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Abstract. A spatial signal is defined by its evaluations on the whole
domain. In this paper, we consider stable reconstruction of real-valued
signals with finite rate of innovations (FRI), up to a sign, from their mag-
nitude measurements on the whole domain or their phaseless samples on
a discrete subset. FRI signals appear in many engineering applications
such as magnetic resonance spectrum, ultra wide-band communication
and electrocardiogram. For an FRI signal, we introduce an undirected
graph to describe its topological structure. We establish the equivalence
between the graph connectivity and phase retrievability of FRI signals,
and we apply the graph connected component decomposition to find all
FRI signals that have the same magnitude measurements as the original
FRI signal has. We construct discrete sets with finite density explicitly
so that magnitude measurements of FRI signals on the whole domain
are determined by their samples taken on those discrete subsets. In
this paper, we also propose a stable algorithm with linear complexity
to reconstruct FRI signals from their phaseless samples on the above
phaseless sampling set. The proposed algorithm is demonstrated theo-
retically and numerically to provide a suboptimal approximation to the
original FRI signal in magnitude measurements.

1. Introduction

A spatial signal f on a domain D is defined by its evaluations f(x), x ∈ D.
In this paper, we consider the problem whether and how a real-valued signal
f can be reconstructed, up to a global sign, from magnitude information
|f(x)|, x ∈ D, or from its phaseless samples |f(γ)|, γ ∈ Γ, taken on a discrete
set Γ ⊂ D in a stable way. The above problem has been discussed for
bandlimited signals [39] and wavelet signals residing in a principal shift-
invariant space [13, 14, 38]. It is a nonlinear ill-posed problem which can be
solved only if we have some extra information about the signal f . In this
paper, we always assume that the signal f has a parametric representation,

(1.1) f(x) =
∑
λ∈Λ

cλφλ(x), x ∈ D,
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where c = (cλ)λ∈Λ is an unknown real-valued parameter vector, Λ ⊂ D is a
discrete set with finite density, and Φ = (φλ)λ∈Λ is a vector of nonzero basis
signals φλ, λ ∈ Λ, essentially supported in a neighborhood of the innovative
position λ ∈ Λ. Those signals appear in many engineering applications such
as magnetic resonance spectrum, ultra wide-band communication and elec-
trocardiogram. Our representing signals of the form (1.1) are bandlimited
signals, signals in a shift-invariant space and spline signals on triangulations.
Following the terminology in [41], signals of the form (1.1) have finite rate
of innovations (FRI) and their rate of innovations is the density of the set
Λ [16, 17, 35, 41].

Given a signal f with the parametric representation (1.1), letMf contain
all signals g of the form (1.1) such that

(1.2) |g(x)| = |f(x)|, x ∈ D.

As −f and f have the same magnitude measurements on the whole domain,
we have thatMf ⊃ {±f}. A natural question is whether the above inclusion
is an equality.

Question 1.1. Can we characterize all signals f of the form (1.1) so that
Mf = {±f}?

An equivalent statement to the above question is whether a signal f is de-
termined, up to a sign, from the magnitude information |f(x)|, x ∈ D. The
above question is an infinite-dimensional phase retrieval problem, which has
been discussed for bandlimited signals [39], wavelet signals in a principal
shift-invariant space [13, 14, 38], and spatial signals in a linear space [13].
The reader may refer to [1, 2, 8, 20, 27, 28, 33] for historical remarks and
additional references on phase retrieval in an infinite-dimensional linear s-
pace. In Section 3, we introduce an undirected graph Gf for a signal f of
the form (1.1), and we provide an answer to Question 1.1 by showing that
Mf = {±f} if and only if Gf is connected, see Theorem 3.2.

For a signal f with a parametric representation (1.1), the graph Gf is not
necessarily to be connected. This leads to our next question.

Question 1.2. Can we find the set Mf for any signal f of the form (1.1)?

For a signal f of the form (1.1), we can decompose its graph Gf uniquely
to a union of connected components Gi, i ∈ I,

(1.3) Gf = ∪i∈IGi.

Then we can construct signals fi, i ∈ I, of the form (1.1) with Gfi = Gi, i ∈ I,
such that

(1.4) fifi′ = 0 for all distinct i, i′ ∈ I,

(1.5) Mfi = {±fi}, i ∈ I,
2



Figure 1. Plotted on the left is a non-uniform cubic spline
signal, while on the right is a piecewise affine signal on a
triangulation. They both have four “islands” in the decom-
position (1.4), (1.5) and (1.6).

and

(1.6) f =
∑
i∈I

fi,

see Theorem 4.3. Due to the mutually disjoint support property (1.4) for
signals fi, i ∈ I, and the connectivity for the graphs Gfi , i ∈ I, we can
interprete the above adaptive decomposition as that landscape of the original
signal f is composed by islands of signals fi, i ∈ I, see Figure 1 and also
[1, 20] for bandlimited signals.

By (1.4) and (1.6), we have

Mf ⊃
{∑
i∈I

δifi, δi ∈ {−1, 1}, i ∈ I
}
.

In Section 4, we provide an answer to Question 1.2 by showing in Theorem
4.1 that the above inclusion is in fact an equality for any signal f of the form
(1.1). Therefore landscapes of signals g ∈Mf are combination of islands of
the original signal f and their reflections.

