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Abstract. Matrices and integral operators with off-diagonal decay ap-
pear in numerous areas of mathematics including numerical analysis
and harmonic analysis, and they also play important roles in engineer-
ing science including signal processing and communication engineering.
Wiener’s lemma states that the localization of matrices and integral
operators are preserved under inversion. In this introductory note, we
re-examine several approaches to Wiener’s lemma for matrices and in-
tegral operators. We also review briefly some recent advances on local-
ization preservation of operations including nonlinear inversion, matrix
factorization and optimization.

1. Introduction

Let us start with recalling Lemma IIe in [49] by N. Wiener: “If f(x)
is a function with an absolutely convergent Fourier series, which nowhere
vanishes for real arguments, 1/f(x) has an absolutely convergent Fourier
series.” The above famous statement is now referred as the classical Wiener’s
lemma.

Let W contain all periodic functions with absolutely convergent Fourier
series. Then we can restate the classical Wiener’s lemma as follows.

Theorem 1.1. If f ∈ W and f(t) 6= 0 for all t ∈ R, then 1/f ∈ W.

Define

‖f‖W :=
∑
n∈Z
|f̂(n)|, f ∈ W,

if f has the Fourier series
∑

n∈Z f̂(n)eint. We may verify thatW is a Banach
algebra under the function multiplication. Here a Banach spaceA with norm
‖ · ‖A is said to be a Banach algebra if it contains a unit element I, it has
operation of multiplications possessing the usual algebraic properties, and
‖AB‖A ≤ ‖A‖A‖B‖A for all A,B ∈ A.
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Given a Banach algebra A, the family W(A) of all periodic functions

f(t) =
∑

n∈Z f̂(n)eint, t ∈ R, with

‖f‖W(A) :=
∑
n∈Z
‖f̂(n)‖A <∞

is also a Banach algebra, where the production of f(t) · g(t) is the function
f(t)g(t). The above Banach algebraW(A) is a noncommutative extension of
the Wiener algebra W. The following celebrated Bochner-Phillips theorem
[10, Theorem 1] is a generalization of the classical Wiener’s lemma from
complex numbers to a Banach algebra A.

Theorem 1.2. Let f ∈ W(A). If f(t) has left inverse in A for every t ∈ R,
then f has a left inverse in W(A).

Let `q := `q(Z), 0 < q ≤ ∞, be the space of all q-summable sequences
on Z with its standard (quasi-)norm denoted by ‖ · ‖q. We may associate
a sequence a := (a(n))n∈Z ∈ `1 with a matrix A :=

(
a(m − n)

)
m,n∈Z in

B(`q), 1 ≤ q ≤ ∞, the Banach space of all bounded linear operators on `q

under the standard operator norm. Denote the family of those matrices by

(1.1) W̃ :=
{(
a(m− n)

)
m,n∈Z :

∑
k∈Z
|a(k)| <∞

}
.

Then the classical Wiener’s lemma has the following equivalent matrix for-
mulation: If A ∈ W̃ and A is invertible in B(`2), then A−1 ∈ W̃.

Let

(1.2) C1 :=
{(
a(m,n)

)
m,n∈Z :

∑
k∈Z

(
sup

m−n=k
|a(m,n)|

)
<∞

}
.

The above family C1 of matrices is known as the Baskakov-Gohberg-Sjöstrand
class [4, 17, 22, 36, 40]. Any matrix A in the Baskakov-Gohberg-Sjöstrand
class C1 is a bounded linear operator on `q, where 1 ≤ q ≤ ∞. Hence

W̃ ⊂ C1 ⊂ B(`q), 1 ≤ q ≤ ∞.
Applying Bochner-Phillips theorem, we have the following noncommuta-
tive extension of the classical Wiener’s lemma to matrices in the Baskakov-
Gohberg-Sjöstrand class C1.

Theorem 1.3. Let A be a matrix in the Baskakov-Gohberg-Sjöstrand class
C1. If A is invertible in B(`2), then its inverse A−1 belongs to C1.

Let A and B be Banach algebras with common identity I and assume that
A is a subalgebra of B. We say that A is inverse-closed in B if A ∈ A and
A−1 ∈ B implies A−1 ∈ A. Inverse-closedness occurs under various names,
such as spectral invariance, Wiener pair, local subalgebra etc [16, 30, 46]. As

the classical Wiener’s lemma can be also stated as that the Wiener algebra W̃
is an inverse-closed subalgebra of B(`2), we call the inverse-closed property
for a Banach subalgebra as Wiener’s lemma for that subalgebra.
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Inverse-closedness (= Wiener’s lemma) has been established for matrices
and integral operators with various off-diagonal decay, see the survey papers
[18, 27], samples of recent publications [6, 13, 14, 20, 21, 28, 33, 42, 43] and
references therein. There are several ways to prove the inverse-closedness for
matrices and integral operators, such as the Wiener’s localization [49], the
Gelfand’s technique [16], the Hulanicki’s spectral method [24], the Branden-
burg’s trick [11], the Jaffard’s boot-strap argument [25], and the Sjöstrand’s
commutator estimates [36]. In this introductory report, we present several
techniques to establish localization preservation of various operations, such
as inversion, factorization and optimization.

A Banach algebra A is said to be a *-algebra if there is a continuous linear
involution ∗ on A with the property that

(AB)∗ = B∗A∗ and A∗∗ = A for all A,B ∈ A.
A *-algebra A is called symmetric if σA(A∗A) ⊂ [0,∞) for any A ∈ A. The
operator algebra B(`2) is a symmetric *-algebra under the operator adjoint,
while B(`p) with p 6= 2 is not.

Define the spectral set σA(A) of A in a Banach algebra A with identity I
by

σA(A) := {λ ∈ C : λI −A is not invertible in A}
and the spectral radius ρA(A) of A ∈ A by

ρA(A) := max{|λ| : λ ∈ σA(A)}.
For Banach algebras A and B with common identity I and the property that
A is a subalgebra of B,

ρA(A) = ρB(A) for all A ∈ A,
if A is inverse-closed in B. The following famous Hulanicki’s lemma shows
that the converse holds for symmetric *-algebras [24].

