RATE OF INNOVATION FOR (NON-)PERIODIC
SIGNALS AND OPTIMAL LOWER STABILITY BOUND
FOR FILTERING

QIYU SUN AND JUN XIAN

ABSTRACT. One of fundamental problems in sampling theory is
to reconstruct (non-)periodic signals from their filtered signals in
a stable way. In this paper, we obtain a universal upper bound
to the rate of innovation for signals in a closed linear space, which
can be stably reconstructed, via the optimal lower stability bound
for filtering on that linear space.

1. INTRODUCTION

Let LP(T),1 < p < o0, be the space of all p-integrable functions
(signals) on the unit circle T with its norm denoted by || - ||zr(r). We
associate h € L*(T) with a convolution operator h on L*(T),

he ()= [ e = nfdy. S e D)

The convolution operator hx is a bounded operator on L*(T) with oper-
ator norm ||| 11(ry and it does not have bounded inverse on L*(T), since
|\h* enllL2emy/ | enllL2(m) = |h(n)] = 0 as n — oo by Riemann-Lebesgue
lemma, where e, (z) = exp(2minz) and h(n) = Jr h(z)en(x)dz,n € Z.
Thus the convolution operator associated with an integrable function
does not have stability on L?(T). Here we say that a linear operator T'
on a Banach space V' is stable if

(1.1) AlFI<ITA < BlIfII for all feV

[1, 21, 23]. The numbers A, B in (1.1) are lower and upper stability
bounds of the operator 7" on V. The optimal lower (upper) stability
bound are the supremum (infimum) over all lower (upper) bounds.
The instability for the convolution operator h* leads to the obser-
vation that not all periodic functions f € L*(T) can be reconstructed
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from their convolutions h * f in a stable way [19, 20], even though
the convolution h* could be one-to-one on L?*(T) and its range space
could be dense in L*(T). In signal processing, stable reconstruction is
always required, while on the other hand signals have a priori informa-
tion, such as piecewise trigonometric polynomials. This motivates us
to finding closed linear subspaces V' of L?(T) such that signals f living
in those spaces can be reconstructed from their convolutions h * f in a
stable way.

Let us take a look at a toy linear subspace V of L?(T): the band-
limited subspace Py of L?*(T) that contains all trigonometric poly-
nomials of degree at most N > 1. One may verify that a convolu-
tion operator h* has stability on the closed subspace Py C L*(T) if

min, <y |h(n)| > 0. Moreover,

1.2 in |h 2y < ||h* fllzzr) < h 2
(1.2) (ﬁ;l}vl DIfllz2y < 17 * fllzam < (fg‘lgﬁ ()1 Nz
for all f € Py C L?*(T), and the optimal lower and upper stability
bounds of the convolution operator hx are given by min, <y |h(n)| and

MAaX|p,|<N |h(n)| < |2 || 1 (ry respectively. Observe that if the function h
is Holder continuous, i.e.,

(1.3) 1h(-+y) — h()|lpee(my < Coly|® for all y € T
where Cy € (0,00) and « € (0, 1], then
P 1T o\—
(1.4) |h(n) 2‘ / T+ %)>en(m)dx‘ < Co27 1|

for all 0 # n € Z. Combining (1.2) and (1.4) leads to the existence of
an absolute constant C', depending on the function h only, such that

1R fllL2emy\~

1/a
(1.5) dim(Py) < C< inf ) for all N > 1.

o£febn || f|lr2(m)
Here dim V' denotes the dimension of a linear space V.

A time signal is said to have finite rate of innovation (FRI) if it has
finitely many degrees of freedoms per unit of time [33]. Prototypical
examples of FRI signals include slow varying signals with shot noise,
very narrow pulses in ultrawide band communication, electrocardio-
gram signals, bump algebra model of spectra, and sparse signals. They
also include familiar band-limited signals in Shannon sampling theo-
rem, time signals in wavelet spaces, time-frequency signals in Gabor
theory, and signals in reproducing kernel spaces used in the investiga-
tion of heart diseases, mass spectrum used to discover disease-related
proteomic patterns etc [8, 14, 16, 17, 25, 27, 28, 33].
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We observe that signals in Py have finite rate of innovation and

their rate of innovation R(Py) := dilllﬁjN are (2N + 1), as any signal

flx) =30 e(n)en(r) € Py is completely determined by (2N 4 1)
parameters ¢(n), —N < n < N. We then conclude from (1.5) that
the rate of innovation for signals living in a bandlimited subspace of
L?(T) could be estimated by the optimal lower stability bound of the
convolution operator hx on that bandlimited space. In this paper,
we extend the above exciting estimate to the rate of innovation for
bandlimited signals to periodic signals living in arbitrary closed linear
subspaces V of LP(T),1 < p < oc.