Let f be a signal of the form (1.1). To consider phaseless sampling and
reconstruction on a discrete set Γ ⊂ D, we let Mf,Γ contain all signals g of
the form (1.1) such that

(1.7) |g(γ)| = |f(γ)|, γ ∈ Γ,

and NΓ contain all signals h of the form (1.1) such that

(1.8) h(γ) = 0, γ ∈ Γ.

By (1.2), (1.7) and (1.8), we have

(1.9) Mf =Mf,D, ND = {0},
and

(1.10) Mf +NΓ ⊂Mf,Γ for all Γ ⊂ D.
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This leads to the third question.

Question 1.3. Can we find all discrete sets Γ such that Mf,Γ = Mf for
all signals f of the form (1.1)?

By (1.10), a necessary condition for the equality Mf,Γ = Mf to hold
for some signal f of the form (1.1) is that NΓ = {0}, which means that all
signals of the form (1.1) are determined from their samples taken on Γ. The
reader may refer to [17, 34, 37, 41] and references therein for stable sampling
and reconstruction of FRI signals.

In Section 5, we show the existence of a discrete set Γ with finite density
such that Mf,Γ = Mf for all signals f of the form (1.1). In Theorem 5.2,
we construct such a discrete set Γ explicitly under the assumption that the
linear space for signals of the form (1.1) to reside in has local complement
property on a family of open sets. The local complement property, see
Definition 3.1, is introduced in [14] and it is closely related to the complement
property for ideal sampling functionals in [13] and the complement property
for frames in Hilbert/Banach spaces [2, 4, 6, 8]. The local complement
property on a bounded open set can be characterized by phase retrievable
frames associated with the generator Φ and the sampling set Γ on a finite-
dimensional space, see Proposition 5.4. The reader may refer to [3, 4, 9,
10, 11, 18, 21, 23, 31, 43] and references therein for historical remarks and
recent advances on finite-dimensional phase retrievable frames.

An equivalent statement to the equality Mf,Γ = Mf is that magnitude
measurements |f(x)|, x ∈ D, on the whole domain D are determined by
their samples |f(γ)|, γ ∈ Γ, taken on a discrete set Γ. In practical applica-
tions, phaseless samples are usually corrupted by some bounded determin-
istic/random noises η(γ), γ ∈ Γ, and the available noisy phaseless samples
are

zη(γ) = |f(γ)|+ η(γ), γ ∈ Γ.

Set η = (η(γ))γ∈Γ and zη = (zη(γ))γ∈Γ. This leads to the fourth question to
be discussed in this paper.

Question 1.4. Can we find an algorithm ∆ such that the reconstructed
signal gη = ∆(zη) is an approximation to the original signal f in magnitude
measurements?

In Section 6, we propose an algorithm with linear complexity, which pro-
vides an answer to Question 1.4. Under the assumption that the generator
Φ is well localized and uniformly bounded, we show in Theorem 6.2 that the
original signal f and the reconstructed signal gη are well approximated by
some signals fη and hη of the form (1.1) that have the same magnitude mea-
surements on the domain D. Therefore the reconstructed signal gη provides
a suboptimal approximation to the original signal f in magnitude measure-
ments, i.e., there exists an absolute constant C independent on the original
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signal f and the noise η such that

(1.11) sup
x∈D

∣∣|gη(x)| − |f(x)|
∣∣ ≤ C sup

γ∈Γ
|η(γ)|.

As an application of the above estimate, we conclude that the phaseless
sampling operator S : f 7−→ (|f(γ)|)γ∈Γ is bi-Lipschitz in magnitude mea-
surements, see Corollary 6.3.

The paper is organized as follows. In Section 2, we present some pre-
liminaries on the linear space V (Φ) for signals of the form (1.1) to reside
in. In Section 3, we introduce a graph structure for any signal in V (Φ)
and use its connectivity to provide an answer to Question 1.1. In Section
4, we introduce a landscape decomposition for a signal f ∈ V (Φ) and use
it to find all signals in Mf . In Section 5, we construct a discrete set Γ
with finite density such that Mf,Γ = Mf for all f ∈ V (Φ). In Section
6, we introduce a stable algorithm ∆ with linear complexity to reconstruct
signals in V (Φ) from their noisy phaseless samples taken on a discrete set
Γ. In Section 7, we demonstrate the stable reconstruction of our proposed
algorithm ∆ to reconstruct one-dimensional non-uniform spline signals and
two-dimensional piecewise affine signals on triangulations from their noisy
phaseless samples. In Appendix A, we show that the density of a discrete
set Γ withMf,Γ =Mf , f ∈ V (Φ), must be no less than the innovation rate
of signals in V (Φ).

2. Preliminaries

In this section, we present some preliminaries on the domain D for signals
to define and the linear space V (Φ) for signals with the parametric expression
(1.1) to reside in.

Spatial signals in this paper are defined on a domain D. Our representing
models are the d-dimensional Euclidean space Rd, the d-dimensional torus
Td and the simple graph to describe a spatially distributed network [15]. In
this paper, we always assume the following for the domain D [15, 26, 44].