Theorem 1.4. Let A ⊂ B be two *-algebras with common identity and
involution. If B is a symmetric Banach algebra, then A is inverse-closed in
B if and only if ρA(A) = ρB(A) for all A = A∗ ∈ A.

Given 0 < q ≤ ∞ and a weight u = (u(n))n∈Z (a positive function on Z),
let

(1.3) Aq,u :=
{
A : ‖A‖Aq,u <∞

}
,

where for A := (a(m,n))m,n∈Z,

‖A‖Aq,u := max
{

sup
m∈Z
‖(a(m,n)u(m− n))n∈Z‖q,

sup
n∈Z
‖(a(m,n)u(m− n))m∈Z‖q

}
.

The above family Aq,u, 0 < q ≤ ∞, of matrices is known as the Gröchenig-
Schur class [22, 29, 34, 38, 40], while for q = ∞ it is also referred as the
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Jaffard class [25]. For brevity, we write Aq instead of Aq,u when u ≡ 1 is
the trivial weight.

The Gröchenig-Schur classA1 is a Banach algebra containing the Baskakov-
Gohberg-Sjöstrand class C1, i.e.,

C1 ⊂ A1,

but unlike the Baskakov-Gohberg-Sjöstrand class C1, it is not an inverse-
closed Banach subalgebra of B(`2) [48]. Applying the Hulanicki’s spectral
method and the Brandenburg’s trick, we obtain that the Gröchenig-Schur
class Aq,wα with polynomial weights wα(t) := (1 + |t|)α are inverse-closed
Banach subalgebras B(`2), provided that 1 ≤ q ≤ ∞ and α > 1 − 1/q
[3, 22, 25, 38, 40].

Theorem 1.5. Let 1 ≤ q ≤ ∞ and wα(t) := (1 + |t|)α with α > 1 − 1/q.
Then the Gröchenig-Schur class Aq,wα is an inverse-closed subalgebra of
B(`2).

Let B1 contain all matrices A := (a(m,n))m,n∈Z such that

|a(m,n)| ≤ b(m− n) for all m,n ∈ Z
for some sequence b := {b(n)}n∈Z being summable (b ∈ `1), symmetric
(b(−n) = b(n) for all n ∈ Z), and radically decreasing (b(n) ≤ b(m) for all
integers m,n with |n| ≥ |m|) [42], i.e.,

(1.4) B1 :=
{
A : ‖A‖B1 <∞

}
,

where
‖A‖B1 :=

∑
k∈Z

(
sup

|m−n|≥|k|
|a(m,n)|

)
.

We call B1 the Beurling class since it is a noncommutative matrix extension
of the Beurling algebra

A∗(T) :=
{∑
n∈Z

a(n)eint :
∑
k∈Z

sup
|n|≥|k|

|a(n)| <∞
}

introduced by A. Beurling for establishing contraction properties of periodic
functions [8]. The Beurling class B1 is a unital Banach algebra under matrix
multiplication, and it is contained in the Baskakov-Gohberg-Sjöstrand class
C1 (and hence also in the Gröchenig-Schur class A1),

B1 ⊂ C1 ⊂ A1.

Given 1 ≤ p <∞ and a weight w := (w(n))n∈Z, let

(1.5) `pw :=
{
c : ‖c‖p,w ::=

(∑
n∈Z
|c(n)|pw(n)

)1/p
<∞

}
contain all weighted p-summable sequences c := (c(n))n∈Z on Z. We say
that w is a discrete Muckenhoupt Ap-weight if

sup
m>n

(m− n)−p
( m∑
k=n

w(k)
)( m∑

k=n

(w(k))−1/(p−1)
)p−1

<∞ if 1 < p <∞,
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and

sup
m>n

(m− n)−1
∑m

k=nw(k)

infn≤k≤mw(k)
<∞ if p = 1.

The polynomial weights ((1+ |n|)α)n∈Z with −1 < α < p−1 and 1 ≤ p <∞
are discrete Muckenhoupt Ap-weights. For c := (c(n))n∈Z, define the discrete
maximal function Mc by

(1.6) Mc(n) := sup
0≤N∈Z

1

2N + 1

n+N∑
m=n−N

|c(m)|, n ∈ Z.

For any matrix A in the Beurling class B1 and any vector c, Ac is dominated
by a multiple of the dominated function Mc,

|Ac(n)| ≤ 5‖A‖B1Mc(n), n ∈ Z.

Therefore any matrix A in the Beurling class B1 defines a bounded operator
on the weight sequence space `pw,

B1 ⊂ B(`pw),

where 1 ≤ p < ∞ and w is a discrete Muckenhoupt Ap-weight. The reader
may refer to [15, 37] for the theory of weighted inequalities and its ramifi-
cations.

For the Beurling algebra A∗(T), it is shown that any function f ∈ A∗(T)
with f(t) 6= 0 for all t ∈ R has 1/f ∈ A∗(T) [7]. For the Beurling algebra
B1, applying the Sjöstrand commutator estimates, we can prove Wiener’s
lemma for the Beurling subalgebra B1 of B(`pw) [42].

Theorem 1.6. Let 1 ≤ p <∞ and w be a discrete Muckenhoupt Ap-weight.
Then B1 is an inverse-closed subalgebra of B(`pw).

This note is organized as follows. In Section 2, we recall the Wiener’s
localization for Fourier series with slight modification and provide a proof
of Wiener’s lemma for the Baskakov-Gohberg-Sjöstrand class C1.

Given a Banach algebra B, we say that its Banach subalgebra A is a
differential subalgebra of order θ ∈ (0, 1] ([9, 38, 43]) if the norm ‖ · ‖A on A
is a differential norm of order θ, i.e., there exists a positive constant C such
that

(1.7) ‖AB‖A ≤ C‖A‖A‖B‖A
(( ‖A‖B
‖A‖A

)θ
+
( ‖B‖B
‖B‖A

)θ)
for all A,B ∈ A.