Theorem 1.1. Let 1 < p < oo, and let h be a periodic function that
satisfies the Hélder condition (1.3) for some exponent o € (0,1]. Then
there exists a positive constant C', depending on h and p only, such that

R(V) := —dimV (m _Hh*fHLP(T))_l/a
IT| = Nozrev || fllzecn)

for all closed linear subspaces V' of LP(T).

By Theorem 1.1, the convolution operator hx associated with a
Holder continuous periodic function h is not stable on any infinite-
dimensional linear subspace of LP(T),1 < p < oo. The conclusion in
Theorem 1.1 also provides a necessary condition for periodic signals f
with their energy above § to be observable from their filtered signals
h % f at the noisy level e. The condition is that the rate of innovation
for those periodic signals should not exceed C(§/¢)'/® for some positive
constant C.

Next let us consider estimating rates of innovation for non-periodic
signals in a closed linear subspace of LP(R),1 < p < oo. Here L?(R) is
the space of all p-integrable functions on the real line R with its norm

denoted by || - ||Lrr). We start from considering another toy example:
Spi={ 3 clkyxon (@ k)| Sle(b)]? < o} € L2(R)
kez K

where T' > 1 and y g denotes the characteristic function on a set £. The
rate of innovation R, ;(Sr) for signals in Sy during the time range [a, b)
is [bT'] — |aT'|], as the restriction of such a signal f on that time range is
completely determined by their evaluations f(k/T),Ta —1 < k < Tb.
Here |¢] is the integral part of a real number ¢ and [¢t| = —|—t|. Thus
the rate of innovation R(Sr) for signals living in Sy is

(1.6) R(S7) :=limsup Ras(S1) =T.

b—a—o0 b—a
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For a signal f € Sy with T" > 1 and a Holder continuous function h
with compact support,

(1.7) |81|1p [y~ | (- + y) — h(:)|| L) < oo for some o € (0, 1],
y|<1

one may verify that

(1.8)

[P fll2 et —1

24 1/2
TR Lt [N ’h <or
otfesr ||f]l2 ?éR(Z E+B) e m )" =

for some positive constant C' independent on 7" > 1. Here the Fourier
transform h of an integrable function h on the real line is defined by

§) = [ge ™ h(x)dx. Therefore for a compactly supported function
h satisfying the Holder condition (1.7), we obtain from (1.6) and (1.8)
that the rate of innovation for non-periodic signals in Sy could be also
estimated by the lower stability bound of the convolution operator hx
on that space,

(1.9) R(ST)§C’< inf Mf

forall T > 1,
o£fest || fllram)

where C' is an absolute constant independent of 7" > 1.

Let 1 < p < oo and V be a locally-finite-dimensional linear subspace
of LP(R) [4], and for a set E, denote by V|g the set of all restrictions
of functions in V' onto E. We define the rate of innovation R(V') for
signals living in V' by

R(V) = limsup dlm—vhab)
b—a—00 b—a

There are several definitions for the rate of innovation. The above
definition R(V') is known in [33] as average rate of innovation for signals
in V. We say that V has limited edge effects if for any time range [a, b)
and any function f € V there exists a function g € V supported in
[a — eg, b+ eg) such that their restrictions on [a, b) are identical, where
the size eg of edge effective regions is independent of f € V and time
range [a,b). We remark that Sp,7 > 1, have limited edge effects,
while the Paley-Wiener space of band-limited functions does not, see
Remark 2.1. In this paper, we extend the estimate (1.9) to signals
in locally-finite-dimensional linear subspaces V' of LP(R) with limited
edge effects, and then provide a necessary condition on non-periodic
signals f in a closed space V' that could be stably recovered from their
filtered signals h * f.
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Theorem 1.2. Let 1 < p < oo and let h be a compactly supported
function satisfying the Hélder condition (1.7) for some o € (0,1]. Then
there exists a positive constant C', depending on h and p only, such that

h D —1/a
o£fev || fllem)

for all closed locally-finite-dimensional linear subspaces V' of LP(R) with
limited edge effects.