Assumption 2.1. The domain D is equipped with a distance ρ and a Borel
measure µ so that

(2.1) sup
x∈D

µ
(
B(x, r)

)
<∞

and

(2.2) lim inf
s→∞

inf
x∈D

µ(B(x, s− r))
µ(B(x, s))

= 1, r ≥ 0,

where B(x, r) = {y ∈ D : ρ(x, y) ≤ r} is the closed ball with center x and
radius r.
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Spatial signals f with the parametric representation (1.1) reside in the
linear space

(2.3) V (Φ) :=
{∑
λ∈Λ

cλφλ : cλ ∈ R for all λ ∈ Λ
}

generated by Φ = (φλ)λ∈Λ. Denote the cardinality of a set E by #E. In
this paper, we always assume the following to basis signals φλ, λ ∈ Λ.

Assumption 2.2. The discrete set Λ has finite density

(2.4) D+(Λ) := lim sup
r→∞

sup
x∈D

]
(
Λ ∩B(x, r)

)
µ
(
B(x, r)

) <∞,

the nonzero basis signals φλ, λ ∈ Λ, are continuous and supported in balls
with center λ and fixed radius r0 > 0 independent of λ,

(2.5) φλ(x) = 0 for all x 6∈ B(λ, r0), λ ∈ Λ;

and any signal in V (Φ) has a unique parametric representation (1.1).

The prototypical forms of the space V (Φ) are principal shift-invariant
spaces generated by the shifts of a compactly supported function φ, twisted
shift-invariant spaces generated by (non-)uniform Gabor frame system (or
Wilson basis) in the time-frequency analysis (see [5, 12, 19, 24, 30] and
references therein), and nonuniform spline signals [7, 22, 32]. The linear
space V (Φ) was introduced in [36, 37] to model signals with finite rate of
innovation (FRI). Following the terminology in [41], signals in the linear
space V (Φ) have rate of innovation D+(Λ) and innovative positions λ ∈ Λ.

An equivalent statement to the unique parametric representation (1.1) of
signals in V (Φ) is that the generator Φ has global linear independence, i.e.,
the map

(2.6) c := (cλ)λ∈Λ 7−→ cTΦ :=
∑
λ∈Λ

cλφλ

is one-to-one from the space `(Λ) of all sequences on Λ to the linear space
V (Φ) [25, 29]. For any open set A, define

(2.7) KA = {λ ∈ Λ : φλ 6≡ 0 on A}.
A strong version of the global linear independence (2.6) is local linear inde-
pendence on an open set A ⊂ D, i.e.,

(2.8) dimV (Φ)|A = #KA,

where for a linear space V we denote its dimension and restriction on a set
A by dimV and V |A respectively. Observe that the restriction of the linear
space V (Φ) on an bounded open set A is generated by φλ, λ ∈ KA. Then an
equivalent formulation of the local linear independence on a bounded open
set A is that

(2.9)
∑
λ∈Λ

cλφλ(x) = 0 on x ∈ A
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implies that cλ = 0 for all λ ∈ KA [25, 35].
Set

(2.10) SΦ(λ, λ′) := {x ∈ D : φλ(x)φλ′(x) 6= 0}, λ, λ′ ∈ Λ,

and use the abbreviation SΦ(λ) := SΦ(λ, λ) when λ′ = λ ∈ Λ. One may
verify that the generator Φ has global linear independence (2.6) if it has
local linear independence on a family of open sets Tθ, θ ∈ Θ, such that

(2.11) SΦ(λ, λ′) ∩
(
∪θ∈Θ Tθ

)
6= ∅

for all pairs (λ, λ′) ∈ Λ × Λ with SΦ(λ, λ′) 6= ∅. We remark that a family
of open sets Tθ, θ ∈ Θ, satisfying (2.11) is not necessarily a covering of the
domain D, however, the converse is true, cf. Corollary 4.4.

3. Phase retrievability and graph connectivity

In this section, we characterize all signals f ∈ V (Φ) that are determined,
up to a sign, from their magnitude measurements on the whole domain D,
i.e., Mf = {±f}.

Given a signal f =
∑

λ∈Λ cλφλ ∈ V (Φ), we define an undirected graph

(3.1) Gf := (Vf , Ef ),

where

(3.2) Vf := {λ ∈ Λ : cλ 6= 0}

and

Ef :=
{

(λ, λ′) ∈ Vf × Vf : λ 6= λ′ and φλφλ′ 6≡ 0
}
.

For a signal f ∈ V (Φ), the graph Gf in (3.1) is well-defined by (2.6), and
it was introduced in [14] when the generator Φ = (φ(· − k))k∈Zd is obtained
from shifts of a compactly supported function φ. Its vertex set Vf contains
all innovative positions λ ∈ Λ with nonzero amplitude cλ, and its edge set
Ef contains all innovative position pairs (λ, λ′) in Vf ×Vf with basis signals
φλ and φλ′ having overlapped supports, i.e.,

(3.3) (λ, λ′) ∈ Ef if and only if λ, λ′ ∈ Vf and (λ, λ′) ∈ EΦ,

where SΦ(λ, λ′), (λ, λ′) ∈ Λ× Λ, are given in (2.10) and

(3.4) EΦ := {(λ, λ′) ∈ Λ× Λ : SΦ(λ, λ′) 6= ∅}.

