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Abstract

In this note, we give a simple elementary proof to Wiener’s lemma for infinite matrices with polynomial off-diagonal
decay.

Résumé

Dans cette note, nous donnons une preuve elementaire du lemme de Wiener pour les matrices infinies a decrois-
sance polynomiale des termes non-digonaux.
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1. Introduction

The classical Wiener’s lemma states that if a periodic function f has an absolutely convergent Fourier
series and never vanishes, then 1/f has an absolutely convergent Fourier series.

Let `p, 1 ≤ p ≤ ∞, be the space of all p-summable sequences on Zd equipped with usual norm ‖ · ‖`p ,
denote by B2 the space of all bounded operators on `2 equipped with usual operator norm ‖ · ‖B2 , and
define W := {(a(i− j))i,j∈Zd :

∑
j∈Zd |a(j)| < ∞} with a norm ‖A‖W :=

∑
j∈Zd |a(j)| for every matrix

A = (a(i − j))i,j∈Zd ∈ W. An equivalent formulation of the classical Wiener’s lemma involving matrix
algebra can be stated as follows: A ∈ W and A−1 ∈ B2 imply A−1 ∈ W.

The classical Wiener’s lemma and its various generalizations (see, for instance, [3], [8], [9], [12], [13],
[14]) are important and have numerous applications, for instance, in numerical analysis ([4], [17], [18]),
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wavelets and affine frames ([5], [14]), time-frequency analysis ([2], [10], [11], [12], [13], [19]), shift-invariant
spaces and polynomial spline spaces ([1], [8], [15], [19]), and non-uniform sampling ([6], [19]). Unlike
the matrix algebra W associated with the classical Wiener’s lemma, which is commutative, the matrix
algebras in the study of spline approximation and projection ([7], [8]), affine and Gabor frame ([2], [5],
[12], [13]), and non-uniform sampling ([6], [19]) are extremely non-commutative. But for various purposes,
we still expect that those matrix algebras have the above property that the matrix algebra W has.

For p ∈ [1,∞] and α ∈ R, let

Qp,α :=
{
A :=

(
A(i, j)

)
i,j∈Zd : ‖A‖p,α < ∞

}
, (1.1)

where

‖A‖p,α := sup
i∈Zd

∥∥(
A(i, j)(1 + |i− j|)α

)
j∈Zd

∥∥
`p + sup

j∈Zd

∥∥(
A(i, j)(1 + |i− j|)α

)
i∈Zd

∥∥
`p . (1.2)

For p = ∞, we see that A = (A(i, j))i,j∈Zd ∈ Q∞,α if and only if |A(i, j)| ≤ ‖A‖∞,α(1 + |i− j|)−α for all
i, j ∈ Zd. Because of the above interpretation of matrices in Qp,α for p = ∞, we call matrices in Qp,α to
have polynomial off-diagonal decay.

For the matrix algebra Qp,α with p = ∞ and α > d, Jaffard use a rather delicate bootstrap argument
to prove that A ∈ Q∞,α and A−1 ∈ B2 imply A−1 ∈ Q∞,α ([14]). For the matrix algebra Qp,α with
p = 1 and α > 0, Barnes use the Banach algebra technique to show that A ∈ Q1,α and A−1 ∈ B2 imply
A−1 ∈ Q1,α (see [3] for α ∈ (0, 1] and [13] for any α > 0). In this note, we study the matrix algebra Qp,α

with 1 ≤ p ≤ ∞ and α > d(1− 1/p) and give a simple elementary proof to the following Wiener’s lemma.
Theorem 1.1 Let 1 ≤ p ≤ ∞ and α > d(1− 1/p). Then A ∈ Qp,α and A−1 ∈ B2 imply A−1 ∈ Qp,α.

More general formulation of the above Wiener’s lemma and its applications to frames and sampling
will be discussed in the subsequent paper [19].

2. Proof of Theorem 1.1

To prove Theorem 1.1, we need the following lemma.
Lemma 2.1 Let 1 ≤ p ≤ ∞ and α > d(1 − 1/p). Then there exist positive constants C1 and C2 such
that

‖An‖p,α ≤ C1

(
C2
‖A‖p,α

‖A‖B2

) 2−θ
1−θ nlog2(2−θ)

(‖A‖B2)n (2.1)

holds for all A ∈ Qp,α and n ≥ 1, where θ = 1− d
2α−2d(1/2−1/p) .

Proof: By Hölder inequality,

‖A‖1,0 ≤ C‖A‖p,α for all A ∈ Qp,α. (2.2)

Here and hereafter, C denotes an absolute constant which could be different at different occurrence.
By the definition of the operator norm ‖ · ‖B2 ,

‖A‖2,0 ≤ ‖A‖B2 ≤ ‖A‖1,0. (2.3)

For any A = (A(i, j))i,j∈Zd and B = (B(i, j))i,j∈Zd in Qp,α,

‖AB‖p,α ≤ 2α‖A‖p,α‖B‖1,0 + 2α‖A‖1,0‖B‖p,α, (2.4)
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by Hölder inequality and the following estimate:

|(AB)(i, j)|(1 + |i− j|)α ≤ 2α
∑

k∈Zd

|A(i, k)|(1 + |i− k|)α|B(k, j)|+ 2α
∑

k∈Zd

|A(i, k)||B(k, j)|(1 + |k − j|)α.

