Ogng—l
= Coz™MI(1 - 2M)Py (M) det((zw};)®) - my2<s<M/2—1,0<j<M-15

where C; and C5 are nonzero constants. Hence det(Hg,s(zwf‘V[))ggs,jSM,l # 0 since Py(z) Z0 by Py(1) = 1/M

and det((zw};)®) - m/2<s<my2-1,0<j<m—1 is a Vandermonde determinant. O

Proof of Proposition 3.2 We prove the assertion by induction on ¢. For t = 1, (3.3) follows directly from
the definition. By Proposition 3.1 and Hj o # 0, we obtain

det(Hy s (2wly))o<s, j<m—1
M—-1 .
= ([Ho,o,Ho,O]é(Z_l)) det(Ho,s(2w};))o<s,j<m—1 Z 0.

Then it remains to prove (3.2). For s = 0, Hi o(z) satisfies (3.2) since Hy o does. For 1 < s < M — 1,

2“Hy 4(z7Y) = 2%[Ho, Hople(zM)Hos(27") — 2*[Ho,, Ho s]o (2™ ) Hoo(271)
= €s[Hoo, Hoolo(z™)Hy s(2) — €s[Ho0, Ho s]a (2™ ) Ho 0(2)
= Hl,s(z))

where we have used (2.8) and (3.1). This prove the assertion for t = 1. The assertion for 2 < ¢ < M — 1 can be
proved inductively by using the same procedure above. We omit the detail here. O

Proof of Proposition 3.3 By Proposition 3.2,
H,(2)Hpo(2M) = €2 Hy (27 D Hpy o (2 ™). (3.5)

Comparing all nonzero M-symmetric roots at both sides of (3.5) leads to Has4(2) = 2 Har 4(27'). Substituting
this into (3.5) implies (2.10).

By (3.4) and Proposition 3.2,
[Hyr-1,5, Hyr-1,4]0(2) = Hars(2)Hag o (27 ") [Hy, Hilo (2).
This together with (3.3) leads to (2.11).

Note that H;,1 < s < M — 1, has not M symmetric roots. Thus ij\igl |Hs(zw§v[)| > 0 for nonzero z. Hence
(2.12) follows. O



4. SPLINE WAVELETS

In this section, we use the algorithm in Section 3 to construct symmetric or anti-symmetric spline wavelets for
N = 2,3 and M = 3. Some examples of bi-orthogonal (anti)symmetric wavelets are given by Soardi,'® where
the premier scaling functions and wavelets are B-splines and spline wavelets.

Case 1 Spline wavelets with order two and dilation three.

In this case, the scaling function is the hat function

0 <0 or z>2
do(x) =< = 0<z<1
2—2 1<ax<2,

which is symmetric, and whose filter is H3(z) = (1 + z + 2*)?/3. By the algorithm in Section 3, we may choose
two wavelet filters H3 , and H3 , by

H; (z) = —2+52—062"+52"—22*
Hi,(z) = =22 %+52°—-62"—14272 4122 +64 - 51z
+512% — 6421 — 122° + 142° 4+ 62° — 527 + 2210
Hence the functions 3 ; and ¢3 , defined by
{ 03.1(6) = H3, (7€) (£/3)
U32(6) = H3 (7% (€/3)

are symmetric and anti-symmetric spline wavelets respectively (see Figure 1).

Case 2 Spline wavelets with order three and dilation three.

In this case the scaling function is

0 <0 or >3
_J 0.527 0<z<1
93(0) =9 243515 1<w<2
0.5(z — 3)* 2<z<3

and the filter is H3(z) = §(1 4 z + 2z%)%. By the algorithm in Section 3, ¢3 | and ¢§ , defined by

{ U3.1(6) = H3, (e7€/%) 6 (£/3)
U} () = Hi 5 (e=%/%)d3(£/3)
are symmetric or antisymmetric wavelets respectively, where
Hj (z) = =3.1216049 + 2.1092593(z + 2~ ") — 0.0481481(2” + z~2) — 1.3083333(2° + 27°)
+1.1787037(2* + 2~ *) — 0.312037(2° + 2 ) — 0.1305555(2% + 279)
+0.0731481(2" + 277) — 0.000925925(2% 4+ 278) — 0.000308641(2° + 2~%)

Hj,(z) = 153.08162(z — 2~ ") — 102.45087(2> — 2~2) + 20.508609(z> — 27°)
+117.05492(2* — 2 4) 32. 004276(25 — 27°) +14.708013(2° — 279)
+50.554366(2" — 27 7) — 3.4053212(2% — 27%) + 3.5721543(2° — 2 79)
+14.159285(2'0 — —10) 0.0644075(z11 — z7M1) 4+0.1464843(2' — 2712)
+3.0332681(2" — 271%) — 0.0921772(z"* — 27'*) — 0.0353921 (2" — 27 19)
+0.4548712(z — 271%) — 0.0080759(2'" — 2717) — 0.0029319(2'® — *18)
+0.259919(z! —19) 0.00017672(2%° — 272%) 4 0.000059834 (2! — z721)

+0.000474545(2%2 — 2722).
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