The paper is organized as follows. In Section 2, we first recall the
concept of spaces of homogenous type. An advantage of working with
them is that they contain lots of our familiar spaces, such as the unit
circle T (or general compact Riemannian manifolds with respect to geo-
desic metric), the real line (or high-dimensional Euclidean spaces with
isotropic or anisotropic metrics), and the Cantor set (or self-similar
fractals with Hausdorff measure) [11, 12, 15, 27, 30]. Then in that
section we state our main theorems (Theorems 2.2 and 2.4) of this pa-
per, which are generalizations of Theorems 1.1 and 1.2. In our main
theorem, we provide universal estimates to the rate of innovation for
signals living in closed linear spaces via the lower stability bounds of
some time-varying filters (integral operators) on those spaces. In Sec-
tion 3, we include the proofs of Theorems 2.2 and 2.4.

In this paper, #E denotes the cardinality of a set F; (7 := (P(A),1 <
p < oo, is the space of all p-summable vectors (¢(A))yea with norm

denoted by || - ||y or || - ||, for brevity; and the capital letter C'is an
absolute constant which could be different at different occurrences.

2. PRELIMINARIES AND MAIN RESULTS

Given a set X, a quasi-metric p on X is a function p : X x X ——
[0, 00) with the properties that

(i) »

(ii) p

(i) p

(z,y) = 0 if and only if = = y;

(z,y) = p(y,x) for all z,y € X; and

(x,y) < L(p(z,z) + p(z,y)) for all z,y,z € X, where L > 1
is a positive constant.

The quasi-metric space (X, p) associated with a set X and a quasi-
metric p on X is a topological space in which the family of balls

B(z,r):={ye X | p(x,y) <r}, ze€X, r>0,

forms a basis. Now we recall the definition of spaces of homogeneous
type [11, 12].
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Definition 2.1. A space of homogenous type, to be denoted by (X, p, i),
is a quasi-metric space (X, p) with a non-negative Borel measure p that
satisfies the following two conditions:

(i) the doubling condition

(2.1) w(B(x,2r)) < Dyu(B(x,r)) for all x € X and r > 0;
and
(i) the uniform boundedness property
(2.2) Dy < u(B(x,1)) < D3 forall z € X,

where Dy, Dy, D3 are positive constants.

By (2.1) and (2.2), there exist positive constants Dy (r) and D3(r), r >
0, such that
(2.3) Dy(r) < in)f(u(B(:c,r)) <sup u(B(z,r)) < Ds(r).
ze zeX

A measure p on a quasi-metric space (X, p) is said to be Ahlfors d-
reqular for some d > 0 if there exist two positive constants A and B
such that

Art® < pu(B(z,r)) < Br® forall z € X and 0 < r < diam(X),

where diam(X) denotes the diameter of the space (X, p, 1) of homo-
geneous type. The reader may refer to [15, 30] and references therein
for Ahlfors regular measure and its applications to Poincaré inequality
and quasi-conformal geometry.

Let 1 < p < oo and (X, p, ) be a space of homogeneous type.
Denote by LP(X, p, i), or LP for brevity, the space of all p-integrable
functions on (X, p, 1) with standard norm || - ||,. Given a measurable
kernel function K on X x X, define

IK s := max (sup 1K (e, )lls, sup K )ll).
zeX yeX

and its modulus of continuity ws(K) by
ws(K)(z,y) = sup K (2,y) = K(z,y)|.
p(a',x)<6, p(y'y)<é

We associate a kernel function K on X x X with an integral operator
T on LP;1 < p < 0o, which is defined by

Tf(z) = /X K(e.9)f(y)duly), | e IP.