The differential subalgebras have been widely used in operator theory and
non-commutative geometry [9, 26, 32] and they could also be important in
numerical analysis and optimization [29, 43, 44]. In Section 3, we first apply
the Hulanicki’s spectral method and the Brandenburg’s trick to prove that a
differential subalgebra of a symmetric *-algebra is inverse-closed (Theorem
3.1). In that section, we then show that the Gröchenig-Schur class associated
with polynomial weights is a differential subalgebra of B(`2) (Theorem 3.2),
and hence an inverse-closed subalgebra in B(`2).
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The Sjöstrand’s commutator estimates were introduced in [36] to pro-
vide an independent proof of the conclusion that the Baskakov-Gohberg-
Sjöstrand class C1 is inverse-closed in B(`2). The variations are used in
showing stability of localized matrices and integral operators for different
(un)weighted spaces, and inverse-closed subalgebras of a non-symmetric Ba-
nach algebra [2, 13, 33, 42, 47]. Included in Section 4 is Wiener’s lemma
for the Beurling class B1 in the non-symmetric algebra B(`q), q 6= 2, the
unweighted version of Theorem 1.6.

Wiener’s lemmas for matrices and integral operators can be informally
interpreted as localization preservation under inversion. Such a localization
preservation is of great importance in applied harmonic analysis, numerical
analysis, optimization and many mathematical and engineering fields. In
Section 5, as the supplement to survey papers [18, 27], we review briefly some
recent advances on localization preservation under (non)linear operations
such as matrix factorization and optimization.

All proofs in this note are based on the original arguments in the litera-
ture, mostly their simplified versions. For motivation, various applications,
and historical remarks on Wiener’s lemma for matrices, integral operators
and pseudodifferential operators, we refer the reader to [18, 27, 42].

2. Wiener’s Localization for Fourier series

In this section, we first recall the localization technique for Fourier series
in [49], see Lemma 2.4. We then apply the Bochner-Phillips theorem to
prove Wiener’s lemma for the Baskakov-Gohberg-Sjöstrand class C1.

2.1. Wiener’s localization for Fourier series. In this subsection, we
follow Wiener’s original arguments [49] with slight modification to prove
Theorem 1.1. To do so, we need several lemmas. The first lemma shows
that W is an algebra (cf. [49, Lemma IIa]).

Lemma 2.1. If f and g belong to W, then their product fg belongs to W
too. Moreover,

(2.1) ‖fg‖W ≤ ‖f‖W‖g‖W .

Proof. Clearly it suffices to prove (2.1). Take f, g ∈ W, set h = fg, and

let
∑

n∈Z f̂(n)eint,
∑

n∈Z ĝ(n)eint and
∑

n∈Z ĥ(n)eint be the Fourier series of
f, g and h respectively. One may verify that

ĥ(n) =
∑
m∈Z

f̂(m)ĝ(n−m), n ∈ Z.
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Thus

‖fg‖W =
∑
n∈Z
|ĥ(n)| ≤

∑
n∈Z

∑
m∈Z
|f̂(m)||ĝ(n−m)|

=
∑
m∈Z
|f̂(m)|

(∑
n∈Z
|ĝ(n−m)|

)
=
(∑
m∈Z
|f̂(m)|

)(∑
n∈Z
|ĝ(n)|

)
= ‖f‖W‖g‖W .

�

The second lemma, c.f. [49, Lemma IIb], says that any function coincident
with functions in W locally belongs to W.

Lemma 2.2. Let f be a periodic function. If for any t0 there exists εt0 > 0
and a function ft0 ∈ W such that f(t) = ft0(t) for all t ∈ (t0 − εt0 , t0 + εt0),
then f ∈ W.

Proof. By the compactness of the set [−π, π], there exists a finite periodic
covering {(ti − εti , ti + εti) + 2πZ}Ni=1 to the real line R, where N ≥ 1. As-
sociated with the above finite periodic covering, we can find a periodic unit
partition ϕi, 1 ≤ i ≤ N , such that ϕi, 1 ≤ i ≤ N , are smooth periodic func-
tions supported in (ti−εti , ti+εti)+2πZ (hence ϕi ∈ W) and

∑N
i=1 ϕi(t) = 1

for all t ∈ R. Let fti ∈ W be the periodic function coincident with f on
(ti − εti , ti + εti) + 2πZ, 1 ≤ i ≤ N . Then ϕifti ∈ W for all 1 ≤ i ≤ N by
Lemma 2.1, and

f =
N∑
i=1

ϕif =
N∑
i=1

ϕifti ∈ W.

�

The third lemma, c.f. [49, Lemma IIc], is related to the convergence of
Neumann series in the algebra W.

Lemma 2.3. If the Fourier series
∑

n∈Z f̂(n)eint of a function f ∈ W
satisfies |f̂(0)| >

∑
n 6=0 |f̂(n)|, then 1/f ∈ W.

Proof. Let g = f−f̂(0). Then g ∈ W and ‖g‖W < |f̂(0)| by our assumption.
Hence∥∥∥ 1

f

∥∥∥
W

=
1

|f̂(0)|

∥∥∥ ∞∑
n=0

(
− g

f̂(0)

)n∥∥∥
W
≤ 1

|f̂(0)|

∞∑
n=0

∥∥∥(− g

f̂(0)

)n∥∥∥
W

≤ 1

|f̂(0)|

∞∑
n=0

(‖g‖W
|f̂(0)|

)n
=

1

|f̂(0)| − ‖g‖W
<∞,

where the first equality follows from Neumann series

f̂(0)/f = 1 + (−g/f̂(0)) + (−g/f̂(0))2 + · · ·

and the second inequality holds by Lemma 2.1. �
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The key lemma, c.f. [49, Lemma IId], introduces localization technique
for functions in the algebra W.

Lemma 2.4. If f ∈ W satisfies f(t0) 6= 0 for some t0 ∈ R, then there exists
ε > 0 and a function gε ∈ W such that

(2.2) gε(t) = f(t) for all t ∈ (t0 − ε, t0 + ε),

and the Fourier series
∑∞

n=−∞ ĝε(n)eint of gε has the property that

(2.3) |ĝε(0)| >
∑
n6=0

|ĝε(n)|.