To study phase retrievability of signals in V (Φ), we recall the local com-
plement property of a linear space of real-valued signals [14].

Definition 3.1. Let A be an open subset of the domain D. We say that a
linear space V of real-valued signals on the domain D has local complement
property on A if for any A′ ⊂ A, there does not exist f, g ∈ V such that
f, g 6≡ 0 on A, but f(x) = 0 for all x ∈ A′ and g(y) = 0 for all y ∈ A\A′.
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The local complement property is the complement property in [13] for
ideal sampling functionals on a set, cf. the complement property for frames
in Hilbert/Banach spaces ([2, 4, 6, 8]). Local complement property is closely
related to local phase retrievability. In fact, following the argument in [13],
the linear space V has the local complement property on A if and only if all
signals in V is local phase retrievable on A, i.e., for any f, g ∈ V satisfying
|g(x)| = |f(x)|, x ∈ A, there exists δ ∈ {−1, 1} such that g(x) = δf(x) for
all x ∈ A.

In this section, we establish the equivalence between phase retrievability
of a nonzero signal f ∈ V (Φ) and connectivity of its graph Gf , which is
established in [14] for signals residing in a principal shift-invariant space.

Theorem 3.2. Let D be a domain satisfying Assumption 2.1, Φ := (φλ)λ∈Λ

be a family of basis functions satisfying Assumption 2.2, T := {Tθ, θ ∈ Θ}
be a family of open sets satisfying (2.11), and let V (Φ) be the linear space
(2.3) generated by Φ. Assume that for any Tθ ∈ T , Φ has local linear
independence on Tθ and V (Φ) has local complement property on Tθ. Then
for a nonzero signal f ∈ V (Φ), Mf = {±f} if and only if the graph Gf in
(3.1) is connected.

We remark that the local complement assumption in Theorem 3.2 is sat-
isfied when Φ has local linear independence on all open sets.

Proposition 3.3. Let Φ := (φλ)λ∈Λ satisfy Assumption 2.2. If Φ has local
linear independence on all open sets, then there exist T := {Tθ, θ ∈ Θ}
satisfying (2.11) such that V (Φ) has local complement property on every
Tθ ∈ T .

Proof. Define SΦ(θ) = ∩λ∈θSΦ(λ) for a set θ ⊂ Λ. We say that θ ⊂ Λ is
maximal if SΦ(θ) 6= ∅ and SΦ(θ′) = ∅ for all θ′ ) θ. By (2.4) and (2.5),
any maximal set contains finitely many elements. Denote the family of all
maximal sets by Θ and define Tθ = SΦ(θ), θ ∈ Θ. Clearly T := {Tθ, θ ∈ Θ}
satisfies (2.11), because any θ ⊂ Λ with SΦ(θ) 6= ∅ is a subset of some
maximal set in Θ.

Now it remains to prove that V (Φ) has local complement property on
Tθ, θ ∈ Θ. Take an arbitrary θ ∈ Θ and two signals f, g ∈ V (Φ) satisfying
|f(x)| = |g(x)| for all x ∈ Tθ. Then

(3.5) (f + g)(x)(f − g)(x) = 0 for all x ∈ Tθ.

Write f + g =
∑

λ∈Λ cλφλ and f − g =
∑

λ∈Λ dλφλ, and set B1 = {x ∈ Tθ :
(f + g)(x) 6= 0} and B2 = {x ∈ Tθ : (f − g)(x) 6= 0}. Then

(3.6)
(∑
λ∈θ

cλφλ(x)
)(∑

λ∈θ
dλφλ(x)

)
= 0 for all x ∈ Tθ,

and

(3.7) φλ(x) 6= 0 for all x ∈ Tθ and λ ∈ θ
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by assumption (2.11), (3.5) and the construction of maximal sets. By (3.6),
we have that either f−g = 0 on B1, or f+g = 0 on B2, or f−g = f+g = 0
on Tθ. This together with (3.7) and the local linear independence on B1 or
B2 or Tθ implies that either dλ = 0 for all λ ∈ θ, or cλ = 0 for all λ ∈ θ, or
cλ = dλ = 0 for all λ ∈ θ. Therefore either f = g on Tθ, or f = −g on Tθ,
or f = g = 0 on Tθ. This completes the proof. �

Applying Theorem 3.2 and Proposition 3.3, we have the following corol-
lary, which is established in [14] when the generator Φ is obtained from shifts
of a compactly supported function.

Corollary 3.4. Let D be a domain satisfying Assumption 2.1, Φ be a family
of basis functions satisfying Assumption 2.2, and let V (Φ) be the linear space
(2.3) generated by Φ. If Φ has local linear independence on any open sets,
then a nonzero signal f ∈ V (Φ) satisfies Mf = {±f} if and only if the
graph Gf in (3.1) is connected.

3.1. Proof of Theorem 3.2. The necessity in Theorem 3.2 holds under a
weak assumption on the generator Φ.

Proposition 3.5. Let D be a domain satisfying Assumption 2.1, Φ :=
(φλ)λ∈Λ be a family of basis functions satisfying Assumption 2.2, V (Φ) be
the linear space (2.3) generated by Φ, and let f be a nonzero signal in V (Φ).
If Mf = {±f}, then the graph Gf in (3.1) is connected.