For an integral operator 7" with its kernel K satisfying ||K||s < oo,
applying Holder inequality gives

(2.4) ITfllp < IKlsl[fll, for all fe LP.
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Given a closed linear subspace V' of L” and bounded operators 11, ..., Ty,
on LP,1 <p < oo, wesay that T, ..., Ty are stable on V if

inf ZHngIIp _sup ZI|ng||p<OO

ev, 1
g lgllp= Villglls=1,,=1

Theorem 2.2. Let 1 < p < o0, (X, p, 1) be a space of homogeneous
type with diamX < oo and p being Ahlfors d-reqular for some d >
0, and let Ty,..., Ty be integral operators with kernels Ky, ..., Ky
satisfying

(2.5) | Kmlls < Co

and

(2.6) Jws(Km)lls < Cod®

for all 0 < 6 < diamX and 1 < m < M, where Cy € (0,00) and
a € (0,d] are positive constants. If Ty,..., Ty are stable on a closed

linear subspace V- C LP(X, p, ), then

2n  Rw) = o Zungu) "

9€Villglly=

where C' is an absolute constant independent on the space V and the
volume p(X).

Applying Theorem 2.2 to the unit circle T with Euclidean distance
and Lebesgue measure, we have the following corollary about estimat-
ing the rate of innovation for periodic signals via the lower stability
bound of a time-varying filtering procedure.

Corollary 2.3. Let 1 < p < 00, and let T be an integral operator with
kernel K satisfying

|K(z,y)| < Cy and |K(2',y") — K(z,y)| < Co(lz —2'|* + |y — y'|*)

for all z, 2’ y,y € T, where Cy € (0,00) and o € (0,1] are positive
constants. Then there exists an absolute constant C, depending on T
and p only, such that

dim V' . -1/«
rv)="TZL <o it Tglm)

|T| g€Villgllpp(my=1
hold for all stable closed linear subspaces V- C LP(T).

Theorem 1.1 follows from Corollary 2.3 with the kernel (time-varying
filter) K (x,y) replaced by (time-invariant filter) h(z — y).
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Now let us consider spaces (X, p, 1) of homogeneous type with infi-
nite diameter (i.e., diamX = 00), and a locally-finite-dimensional linear
subspace V of LP(X,p,u),1 < p < oco. We define rate of innovation
R(V) for signals living in V' by
dim V|B(z )

2.8 R(V) = limsup sup —————2~.
29 V)= s S8 = Blao. )

We say that V' has limited edge effects if for any ball B(zg,r) and any
function f € V there exists a function g € V supported in B(zg, 7 +
ep) such that their restrictions on B(zg,r) are identical, where ¢; is
independent of balls B(zg,r) and functions f € V| see Remark 2.1.

Theorem 2.4. Let 1 < p < oo, (X, p, ) be a space of homogeneous
type with diamX = oo and p being Ahlfors d-reqular for some d >
0, and let Ty,..., Ty be integral operators with kernels Ky, ..., Ky
satisfying

(2.9) Kp(x,y) =0 for all z,y € X with p(z,y) > Ry,

(2.10) | K (z,y)] < Cp for all 2,y € X,

and

(2.11) | K (2,y) — Kn(2,9/)] < Ci(p(z, 2') + p(y, y')

for all z, 2’ y,y € X and 1 < m < M, where Ry,Cy € (0,00) and
a € (0,d] are positive constants. If Ty,..., Ty are stable on a closed

locally-finite-dimensional linear subspace V- C LP(X, p, u) with limited
edge effects, then there exists an absolute constant C', independent on
the space V', such that

g€Villgllp=1

(2.12) R(V)gc( inf Z||ng||p>d/a.

Theorem 1.2 follows from Theorem 2.4 with the space of homo-
geneous type replaced by the real line with Euclidean distance and
Lebesgue measure, and integral operators by the convolution operator
hx.

Let A := {\;}2 . satisfy

1=—00

and let Sy y C L*(R), N > 1, be the space of all non-uniform splines
of order N having N — 1 continuity at each knot \; € A [3, 22, 26,
29, 32]. One may verify that the rate of innovation R(Sx ) for spline
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signals in Sp n is the same as the Beurling upper density DT (A) :=
lim supy_,_, w of the set A, i.e.,

R(San) = D" (A).

This, together with Theorem 2.4, leads to the following corollary about
the Beurling upper density.

Corollary 2.5. Let 1 < p < oo, N > 1, and let h be a compactly
supported function satisfying the Hélder condition (1.7) for some a €
(0,1]. Then there exists a positive constant C, depending on h,p and
N only, such that

. —1/a
D*(A) < (J( inf 17 *glle(R))

9ESA, N9l Lry=1

for all sets A = {\;}32__ satisfying (2.13).