Proof. Without loss of generality, we assume that t0 = 0. Let ε > 0 be
chosen later. Take an auxiliary periodic function ϕε(t) whose restriction
on [−π, π] is ϕ(t/ε) for some smooth function ϕ(t) such that ϕ(t) = 1 for
|t| ≤ 1 and ϕ(t) = 0 for |t| ≥ 2. One may verify that the Fourier series of
the function ϕε is given by ε

∑
n∈Z ϕ̂(εn)eint and hence

(2.4) ϕε ∈ W,

where ϕ̂(ξ) = (2π)−1
∫
R ϕ(t)e−itξdt is the Fourier transform of ϕ on the real

line.
Define

(2.5) gε := ϕεf + f(0)(1− ϕε).

Then gε satisfies (2.2) and belongs to W by (2.4), the assumption f ∈ W
and Lemma 2.1.

Now it remains to verify that the Fourier series
∑

n∈Z ĝε(n)eint of gε sat-

isfies (2.3). Let f have the Fourier series
∑

n∈Z f̂(n)eint. By (2.5),

ĝε(n) = f(0)δn0 + ε
∑
m∈Z

ϕ̂(ε(n−m))f̂(m)− f(0)εϕ̂(εn)

= f(0)δn0 + ε
∑
m∈Z

(
ϕ̂(ε(n−m))− ϕ̂(εn)

)
f̂(m), n ∈ Z,

where δn stands for the Kronecker symbol. Therefore

|ĝε(0)| −
∑
n6=0

|ĝε(n)| ≥ |f(0)| − ε
∑
n,m∈Z

|ϕ̂(ε(n−m))− ϕ̂(εn)||f̂(m)|

=: |f(0)| −
∑
m∈Z

aε(m)|f̂(m)|,(2.6)

where

aε(m) = ε
∑
n∈Z
|ϕ̂(ε(n−m))− ϕ̂(εn)|, m ∈ Z.

As ϕ is a compactly supported smooth function on the real line,

|ϕ̂(ξ)| ≤ C(1 + |ξ|)−2 and |(ϕ̂)′(ξ)| ≤ C(1 + |ξ|)−2, ξ ∈ R,
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where C is a positive constant. Therefore

0 ≤ aε(m) ≤ 2ε
∑
n∈Z
|ϕ̂(εn)| ≤ C0ε

∑
n∈Z

(1 + ε|n|)−2 ≤ C0,

and

aε(m) ≤ Cε
∑
n∈Z

∫ ε|m|

−ε|m|
(1 + |εn− t|)−2dt ≤ C1ε|m|, m ∈ Z,

where C0 and C1 are positive constants independent on ε ∈ (0, 1) and m ∈ Z.
Letting ε be chosen sufficiently small, the desired estimate (2.3) for the
function gε follows from (2.6) by the dominated convergence theorem. �

We finish this subsection with the proof of the classical Wiener’s lemma.

Proof of Theorem 1.1. Let f ∈ W with f(t) 6= 0 for all t ∈ R. Then g = 1/f
is a continuous function. For any t0 ∈ R, there exists ε > 0 and a function
ft0 ∈ W by Lemma 2.4 such that

f(t) = ft0(t) for all t ∈ (t0 − ε, t0 + ε)

and the Fourier series
∑

n∈Z f̂t0(n)eint of ft0 satisfies

|f̂t0(0)| >
∑
n6=0

|f̂t0(n)|.

Then the function gt0 := 1/ft0 belongs to W by Lemma 2.3, and it satisfies

g(t) = gt0(t) for all t ∈ (t0 − ε, t0 + ε).

Therefore g = 1/f belongs to W by Lemma 2.2. �

2.2. Wiener’s lemma for the Baskakov-Gohberg-Sjöstrand class. In
this subsection, we prove Theorem 1.3.

Proof of Theorem 1.3. Take A := (a(m,n))m,n∈Z ∈ C1 with A being in-
vertible in B(`2). Let e(t) be the diagonal matrix with diagonal entries
eimt,m ∈ Z, and define x(t) := e(t)A(e(t))−1 = e(t)Ae(−t). Then x(t) is
invertible in B(`2) for all real t, and its inverse is given by

(2.7) (x(t))−1 = e(t)A−1(e(t))−1.

Define Ak = (ak(m,n))m,n∈Z, k ∈ Z, by ak(m,n) = a(m,n) if m− n = k
and 0 otherwise. Then∑

k∈Z
‖Ak‖B(`2) =

∑
k∈Z

sup
|m−n|=k

|a(m,n)| <∞.

Observe that x(t) has the Fourier series
∑

k∈ZAke
ikt. Thus the Fourier

series
∑

k∈ZBke
ikt of (x(t))−1 satisfies∑

k∈Z
‖Bk‖B(`2) <∞
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by Theorem 1.2 with A replaced by B(`2). Observe that

‖Bk‖B(`2) = sup
m−n=k

|b(m,n)|, k ∈ Z

by (2.7), where A−1 = (b(m,n))m,n∈Z. This together with (2.7) proves that
A−1 ∈ C1. �

3. Spectral method for symmetric algebras

In this section, we show that a differential *-subalgebra of a symmetric
*-algebra is inverse-closed, and then we apply it to establish Wiener’s lemma
for the Gröchenig-Schur class.

Replacing both A and B in (1.7) by An, n ≥ 1, leads to

‖A2n‖A ≤ 2C‖An‖2−θA ‖A
n‖θB for all A ∈ A.

Taking n-th roots and then letting n→∞ yields

ρA(A) ≤ ρB(A) for all A ∈ A.

The above Brandenburg’s trick together with the Hulanicki’s lemma estab-
lishes Wiener’s lemma for symmetric *-algebras [11, 19, 20, 38, 40, 42].

Theorem 3.1. Let A and B be two *-algebras with common identity and
involution. If B is a symmetric Banach algebra and A is a differential
subalgebra of B of order θ ∈ (0, 1], then A is inverse-closed in B.

Let 1 ≤ q ≤ ∞ and set q′ = q/(q − 1). Matrices in the Gröchenig-Schur
class Aq,u are bounded linear operator on `2 if

(3.1) ‖u−1‖q′ <∞.