To prove Proposition 3.5, we recall a characterization in [13] on phase
retrievability.

Lemma 3.6. For a nonzero signal f in a linear space V , Mf = {±f} if
and only if it is nonseparable, i.e., there does not exist nonzero signals f0

and f1 ∈ V such that

(3.8) f = f0 + f1 and f0f1 = 0.

Proof of Proposition 3.5. Let f ∈ V (Φ) be a nonzero signal satisfyingMf =
{±f}, and write f =

∑
λ∈Λ cλφλ, where cλ ∈ R, λ ∈ Λ. Suppose, on the

contrary, that the graph Gf is disconnected. Then there exists a nontrivial
connected component W such that both W and Vf\W are nontrivial, and
no edges exist between vertices in W and in Vf\W . Write

(3.9) f =
∑
k∈Vf

cλφλ =
∑
λ∈W

cλφλ +
∑

λ∈Vf\W

cλφλ =: f0 + f1.

From the global linear independence (2.6) and nontriviality of the sets W
and Vf\W , we obtain

(3.10) f0 6≡ 0 and f1 6≡ 0.

Applying (3.9) and (3.10), and using the characterization in Lemma 3.6, we
obtain that

f0(x0)f1(x0) 6= 0
9



for some x0 ∈ D. This implies the existence of λ ∈ W and λ′ ∈ Vf\W such
that cλφλ(x0) 6= 0 and cλ′φλ′(x0) 6= 0. Hence (λ, λ′) is an edge between
λ ∈ W and λ′ ∈ Vf\W , which contradicts to the construction of the set
W . �

Now we prove the sufficiency in Theorem 3.2. Let f =
∑

λ∈Λ cλφλ ∈ V (Φ)
have its graph Gf being connected, and take g =

∑
λ∈Λ dλφλ ∈ Mf . Then

for any θ ∈ Θ,

(3.11) |g(x)| = |f(x)|, x ∈ Tθ.
For any θ ∈ Θ, there exists δθ ∈ {−1, 1} by (3.11) and the local complement
property on Tθ such that

g(x) = δθf(x), x ∈ Tθ.
This together with the local linear independence on Tθ implies that

(3.12) dλ = δθcλ

for all λ ∈ Λ with SΦ(λ) ∩ Tθ 6= ∅. Using (2.11) and applying (3.12), there
exist δλ ∈ {−1, 1}, λ ∈ Λ such that

(3.13) dλ = δλcλ

for all λ ∈ Λ, and

(3.14) δλ = δλ′

for any edge (λ, λ′) in the graph Gf . Combining (3.13) and (3.14), and
applying connectivity of the graph Gf , we can find δ ∈ {−1, 1} such that

(3.15) dλ = cλ = 0 for all λ 6∈ Vf and dλ = δcλ for all λ ∈ Vf .
Thus g(x) = δf(x) for all x ∈ D. This completes the proof of the sufficiency.

4. Phase nonretrievability and landscape decomposition

Given a signal f ∈ V (Φ), the graph Gf in (3.1) is not necessarily to be
connected and hence there may exist signals g ∈ V (Φ), other than ±f ,
belonging to Mf . In this section, we characterize the set Mf of all signals
g ∈ V (Φ) that have the same magnitude measurements on the domin D as
f has, and then we provide the answer to Question 1.2.

Take f =
∑

λ∈Λ cλφλ ∈ V (Φ), let Gi = (Vi, Ei), i ∈ I, be connected
components of the graph Gf , and define

(4.1) fi =
∑
λ∈Vi

cλφλ, i ∈ I.

Then (1.3) holds by the definition of Gi, i ∈ I, and the signal f has the
decomposition (1.4), (1.5) and (1.6) by Theorem 3.2. By (1.4) and (1.6),
signals g =

∑
i∈I δifi with δi ∈ {−1, 1}, i ∈ I, have the same magnitude

measurements on the domain D as f has. In the following theorem, we
show that the converse is also true.

10



Theorem 4.1. Let the domain D, the generator Φ := (φλ)λ∈Λ, the family
T := {Tθ, θ ∈ Θ} of open sets, and the linear space V (Φ) be as in Theorem
3.2. Take f ∈ V (Φ) and let fi ∈ V (Φ), i ∈ I, be as in (4.1). Then g ∈ V (Φ)
belongs to Mf if and only if

(4.2) g =
∑
i∈I

δifi for some δi ∈ {−1, 1}, i ∈ I.

The conclusion in Theorem 4.1 can be understood as that the landscape
of any signal g ∈ Mf is a combination of islands of the original signal f or
their reflections. As an application to Theorem 4.1, we have the following
result about the cardinality of the set Mf .

Corollary 4.2. Let the domain D, the generator Φ, the family T of open
sets and the linear space V (Φ) be as in Theorem 3.2. Then for f ∈ V (Φ),

#Mf = 2#I ,

where I is given in (1.3).

To prove Theorem 4.1, we need the uniqueness of a landscape decompo-
sitions satisfying (1.4), (1.5) and (1.6).

Theorem 4.3. Let the generator Φ and the space V (Φ) be as in Theorem
4.1. Then for any f ∈ V (Φ) there exists a unique decomposition satisfying
(1.4), (1.5) and (1.6).