1=—00
We finish this section with a remark on limited edge effects.

Remark 2.1. The Paley-Wiener spaces
By, ={f e L*R): f(&)=0forall £ &[—0,0]}, 0 >0,

are not locally-finite-dimensional, and they do not have limited edge
effects. But there are a lot of linear spaces with limited edge effects for
time signals with finite rate of innovation to reside. Here are a few of
them:

(1) The shift-invariant space

Vot o) = { 30 enlB)pm(- = k) (em(k)aes € E(Z)}

m=1 k€eZ

generated by compactly supported functions ¢y, ..., € LP(R)
2, 5, 6, 10, 26, 31].
(2) The space

V(®,A) = {ZC(A)@(. ~\):ce ep(A)}
AEA
containing all superpositions of impulse response ¢, of the sig-
nal generating device at the location A\, A € A, via coefficients
in (P(A), where A is a discrete subset of R with » .\ Xat[0,1) €
L>®(R) and ¢, A € A, are supported in a compact set K and
have bounded LP(R) norm [7, 8, 13, 17, 24, 25, 27, 28].
(3) The range space

V,={Tf: fel’R)}
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of an idempotent integral operator T,

/ny y)dy, € LP(R),

with kernel K being bounded and supported in a fixed compact
neighborhood of the diagonal, i.e., (2.9) and (2.10) hold, [9, 18].

3. PROOFS

We recall finite covering and partition of the unity on a space of
homogenous type in the first subsection, we present a technical lemma
in the second subsection, and we provide the proofs of Theorems 2.2
and 2.4 in last two subsections.

3.1. Finite covering and partition of the unity. Let (X, p, 1) be
a space of homogeneous type, and let L > 1 be the constant in the
definition of the quasi-metric p. For any § > 0, define

H; :={B(z,§/(2L)) : z € X}
and let
(3.1) Gs :={B(z;,6/(2L)) : x; € X5} C H;
be a maximal disjoint subcollection of Hy, i.e.,
(3.2) B(x;,0/(2L)) N B(xy,0/(2L)) =0 for all a; # x4,
and
(3.3)  B(z,6/(2L)) N (Upex, B(xi,6/(2L))) #0  for all z € X.

For a discrete subset I' of a space (X, p, u) of homogeneous type, we

define
= mf Z XB(v,0)(
'yGF
and
= sup X 5
ZGX Z Blr.

For any x € X, there exists z; € X5 by (3.3) such that B(x,d/(2L)) N
B(x;,6/(2L)) # 0. Therefore p(x,x;) < L(p(x,2) + p(2,1;)) < § where
z € B(x,0/(2L)) N B(x;,0/(2L)). This proves that {B(x;,0)}s,ex; is a
covering of the set X, i.e.,

X C szexéB(xZ,(S)
For any z;,z; € X5 N B(z,0) and z € B(x;,d/(2L)),
p(z,2:) < L2p(2,25) + LPp(xj, x) + Lp(x, x;) < (L* + 3L/2)8,
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which implies that
Up(a, e)<s.0;ex, B(25,0/(2L)) C By, (L* + 3L/2)0)

for all € X, where x; € Xj satisfies p(z;, z) < . Hence

U ()< 8. B(x;,0/(2L
L < Ax(0) < By, (0) < M Dtmmstinexs By, 0/CL)
lnfp(a:j,x)<5,mj€X5 M(B(:L'j? 5/(2[’)))
(T2
(34) S Sup M(B(xja (L + 3L/2)6>) S Dflog2L+4
plxj,x)<0,x;€Xs M(B<x]7 5/(2[’)))

(and {B(x;,0)}z,ex; is a finite covering of the set X'), where D is the
constant in (2.1) for the doubling measure p.

We may associate a finite covering {B(7, d) },er of the set X with a
family U := {h, }er of functions on X,

< 00

XB(v,5) (96)

(3.5) h(z) := S s (@)

, velL,

that forms a partition of the unity,

0<hy,(r)<1l forallz € X and y €T,
(3.6) h ( ) =0if z € B(7,9), and
rhy(z)=1 forallze X.
Moreover,
Ds(9) D3(9)
3.7 < |lh,]|1 < forally eI
by (2.3).