In fact,

‖A‖B(`2) ≤ ‖u−1‖q′‖A‖Aq,u for all A ∈ Aq,u.
The Gröchenig-Schur class Aq,u is a *-algebra under the matrix multiplica-
tion and the matrix conjugate if there exists another weight v, called the
companion weight, such that

(3.2) u(m+ n) ≤ u(m)v(n) + v(m)u(n) for all m,n ∈ Z

and

(3.3) ‖vu−1‖q′ <∞.

For q = 1, the above requirements (3.2) and (3.3) are met if the weight u is
submultiplicative [22, 40], i.e., there exists a positive constant C such that

u(m+ n) ≤ Cu(m)u(n) for all m,n ∈ Z.

Denote by χ[−τ,τ ] the characteristic function on the interval [−τ, τ ]. If the
weight u and its companion weight v satisfy

(3.4) inf
τ>0
‖vχ[−τ,τ ]‖2 + t‖vu−1(1− χ[−τ,τ ])‖q′ ≤ Dt1−θ for all t ≥ 1,
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where D > 0 and θ ∈ (0, 1), then Aq,u is a differential subalgebra of B(`2) of
order θ (and hence it is an inverse-closed subalgebra of B(`2) by Theorem
3.1). We refer the reader to [13, 19, 20, 21, 25, 33, 38, 40, 41, 42] for various
differential subalgebras of matrices and localized integral operators.

Theorem 3.2. Let 1 ≤ q ≤ ∞ and u be a weight satisfying (3.1)–(3.4) for
some D ∈ (0,∞) and θ ∈ (0, 1). Then Aq,u is a differential algebra of B(`2)
of order θ.

In literatures, we usually assume that weights have positive lower bounds
[22, 40]. In this case, the assumptions (3.1) and (3.3) are satisfied if (3.4)
holds. One may also verify that the requirement (3.4) is met if

(3.5) sup
τ>0

(
‖vχ[−τ,τ ]‖2

)1−θ(‖vu−1(1− χ[−τ,τ ])‖q′
)θ
<∞

and both weight u and its companion weight v are slow-varying, i.e.,

(3.6) sup
|m−n|≤1

v(m)

v(n)
+
u(m)

u(n)
<∞.

For the polynomial weight wα(t) = (1 + |t|)α with α > 1 − 1/q, we may
select vα(t) = 2α as its companion weight, since

wα(m+ n) ≤
(
1 + 2 max(|m|, |n|)

)α ≤ 2αwα(m) + 2αwα(n), m, n ∈ Z.

Then the requirements (3.1)–(3.4) are met as both wα and vα have positive
lower bounds, and satisfy (3.5) and (3.6), because

sup
τ>0

(
‖vαχ[−τ,τ ]‖2

)1−θ(‖vαw−1α (1− χ[−τ,τ ])‖q′
)θ

≤ 2α(2/(q′α− 1))θ/q
′
sup
τ>0

(2τ + 1)(1−θ)/2τ−θ(α−1/q
′) <∞

for θ = 1/(1 + 2α− 2/q′) ∈ (0, 1). Then Theorem 1.5 follows from Theorem
3.2 with u replaced by polynomial weight wα with α > 1− 1/q.

We finish this subsection with the proof of Theorem 3.2.

Proof of Theorem 3.2. LetA = (a(m,n))m,n∈Z ∈ Aq,u andB = (b(m,n))m,n∈Z ∈
Aq,u, and set AB = C =: (c(m,n))m,n∈Z. Then

c(m,n) =
∑
k∈Z

a(m, k)b(k, n), m, n ∈ Z.

Applying Hölder inequality and using (3.2) yield

(3.7) ‖C‖Aq,u ≤ ‖A‖Aq,u‖B‖A1,v + ‖A‖A1,v‖B‖Aq,u ,
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where v is the companion weight in (3.2). Observe that∑
n∈Z
|a(m,n)|v(m− n)

≤ inf
τ>0

{( ∑
|m−n|≤τ

|a(m,n)|2
)1/2( ∑

|m−n|≤τ

|v(m− n)|2
)1/2

+
( ∑
|m−n|>τ

|a(m,n)u(m,n)|q
)1/q( ∑

|m−n|>τ

∣∣∣v(m− n)

u(m− n)

∣∣∣q′)1/q′}
≤ inf

τ>0

{
‖A‖B(`2)‖vχ[−τ,τ ]‖2 + ‖A‖Aq,u‖vu−1(1− χ[−τ,τ ])‖q′

}
≤ D‖A‖1−θAq,u‖A‖

θ
B(`2) for all m ∈ Z,(3.8)

where the last inequality follows from (3.4) and the second one holds as

sup
m∈Z

(∑
n∈Z
|a(m,n)|2

)1/2
≤ ‖A‖B(`2).

Similarly,

(3.9) sup
n∈Z

∑
m∈Z
|a(m,n)|v(m− n) ≤ D‖A‖θB(`2)‖A‖

1−θ
Aq,u .

Combining (3.8) and (3.9) leads to

(3.10) ‖A‖A1,v ≤ D‖A‖1−θAq,u‖A‖
θ
B(`2).

Applying the same argument gives

(3.11) ‖B‖A1,v ≤ D‖B‖1−θAq,u‖B‖
θ
B(`2).

Combining (3.7), (3.10) and (3.11) proves that Aq,u is a differential subal-
gebra of B(`2) of order θ ∈ (0, 1). �

4. Commutators for infinite matrices

In this section, we recall commutator estimates for infinite matrices [36,
42], and then we apply them to establish Wiener’s lemma for the Beurling
class B1, particularly the following unweighted version of Theorem 1.6.

Theorem 4.1. The Beurling class B1 is an inverse-closed subalgebra of
B(`p), 1 ≤ p <∞.