Proof. Write f =
∑

λ∈Λ cλφλ. First we prove the existence of a decompo-
sition satisfying (1.4), (1.5) and (1.6). Define fi, i ∈ I, as in (4.1). Then
the decomposition (1.6) holds by (1.3) and (4.1), and the nonseparability
property (1.5) of fi, i ∈ I follows from Theorem 3.2 and the connectivity
of Gi, i ∈ I. Recall that there are no edges between vertices in different
connected components Gi, i ∈ I. This leads to the mutually disjoint support
property (1.4).

Now we prove the uniqueness of the decomposition (1.4), (1.5) and (1.6).
Let 0 6= gj =

∑
λ∈Λ dj,λφλ ∈ V (Φ), j ∈ J, satisfy

(4.3) f =
∑
j∈J

gj ,

(4.4) Mgj = {±gj}, j ∈ J,
and

(4.5) gjgj′ = 0 for all distinct j, j′ ∈ J.
Then it suffices to find a partition Ij , j ∈ J , of the set I such that

(4.6) gj =
∑
i∈Ij

fi

where fi, i ∈ I, are given in (4.1), and that

(4.7) Ij only contains exactly one element for any j ∈ J.
11



First we prove (4.6). For any distinct j, j′ ∈ J and (λ, λ′) ∈ Λ × Λ with
SΦ(λ, λ′) 6= ∅, following the argument used in the sufficiency of Theorem 3.2
with f and g replaced by gj ± gj′ we obtain from (4.5) that

either (dj,λ, dj,λ′) = (0, 0) or (dj′,λ, dj′,λ′) = (0, 0).

This together with (4.3) implies the existence of j ∈ J such that

(4.8) dj,λ = cλ, dj,λ′ = cλ′

and

(4.9) dj′,λ = dj′,λ′ = 0 for all j′ 6= j.

Observe that SΦ(λ) 6= ∅, λ ∈ Λ. Applying (4.8) and (4.9) with λ′ = λ ∈ Λ,
we can find a mutually disjoint partition Wj , j ∈ J , of the set Vf such that

(4.10) gj =
∑
λ∈Wj

cλφλ.

Applying (4.8) and (4.9) with (λ, λ′) being an edge in Gf , we obtain that for
any i ∈ I there exists j ∈ J such that Vi ⊂ Wj . This together with (4.1),
(4.10) and the observation ∪i∈IVi = ∪j∈JWj = Vf proves (4.6).

Now we prove (4.7). By (1.4) and (4.6) we have that

Mgj ⊃
{∑
i∈Ij

δifi, δi ∈ {−1, 1}
}
,

which implies that #Mgj ≥ 2#Ij . This together with (4.4) proves (4.7). �

Now we start to prove Theorem 4.1.

Proof of Theorem 4.1. The sufficiency is obvious. Now the necessity. Let
f, g ∈ V (Φ) have the same magnitude measurements on the domain D, i.e.,
Mf =Mg. Write f =

∑
λ∈Λ cλφλ and g =

∑
λ∈Λ dλφλ. Then following the

argument used in the sufficiency of Theorem 3.2, we can find δλ,λ′ ∈ {−1, 1}
for any pair (λ, λ′) with SΦ(λ, λ′) 6= ∅ such that

(4.11) (dλ, dλ′) = δλ,λ′(cλ, cλ′).

Applying (4.11) with λ′ = λ and recalling that SΦ(λ) 6= ∅, we obtain

(4.12) dλ = δλcλ, λ ∈ Λ,

for some δλ ∈ {−1, 1}. This concludes that

(4.13) δλ = δλ,λ′ = δλ′

for any edge (λ, λ′) of the graph Gf . Therefore the signs δλ are the same in
any connected component of the graph Gf . This together with (1.3), (4.1)
and (4.12) completes the proof. �

The union of Tθ, θ ∈ Θ, is not necessarily the whole domain D. Follow-
ing the argument used in the proof of Theorems 3.2 and 4.1, we have the
following corollary.
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Corollary 4.4. Let the domain D, the generator Φ, the family of open sets
T = {Tθ, θ ∈ Θ} and the linear space V (Φ) be as in Theorem 4.1. Then

(4.14) Mf =Mf,DT for all f ∈ V (Φ),

where DT = ∪θ∈ΘTθ.

Proof. Let f, g ∈ V (Φ) satisfy |f(x)| = |g(x)|, x ∈ Tθ for all θ ∈ Θ. Write
f =

∑
i∈I fi as in (1.4), (1.5) and (1.6). From the argument used in the proof

of Theorems 3.2 and 4.1, we have that g =
∑

i∈I δifi for some δi ∈ {−1, 1}.
Therefore |g(x)| = |f(x)| for all x ∈ D. �

5. Phaseless sampling and reconstruction

To study phaseless sampling and reconstruction of signals in V (Φ), we
recall the concept of a phase retrievable frame [4, 18, 21, 43].

Definition 5.1. We say that F = {fm ∈ Rn, 1 ≤ m ≤ M} is a phase
retrievable frame for Rn if any vector v ∈ Rd is determined, up to a sign, by
its measurements |〈v, fm〉|, fm ∈ F , and that F is a minimal phase retrieval
frame for Rn if any true subset of F is not a phase retrievable frame.