3.2. A technical lemma. To prove Theorems 2.2 and 2.4, we need a
technical lemma.

Lemma 3.1. Let 1 < p < oo, (X, p,u) be a space of homogeneous
type, and let Ty, ..., Ty be integral operators with kernels Ky, ..., Ky
satisfying

(3.8) | Kmlls < oo, 1<m< M.
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Then for any closed linear subspace V' of LP(X, p, ) and any discrete
set T with 1 < Ar(do) < Br(dg) < 0o for some oy > 0, we have that

<3282;)1/ <geV||g,, 1 Z | Tmgllp — Z [Jws, (£ HS) £l
S B[‘ 50 1/p
< S lEren). ol < (5i)

(3.9) x( sup ZnngHﬁZuw% wlls) 1l for all f € V.

9€Villglp=1,,

Proof. Let 69 > 0 and I' be a discrete subset of X with

Associated with the finite covering {B(7, do)}er, the family {h.}.er
of functions in (3.5) forms a partition of the unity (3.6) and satisfies
(3.7). For 1 <m < M,

(3.11) [lwso (Ton ) lp < Nlwso (Kom) ls[|.fllp ~ for all f € L7,

by (2.4), and
(3.12)
|Tonf (2) = Tonf (V)] < wso (T f)(x) for all x € B(vy, dp) and v € T,

by the definition of the modulus of continuity.

The conclusion (3.9) for p = oo follows directly from (3.10), (3.11)
and (3.12).

Now we consider 1 < p < co. We obtain from (3.6), (3.7), (3.11)
and (3.12) that

mi (T f ety < (%)“pmﬁ (% T f P l1)
< (Bsy) 2 1||rTmf|+w50< 7,7,
< (ﬁzéggg)””(é mfup+2uwao Wlslfl)
< () (s o ;Hngll +2Hw60 SISTIE
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and
Ar(dp)
(%%Q wﬁ@(iﬂ%ﬂ)mu
Ar(dp)
< (5 (;wmmg
< (AN S (S g Pi) 3 e T
~ \Ds3(do) ———— " ot oI
M M
g}jwmf)ﬂﬂ+( )(Ejmu%mwmp
m=1 m=1
for all f € V. This proves (3.9) for 1 < p < oo and completes the
proof. O

We finish this subsection with a remark on the stability of integral
operators.

Remark 3.1. Bounded operators 17, ..., Ty on L are said to be stable
samplers on V' C L* for sampling sets having small gap if there exists
a sufficiently small positive number dy such that

(3.13)

gevlllr;ﬁ =1 Z H Tug(y weer = sub Z ” Tng(y 761“”

9€Villgllp=1,,

for any sampling set T" with sampling gap d € (0, (50) (ie., 1 < Ap(0) <
Br(6) < o0). By Lemma 3.1, integral operators 11, . .., Tjs with kernels
K,,,1 <m < M, satisfying

| Kmlls < oo and (lsir% lws(Kw)|ls =0, 1<m<M
ﬁ
are stable samplers on V' for sampling sets having small gap. Following

the argument in [5], we can show that the converse is also true if kernels
K,,,1 <m < M, satisfy

[l < 00 and T lws(Kp) v =0, 1 <m < M
—>

and the measure p is Ahlfors d-regular for some d > 0. Here for a kernel
function K on X x X, its Wiener amalgam norm || K ||,y is defined by

IK || :=max (sup || sup |K(z,2)[||,, sup|| sup |K(z,9)],)-
zeX  zeB(-1) yeX  zeB(-1)

This generalizes the equivalence between stability on V' and stable sam-
plers on V for sampling sets with sufficiently small gap in [5, 18], where
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the linear space V' is assumed to be a finitely-generated shift-invariant
space and a reproducing kernel subspace of LP(R?) respectively.