Let h be a Lipschitz function such that h(t) = 1 if |t| ≤ 1, h(t) = 0 if
|t| ≥ 2 and 0 ≤ h(t) ≤ 1 for all t ∈ R. For instance, the trapezoidal-shaped
membership function h(t) := min(max(2 − |t|, 0), 1) is such an example.
Given 1 ≤ p ≤ ∞ and A ∈ B(`p), define localization operators ΨN

i and
commutators [ΨN

i , A], i ∈ Z, by

ΨN
i c :=

(
h(n/N − i)c(n)

)
n∈Z

and
[ΨN

i , A]c = ΨN
i Ac−AΨN

i c for c := (c(n))n∈Z ∈ `p,
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where N is a sufficiently large integer.
For 1 ≤ p <∞ and A ∈ B(`p), we say that a matrix A has `p-stability if

0 < inf
‖d‖p=1

‖Ad‖p ≤ sup
‖d‖p=1

‖Ad‖p <∞.

The `p-stability is one of the basic assumptions for matrices arising in the
study of time-frequency analysis and nonuniform sampling etc (see [1, 12,
23, 39, 43, 45] and the references therein). Any matrix A ∈ B(`p) with a
left inverse in B(`p) will have `p-stability. For matrices having `p-stability,
we have the following localization property.

Lemma 4.2. Let 1 ≤ p < ∞. If A ∈ B1 has `p-stability, then there exist
sequences (VN (i))i∈Z, N ≥ 1, such that

(4.1) lim
N→∞

∑
n∈Z

(
sup
|i|≥|n|

VN (i)
)

= 0,

and

(4.2)
(

inf
‖d‖p=1

‖Ad‖p
)
‖ΨN

i c‖p ≤ ‖ΨN
i Ac‖p +

∑
j∈Z

VN (i− j)‖ΨN
j c‖p

for all c ∈ `p, i ∈ Z and N ≥ 1.

Proof. We follow the arguments in [42]. Without loss of generality, we as-
sume that inf‖d‖p=1 ‖Ad‖p = 1. Define the linear operator ΦN on `p, 1 ≤
p <∞, by

ΦNc :=
(
H(n/N)c(n)

)
n∈Z for c := (c(n))n∈Z ∈ `p,

where H(t) =
(∑

i∈Zd(h(t− i))2
)−1

, t ∈ R. Then

(4.3) ‖ΦNc‖p ≤ ‖c‖p for all c := (c(n))n∈Z ∈ `p,

as ΦN is a diagonal matrix with diagonal entries bounded by one.
For all i ∈ Z and c := (c(n))n∈Z ∈ `p, it follows from the `p-stability of

the matrix A that

‖ΨN
i c‖p ≤ ‖AΨN

i c‖p ≤ ‖ΨN
i Ac‖p + ‖(ΨN

i A−AΨN
i )c‖p

≤ ‖ΨN
i Ac‖p +

∑
j∈Zd
‖(ΨN

i A−AΨN
i )ΨN

j ΦNΨN
j c‖p.(4.4)

For commutators [ΨN
i , A] := ΨN

i A−AΨN
i , i ∈ Z, we have that

‖[ΨN
i , A]ΨN

j c‖p

=
{∑
m∈Z

∣∣∣∑
n∈Z

(
h(m/N − i)− h(n/N − i)

)
a(m,n)h(n/N − j)c(n)

∣∣∣p}1/p

≤
(∑
k∈Z

min(‖h′‖∞|k|/N, 1)
(

sup
m−n=k

|a(m,n)|
))
‖c‖p
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if |i− j| ≤ 8, and

‖[ΨN
i , A]ΨN

j c‖p

=
(∑
m∈Z

∣∣∣∑
n∈Z

h(m/N − i)a(m,n)h(n/N − j)c(n)
∣∣∣p)1/p

≤
(∑
m∈Z

∣∣∣ ∑
(|i−j|−4)N<|m−n|<(|i−j|+4)N

|a(m,n)||c(n)|
∣∣∣p)1/p

≤
( ∑

(|i−j|−4)N<|k|<(|i−j|+4)N

(
sup

m−n=k
|a(m,n)|

))
‖c‖p

if |i − j| > 8. The above two estimates for commutators [ΨN
i , A], i ∈ Z,

together with (4.3) and (4.4) prove (4.2) with

VN (i) =

{ ∑
k∈Z min(‖h′‖∞|k|/N, 1)

(
supm−n=k |a(m,n)|

)
if |i| ≤ 8,∑

(|i|−4)N<|k|<(|i|+4)N

(
supm−n=k |a(m,n)|

)
if |i| > 8.

Now it remains to prove (4.1). Recall that ‖h′‖ ≥ 1, we then obtain∑
k∈Z

sup
|i|≥|k|

VN (i) ≤ 17
∑
k∈Z

min(‖h′‖∞|k|/N, 1)
(

sup
|m−n|≥|k|

|a(m,n)|
)

+
∑
|i|≥8

∑
(|i|−4)N<|k|<(|i|+4)N

(
sup

|m−n|≥|k|
|a(m,n)|

)
≤ 17

∑
k∈Z

max(‖h′‖∞|k|/N, 1)
(

sup
|m−n|≥|k|

|a(m,n)|
)

+8
∑
|k|≥4N

(
sup

|m−n|≥|k|
|a(m,n)|

)
→ 0 as N → +∞

by the dominated convergence theorem and the assumption that A ∈ B1. �

The localization technique in Lemma 4.2 could be used to establish equiv-
alence of stability in different sequence spaces [2, 6, 13, 33, 35]. In the fol-
lowing, we apply it to establish Wiener’s lemma for the Beurling class B1
[42].

Proof of Theorem 1.6. Take A ∈ B1 that has an inverse A−1 ∈ B(`p). With-
out loss of generality, we assume that ‖A−1‖B(`p) = 1, otherwise replacing

A by (‖A−1‖B(`p))A. Write A−1 := (c(m,n))m,n∈Z, set cm := (c(n,m))n∈Z,

and define cl0m := (cl0(n,m))n∈Z for l0 ≥ 1 and m ∈ Z, where cl0(n,m) :=
c(n,m) if |m− n| ≤ l0 and 0 otherwise. Then cl0m has finite support and

(4.5) lim
l0→∞

‖cl0m − cm‖p = 0.