It is known that a minimal phase retrieval frame for Rn contains at least
2n − 1 vectors and at most n(n + 1)/2 vectors [4, 14, 21]. In this section,
we construct a discrete set Γ with finite density such that

(5.1) Mf,Γ =Mf for all f ∈ V (Φ).

Theorem 5.2. Let the domain D, the generator Φ := (φλ)λ∈Λ, the family
T = {Tθ, θ ∈ Θ} of open sets, and the linear space V (Φ) be as in Theorem
3.2. Set

(5.2) RΛ(r) := sup
x∈D

#
(
Λ ∩B(x, r)

)
, r ≥ 0.

Take discrete sets Γθ ⊂ Tθ, θ ∈ Θ, so that for any θ ∈ Θ, {Φθ(γ), γ ∈ Γθ}
forms a minimal phase retrievable frame for R#Kθ , and define

(5.3) Γ := ∪θ∈ΘΓθ,

where Φθ = (φλ)λ∈Kθ and

Kθ = {λ ∈ Λ : SΦ(λ) ∩ Tθ 6= ∅}.

Then (5.1) holds for the above discrete set Γ. Moreover if

(5.4) NT := sup
λ∈Λ

#{θ : Tθ ∩ SΦ(λ) 6= ∅} <∞,

then the set Γ has finite upper density

(5.5) D+(Γ) ≤ RΛ(2r0)(RΛ(2r0) + 1)

2
NTD+(Λ),

where r0 is given in (2.5).
13



As an application of Theorem 5.2, we have the following phaseless sam-
pling theorem, which is established in [13, 14] for signals residing in a prin-
cipal shift-invariant space generated by a compactly supported function.

Corollary 5.3. Let D,Λ, T ,Φ, V (Φ) and Γ be as in Theorem 5.2. Then
any signal f ∈ V (Φ) with Mf = {±f} is determined, up to a sign, from its
phaseless samples on the discrete set Γ with finite density.

We remark that the existence of discrete sets Γθ, θ ∈ Θ, in Theorem 5.2
follows from the local complement property on Tθ, θ ∈ Θ, for the linear space
V (Φ), by applying the argument in [14, Theorem A.4].

Proposition 5.4. Let the domain D, the generator Φ := (φλ)λ∈Λ, the fami-
ly T = {Tθ, θ ∈ Θ} of open sets, and the linear space V (Φ) be as in Theorem
3.2. Assume that Φ has local linear independence on open sets Tθ, θ ∈ Θ.
Then for any θ ∈ Θ, the linear space V (Φ) generated by Φ has local comple-
ment property on Tθ if and only if there exists a finite set Γθ ⊂ Tθ such that
{Φθ(γ), γ ∈ Γθ} is a minimal phase retrievable frame for R#Kθ .

We finish this section with the proof of Theorem 5.2.

Proof of Theorem 5.2. First we prove (5.1). By (1.10), it suffices to prove

(5.6) Mf,Γ ⊂Mf .

Take g =
∑

λ∈Λ dλφλ ∈ Mf,Γ, and write f =
∑

λ∈Λ cλφλ. Then for any
θ ∈ Θ,∣∣∣ ∑

λ∈Kθ

cλφλ(γ)
∣∣∣ = |f(γ)| = |g(γ)| =

∣∣∣ ∑
λ∈Kθ

dλφλ(γ)
∣∣∣ for all γ ∈ Γθ.

This together with the phase retrieval frame property of Φθ(γ), γ ∈ Γθ,
implies that

(5.7) dλ = δθcλ, λ ∈ Kθ

for some δθ ∈ {−1, 1}. Hence for any θ ∈ Θ,

(5.8) |g(x)| = |f(x)|, x ∈ Tθ.
This together with Corollary 4.4 implies that g ∈Mf . This proves (5.6).

To prove (5.5), we claim that for any θ ∈ Θ,

(5.9) SΦ(λ, λ′) 6= ∅ for all λ, λ′ ∈ Kθ.

Suppose on the contrary that the above claim does not hold, then there exist
λ0, λ

′
0 ∈ Kθ with SΦ(λ0, λ

′
0) = ∅. Thus φλ0 ± φλ′0 ∈ V (Φ) have the same

magnitude measurements on Tθ, which contradicts to the local complement
property of the space V (Φ) on Tθ, θ ∈ Θ.

Applying Claim (5.9) and Assumption 2.2, we obtain

(5.10) B(λ, r0) ∩B(λ′, r0) 6= ∅ for all λ, λ′ ∈ Kθ.

This implies that

(5.11) #Kθ ≤ RΛ(2r0), θ ∈ Θ.
14



Let Wθ be the linear space of symmetric matrices spanned by outer products
Φθ(x)(Φθ(x))T , x ∈ Tθ. Then

(5.12) dimWθ ≤
#Kθ(#Kθ + 1)

2
.

Observe that for any f ∈ V (Φ), there exists a unique vector cθ = (cλ)λ∈Kθ
such that

|f(x)|2 = cTθ Φθ(x)(Φθ(x))T cθ, x ∈ Tθ.
This together the minimality of the phase retrieval frame {Φθ(γ), γ ∈ Γθ}
implies that

(5.13) #Γθ ≤ dimWθ.