3.3. Proof of Theorem 2.2. Without loss of generality, we assume
that T3, ...,Ty are stable on V' C LP. Let §y be so chosen that

(3.14) CoMds = = inf ZHng|yp>o

2 geviglly=

where Cj is the constant in (2.5) and (2.6). Then 6y € (0,1) by (2.4),
(2.5) and the stability assumption for integral operators Ti,...,T.
Let X5, be as in (3.1) with 6 = dy, and set I' = Xj,. Then 1 <
Ar(dp) < Br(dy) < Di’logz I+4 1y (3.4). This, together with the Ahlfors
d-regularity of the measure p, implies that

AGHT < S n(Bn0) < [ 3 ot @)

~yer vyerl
(3.15) < Br(So)u(X) < D),

where A is a lower bound for the Ahlfors d-regular measure u. By
(2.6), (3.14) and Lemma 3.1,

M Ar(Sy) p M
STt el > 5(5r5y) ettt 3 [Tnsle) 151 > 0
m=1 ’ P m=1

for all 0 # f € V. Then
(3.16) dimV < M#T.

Combining (3.14), (3.15) and (3.16) proves (2.7). This completes the
proof.

3.4. Proof of Theorem 2.4. Without loss of generality, we assume
that Ti,..., Ty, are stable on V. Take zo € X and r > 0. Find a
basis f;,1 < i < N, for the linear space V|p(s,,, which contains all
restrictions of functlons in V on B(zp,r). By the limited edge effect

assumption, there exist fl, e fN € V such that the restriction of fz
coincides with f; for every i € {1 2,...,N}, and

(3.17) fi,..., fx € V are supported on B(zg,r + €p).

Let W (xzo,7) be the linear space spanned by fl, e fN. Due to the
linear independence for the restrictions of fi,..., fxy on B(xg,r),
(3.18) dim W (zo,r) = dim V| p(zg,r)-

By (2.9), (2.10) and (2.11), we have that
lws(Kp)(x,y)| < C1(20)* for all z,y € X,
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and
ws(Kp)(z,y) =0 for all 2,y € X with p(z,y) > L*Ry + (L + 1)6.

This, together with the Ahlfors d-regularity of the measure p, implies
that

(3.19) Z |ws(K)lls < BMCy(L*Ry + (L 4 1)8)4(26)~.
Let g € (0, 1) be so chosen that

M
1
3.20) BMOC,(L?Ry+ L + 1)%(26,)* = =  inf Tll, > 0.
(3.20) 1(L* Ry )*(260) 5 v El 1 Tng |l

The existence of such a number 6y € (0,1) follows as T},...,Ty are
stable on V', and

| Trmgll, < BO1(Ro)%|gll, forallgeV

by (2.4). Let Xs, be as in (3.1) with § = 6y < 1. Applying Lemma 3.1
and using (3.19) and (3.20), we obtain
(3.21)

al 1/ Ar(So)\ VP, al
2 T () hexals 2 5 (5r0) (gev;lgﬁp1;HngHp)upr

for all f € W(xg,r) C V. From the support assumption (2.9) for
kernels K,,,1 < m < M, and the support property (3.17) for functions
f € W(xg,r), it follows that

(3.22) Twf(y) =0 for all p(y,x9) > L(r + Ro + eg).
Combining (3.21) and (3.22) leads to

ZH Tonf (7))reXsynBlan i+ Roteo) lp > 0 for all 0% f € W(ao,7),

Whlch, in turn, implies that
(3.23) dim W(zg, 1) < M#Ly, 0,

where I', , = X5, N B(xo, L(r + Ry + ¢p)). Following the argument in
(3.15), we obtain that
Z XB('y 50 ( )

'YEFI r
Br (o) p(B(wo, L*(r + Ro + eq) + L))
BDY® 2" (L2 4 Ry + e) + L)%

ASTHT 4

IA

L($0,L2(T+Ro+eo)+L50

IA A

(3.24)
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Combining (2.8), (3.18), (3.23) and (3.24), we have that
dim V’B(:vo,r) dim W(ZL‘(), T)

R(V) = limsup sup = lim sup sup

r—oo  xgeX M(B(%o,?”)) r—oo  roeX M(B(ffoﬂ“))
: H#L w0
< Mlimsup sup ———>—
r—oo xgeX ,U(B(ZL'Q,T))
MBD310g2 L+4 L2 I d
< — _  limsup sup (L2(r+ Ro + o) + L)

A(S(C)l r—oo  xeeX :U/(B(Imr))
< MBA2DPlos b5 d,

This together with (3.20) proves (2.12), and hence completes the proof
of Theorem 2.4.
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