WIENER’S LEMMA: LOCALIZATION AND VARIOUS APPROACHES 15

By Lemma 4.2, there exist a positive integer N and a sequence (VN (i))i∈Z
with

(4.6) r0 :=
∑
k∈Z

(
sup
|i|≥|k|

VN (i)
)
<

1

5

such that

(4.7) ‖ΨN
i c‖p ≤ ‖ΨN

i Ac‖p +
∑
j∈Z

VN (i− j)‖ΨN
j c‖p, i ∈ Z,

where c ∈ `p.
Define sequences V l

N := (V l
N (i))i∈Z, l ≥ 1, by{

V l
N (i) := VN (i) if l = 1 and i ∈ Z,
V l
N (i) :=

∑
j∈Z VN (i− j)V l−1

N (j) if l ≥ 2 and i ∈ Z,

and set

εlN :=
∑
k∈Z

sup
|i|≥|k|

|V l
N (i)|.

Inductively for l ≥ 2,

εlN ≤ εl−1N

∑
k∈Z

sup
|i|≥|k|/2

|VN (i)|+ ε1N
∑
k∈Z

sup
|n|≥|k|/2

|V l−1
N (i)| ≤ 5ε1N ε

l−1
N .

This together with (4.1) implies that εlN , l ≥ 1, has exponential decay,

(4.8) εlN ≤ (5r0)
l for all l ≥ 1.

For any i ∈ Z, we get from replacing c in (4.7) by cl0m and then applying
it repeatedly that

‖ΨN
i c

l0
m‖p ≤ ‖ΨN

i Ac
l0
m‖p +

L∑
l=1

∑
j∈Z

V l
N (i− j)‖ΨN

j Ac
l0
m‖p

+
∑
j∈Z

V L+1
N (i− j)‖ΨN

j c
l0
m‖p

→
∑
j∈Z

WN (i− j)‖ΨN
j Ac

l0
m‖p(4.9)

as L→∞, where

WN (k) =

{
1 +

∑∞
l=1 V

l
N (0) if k = 0∑∞

l=1 V
l
N (k) if 0 6= k ∈ Z.

By (4.6) and (4.8),

(4.10)
∑
k∈Z

sup
|n|≥|k|

WN (n) ≤ 1 + (1− 5r0)
−1 <∞.

Taking limit l0 →∞ in (4.9), and then applying (4.5) and (4.10), we get

(4.11) ‖ΨN
i cm‖p ≤

∑
j∈Z

WN (i− j)‖ΨN
j Acm‖p
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for any i,m ∈ Z. Given any n ∈ Z, let i(n) be the unique integer in Z with
i(n)N ≤ n < (i(n) + 1)N . Then it follows from (4.11) that

|c(n,m)| = |cm(n)| ≤ ‖ΨN
i(n)c‖q

≤
∑
j∈Z

WN (i(n)− j)‖ΨN
j Acm‖1

≤
∑
j∈Z

WN (i(n)− j)
∑
k∈Z

h(k/N − j)|Acm(k)|

≤
3∑

l=−3
WN (i(n−m) + l),(4.12)

where the last inequality holds by the definition of the function h and the
sequence cm. Hence the conclusion A−1 ∈ B follows from (4.10) and (4.12).

�

5. Localization preservation under inversion, factorization an
optimization

In the section, we review some recent advances on norm-controlled in-
version; inverse-closed q-Banach subalgebras; localization of matrix factor-
ization, nonlinear mapping and nonlinear optimization; and convergence
preservation for localized iterative algorithms.

5.1. Norm-controlled inversion. We say a Banach subalgebra A of a
unital Banach algebra B admits norm-controlled inversion if there exists a
continuous function h from [0,∞)× [0,∞) to [0,∞) such that

(5.1) ‖A−1‖A ≤ h(‖A‖A, ‖A−1‖B)

for all A ∈ A being invertible in B. Clearly Wiener’s lemma holds for a Ba-
nach subalgebra A admitting norm-controlled inversion, but the converse is
not true. The classical Banach algebra W (and also the Baskakov-Gohberg-
Sjöstrand class C1) is inverse-closed but it does not have norm-controlled
inversion in B(`2) [31].

A differential *-algebra A of a symmetric ∗-algebra B with common iden-
tity and involution would have norm-control inversion [19, 20, 43], while for
the Jaffard class Jα := A∞,wα with polynomial weight wα(t) = (1 + |t|)α, a
polynomial could be used as the function h in (5.1), see [5, 21].

Theorem 5.1. Let α > 1. If A ∈ Jα is invertible in B(`2), then A−1 ∈ Jα
and

‖A−1‖Jα ≤ Cr‖A‖
2r+2+2/(r−1)
Jα ‖A−1‖2r+3+2/(r−1)

B(`2)

for some absolute constant Cr depending on r > 1 only.
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5.2. Wiener’s lemma for q-Banach algebras. Let 0 < q ≤ 1. We say
that a complex vector space A is a q-Banach space if it is complete under
the metric d(x, y) := ‖x − y‖qA, where the q-norm ‖ · ‖A : A → R satisfies
(i) ‖x‖A ≥ 0 for all x ∈ A, and ‖x‖A = 0 if and only if x = 0; (ii) ‖αx‖A =
|α|‖x‖A for all α ∈ C and x ∈ A; and (iii) ‖x+ y‖qA ≤ ‖x‖

q
A + ‖y‖qA for all

x, y ∈ A. We say that a q-Banach space A with q-norm ‖ · ‖A is a q-Banach
algebra if it contains a unit element I, it has operation of multiplications
possessing the usual algebraic properties, and ‖AB‖A ≤ ‖A‖A‖B‖A for all
A,B ∈ A.

Theorem 5.2. [29] Let 0 < q ≤ 1,A be a q-Banach algebra and B be a C∗-
algebra. If A and B be two *-algebras with common identity and involution,
and A is a differential subalgebra of B of order θ ∈ (0, 1], then A is inverse-
closed in B.