Let θ1 = (α− d(1/2− 1/p))−1 and τ = (‖A‖p,α)θ1(‖A‖B2)−θ1 . Then∑
k∈Zd

|A(i, k)| ≤
∑

|i−k|≤τ

|A(i, k)|+
∑

|i−k|≥τ

|A(i, k)| ≤ Cτd/2‖A‖2,0 + Cτ−α+d(1−1/p)‖A‖p,α

≤Cτd/2‖A‖B2 + Cτ−α+d(1−1/p)‖A‖p,α = 2C(‖A‖B2)1−dθ1/2(‖A‖p,α)dθ1/2

by (2.2) and (2.3), which yields

‖A‖1,0 ≤ C(‖A‖B2)1−dθ1/2(‖A‖p,α)dθ1/2 for all A ∈ Qp,α. (2.5)

Combining (2.4) and (2.5) leads to the following compensated compactness estimate:

‖A2‖p,α ≤ C‖A‖2−θ
p,α ‖A‖θ

B2 for all A ∈ Qp,α. (2.6)

Applying (2.2), (2.4) and (2.6), and using ‖An‖B2 ≤ ‖A‖n
B2 for n ≥ 1, we obtain the following for any

n ≥ 1:
‖A2n‖p,α ≤ D(‖An‖p,α)2−θ(‖A‖B2)nθ,

and
‖A2n+1‖p,α ≤ D‖A‖p,α(‖An‖p,α)2−θ(‖A‖B2)nθ,

where D ≥ 1 is a positive constant independent of A ∈ Qp,α and n ≥ 1. Thus the sequence {bn}, to be
defined by bn = D−1/(1−θ)‖An‖p,α(‖A‖B2)−n, n ≥ 1, satisfies

b2n ≤ b2−θ
n and b2n+1 ≤ b1b

2−θ
n for all n ≥ 1.

By induction, we have the following upper bound estimate to the sequence {bn}:

bn ≤ b

∑l

i=0
εi(2−θ)i

1 ≤ b
2−θ
1−θ nlog2(2−θ)

1

for n =
∑l

i=0 εi2i, where εi ∈ {0, 1}, 0 ≤ i ≤ l. Therefore (2.1) follows. �
Remark 2.2 For the special case that p = 1, α = 0, and A = (q(j− j′))j,j′∈Z with

∑
j∈Z q(j)e−ijξ being

reciprocal of a trigonometric polynomial Q, Newman proved the following better estimate than the one
in (2.1) for the Q1,0 norm of An: ‖An‖1,0 ≤ Cn2‖A‖n

B2 for all n ≥ 1, where C is a positive constant
depending on the degree of the polynomial Q. That estimate is crucial for Newman’s elementary proof of
the classical Wiener’s lemma ([16]).

Now we start to prove Theorem 1.1.
Proof of Theorem 1.1: For any A = (A(i, j))i,j∈Zd ∈ Qp,α, we define its transpose A∗ by A∗ :=(

A(j, i)
)
i,j∈Zd . Then A∗A ∈ Qp,α by (2.2), (2.4), and the fact that ‖A∗‖p,α = ‖A‖p,α. This, together with

the fact that A∗A is a positive operator on `2 by the assumption on the matrix A, implies that

A∗A = ‖A∗A‖B2(I −B) (2.7)

for some B ∈ B2 with

‖B‖B2 < 1 and ‖B‖p,α < ∞, (2.8)

where I is the identity operator on `2. By (2.8) and Lemma 2.1, we obtain

‖(I −B)−1‖p,α ≤
∞∑

n=0

‖Bn‖p,α ≤
∞∑

n=0

C1

(
C2
‖B‖p,α

‖B‖B2

) 2−θ
1−θ nlog2(2−θ)

(‖B‖B2)n < ∞. (2.9)
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The conclusion A−1 ∈ Qp,α then follows from (2.2), (2.4), (2.7), (2.9), and the fact that A−1 = (A∗A)−1A∗.
�
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[6] E. Cordero and K. Gröchenig, Localization of frames II, Appl. Comput. Harmonic Anal., 17(2004), 29–47.

[7] C. de Boor, A bound on the L∞-norm of the L2-approximation by splines in terms of a global mesh ratio, Math. Comp.,
30(1976), 687–694.

[8] S. Demko, Inverse of band matrices and local convergences of spline projections, SIAM J. Numer. Anal., 14(1977),
616–619.

[9] I. M. Gelfand, D. A. Raikov, and G. E. Silov, Commutative Normed Rings, New York, Chelsea, 1964.
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