For 0 < q ≤ 1, the Gröchenig-Schur class Aq,u is a q-Banach subalgebra
of B(`2) and satisfies

‖AB‖qAq,u ≤ D‖A‖
q
Aq,u‖B‖

q
Aq,u

((‖A‖B(`2)
‖A‖Aq,u

)qθ
+
(‖B‖B(`2)
‖B‖Aq,u

)qθ)
(hence it is inverse-closed in B(`2) by Theorem 5.2) if the weight u is bounded
below and there exists a companion weight v satisfying (3.2), ‖vu−1‖∞ <∞
and

inf
τ>0
‖vχ[−τ,τ ]‖2/(2−q) + t‖vu−1(1− χ[−τ,τ ])‖∞ ≤ Dt(1−θ), t ≥ 1,

for some positive constant D > 0 and θ ∈ (0, 1). For instance, polyno-
mial weights wα := ((1 + |n|)α)n∈Z with α > 0 and subexponential weights
eτ,δ = (exp(τ |n|δ))n∈Z with τ ∈ (0,∞) and δ ∈ (0, 1) satisfy the above
requirements.

For a matrix A = (a(m,n))m,n∈Z, denote by ‖A‖S0 the maximum number
of nonzero entries in all rows and columns of the matrix A, i.e.,

‖A‖S0 = max
{

sup
m∈Z

∥∥(a(m,n))n∈Z
∥∥
`0
, sup
n∈Z

∥∥(a(m,n))m∈Z
∥∥
`0

}
,

where the `0 quasi-norm ‖c‖`0 of a vector c = (c(n))n∈Z is the cardinality of
the set of its nonzero entries. The q-norm measure ‖A‖Aq,u of a matrix A
could be considered as a relaxation of its sparsity measure ‖A‖S0 , since

lim
q→0
‖A‖qAq,u = ‖A‖S0

for a matrix A with ‖A‖∞,u < ∞. Thus matrices in the Gröchenig-Schur
class Aq,u with 0 < q ≤ 1 are numerically sparse and have certain off-
diagonal decay.
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5.3. Localized matrix factorizations. Localized factorizations started
with Wiener’s work on spectral factorization [49] and they have been shown
to greatly reduce computational complexity in lots of numerical algorithms.
Significant progress was made recently in [28], where localized matrices give
rise to LU- Cholesky, QR- and polar factorizations, whose factors inherit
the same localization.

Theorem 5.3. Let A be an invertible matrix in the Baskakov-Gohberg-
Sjöstrand class C1. Then

(i) If A = QR for some unitary matrix Q and upper triangular matrix
R, then Q,R ∈ C1.

(ii) If A = LU for some lower triangular matrix L with its diagonal
entries being all equal to one and some upper triangular matrix U ,
then L,U ∈ C1.

5.4. Wiener’s lemma for strictly monotonic functions. Let H be a
Hilbert space and f be a function on H. We say that f is differentiable on
H if it is differentiable at every x ∈ H, that is, there exists a linear operator,
denoted by f ′(x), in B(H) such that

lim
y→0

‖f(x+ y)− f(x)− f ′(x)y‖
‖y‖

= 0;

and that f is strictly monotonic ([50]) if there exist positive constants m0

and M0 such that

m0‖x− x′‖2 ≤ 〈x− x′, f(x)− f(x′)〉 ≤M0‖x− x′‖2 for all x, x′ ∈ H.

In [43], it is shown that a strictly monotonic function on a Hilbert space
H with its derivative being continuous and bounded in an inverse-closed
subalgebra A of B(H) is invertible and its inverse has the same localization
property.

Theorem 5.4. Let H be a Hilbert space and A be a Banach subalgebra
of B(H) that admits norm control in B(H). If f is a strictly monotonic
function on H such that

sup
x∈H
‖f ′(x)‖A <∞ and lim

y→x
‖f ′(y)− f ′(x)‖A = 0 for all x ∈ H,

then f is invertible and the derivative g′ of its inverse g = f−1 is bounded
and continuous in A.

5.5. Contraction and optimization. Given a Banach space B, a function
f : B → B is said to be a contraction on B if there exists 0 ≤ r0 < 1 such
that

‖f(x)− f(y)‖B ≤ r0‖x− y‖B for all x, y ∈ B.

The classical Banach fixed point theorem states that a contraction f on a
Banach space B has a unique fixed-point x∗ (i.e. f(x∗) = x∗), and the fixed
point x∗ is the limit of xn, n ≥ 0, in the iterative algorithm

(5.2) xn+1 = f(xn), n ≥ 0,
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with an arbitrary initial element x0 ∈ B.
In [43, 44], we developed a fixed point problem for a function f on a Ba-

nach space, whose restriction on its dense Hilbert subspace is a contraction.

Theorem 5.5. Let B be a Banach space, H be a Hilbert space dense in B,
and let A be a Banach subalgebra of both B(B) and B(H) that is a differential
subalgebra of B(H) of order θ ∈ (0, 1]. If f : B → B is differentiable in B
with its derivative being continuous and bounded on A, and there exists a
positive constant r0 ∈ [0, 1) such that

‖f ′(x)‖B(H) ≤ r0 for all x ∈ B,

then the sequence xn, n ≥ 0, in the iterative algorithm (5.2) with arbitrary
initial x0 ∈ B converges exponentially to the unique fixed point x∗ of the
function f on B.

The proof of Theorem 5.5 depends on the following observation for a
differential subalgebra A of Banach algebra B of order θ ∈ (0, 1]: for any
positive constants C0 and r0 there exists a positive constant C for any r1 > r0
such that

(5.3) sup
A1,...,An∈A(C0,r0)

‖A1A2 · · ·An‖A ≤ Crn1 , n ≥ 1,

where A(C0, r0) contains all A ∈ A with ‖A‖A ≤ C0 and ‖A‖B ≤ r0.
We say that a bounded linear operator A on `2 is exponentially stable if

there exist positive constants E and α such that

‖e−At‖B(`2) ≤ Ee−αt, t ≥ 0.

We can use the observation (5.3) to solve the Lyapunov equation and alge-
braic Riccati equation in a q-Banach algebra [29].

Theorem 5.6. Let 0 < q ≤ 1 and A be a q-Banach algebra. Assume that
A is a differential subalgebra of B(`2) of order θ ∈ (0, 1], Q ∈ A is strictly
positive on `2 and A is exponentially stable on `2. Then the unique strictly
positive solution of the Lyapunov equation

AP + PA∗ +Q = 0

belongs to A.
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