Combining (5.11), (5.12) and (5.13), we obtain

(5.14) #Γθ ≤
RΛ(2r0)(RΛ(2r0) + 1)

2
for all θ ∈ Θ.

By the minimality of the phase retrieval frame {Φθ(γ), γ ∈ Γθ}, we have
Φθ(γ) 6= 0 for all γ ∈ Γθ, which implies that

(5.15) Γθ ⊂
(
∪λ∈Kθ SΦ(λ)

)
∩ Tθ

Then for any x ∈ D and r ≥ 0, we obtain from (5.4), (5.14), (5.15) and
Assumption 2.2 that

#(Γ ∩B(x, r)) ≤
(

max
θ∈Θ

#Γθ

)
×#{θ ∈ Θ :

(
∪λ∈Kθ SΦ(λ)

)
∩ Tθ ∩B(x, r) 6= ∅}

≤ RΛ(2r0)(RΛ(2r0) + 1))

2

(
max
λ∈Λ

#{θ ∈ Θ : SΦ(λ) ∩ Tθ 6= ∅}
)

×#{λ ∈ Λ : SΦ(λ) ∩B(x, r) 6= ∅}

≤ RΛ(2r0)(RΛ(2r0) + 1))

2
NT#(Λ ∩B(x, r + r0)).(5.16)

This together with (2.2) and definition of the density (2.4) of a discrete set
proves (5.5). �

6. Stable Reconstruction from Phaseless Samples

Let T = {Tθ : θ ∈ Θ} satisfy (2.11) and Γ = ∪θ∈ΘΓθ with Γθ ⊂ Tθ, θ ∈ Θ
be as in Theorem 5.2. In this section, we propose the following three-step
algorithm, MAPS for abbreviation, to construct an approximation

(6.1) gη =
∑
λ∈Λ

dη;λφλ

to the original signal f ∈ V (Φ) in magnitude measurements from its noisy
phaseless samples

(6.2) zη(γ) = |f(γ)|+ η(γ), γ ∈ Γ,

taken on a discrete set Γ and corrupted by a bounded noise η = (η(γ))γ∈Γ.
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0. Select a phase adjustment threshold value M0 ≥ 0 and set
Kθ = {λ ∈ Λ : SΦ(λ) ∩ Tθ 6= ∅}.

1. For θ ∈ Θ, let

(6.3) cη,θ = (cη,θ;λ)λ∈Λ

take zero components except that (cη,θ;λ)λ∈Kθ is a solution of
the local minimization problem

min
(dλ)λ∈Kθ

∑
γ∈Γθ

∣∣∣∣∣∣ ∑
λ∈Kθ

dλφλ(γ)
∣∣∣− zη(γ)

∣∣∣2
= min

δγ∈{−1,1},γ∈Γθ
min

(dλ)λ∈Kθ

∑
γ∈Γθ

∣∣∣ ∑
λ∈Kθ

dλφλ(γ)− δγzη(γ)
∣∣∣2.(6.4)

2. Adjust phases of vectors cη,θ, θ ∈ Θ, so that the resulting
vectors δη,θcη,θ with δη,θ ∈ {−1, 1} have their inner product
at least −M0,

(6.5) 〈δη,θcη,θ, δη,θ′cη,θ′〉 = δη,θδη,θ′
∑

λ∈Kθ∩Kθ′

cη,θ;λcη,θ′;λ ≥ −M0

for all θ, θ′ ∈ Θ.
3. Sew vectors δη,θcη,θ, θ ∈ Θ, together to obtain

(6.6) dη;λ =

∑
θ∈Θ δη,θcη,θ;λχKθ(λ)∑

θ∈Θ χKθ(λ)
, λ ∈ Λ,

where χE is the indicator function on a set E.

The prior versions of the above MAPS algorithm are used in [13, 14]
to reconstruct signals in a principal shift-invariant space from their noisy
phaseless samples. As shown in the following remark that complexity of
the proposed MAPS algorithm depends almost linearly on the size of the
original signal.

Remark 6.1. Take a signal f =
∑

λ∈Λ0
cλφλ ∈ V (Φ) with component vector

(cλ)λ∈Λ0 supported in Λ0 ⊂ Λ, and define Θ0 = {θ ∈ Θ : Kθ ∩ Λ0 6= ∅}. By
(6.6), in the first step of the proposed MAPS algorithm, it suffices to solve
local minimization problems (6.4) with θ ∈ Θ0. Observe that

(6.7) #Θ0 = #
(
∪λ∈Λ0 {θ ∈ Θ, λ ∈ Kθ}

)
≤ NTN

by (5.4), where N = #Λ0 is the size of supporting component vector of
the original signal f . This together with (5.11) and (5.14) implies that
the number of additions and multiplications required in the first step is
O(N). By (6.6), in the second step it suffices to verify the phase adjustment
condition (6.5) for all θ, θ′ ∈ Θ0 with Kθ ∩ Kθ′ 6= ∅. For any θ ∈ Θ, we
obtain from (5.4) and (5.11) that

#{θ′ ∈ Θ : Kθ ∩Kθ′ 6= ∅} ≤ #
(
∪λ∈Kθ {θ

′ ∈ Θ : λ ∈ Kθ′}
)

≤ NT#Kθ ≤ NT RΛ(2r0).(6.8)
16



Therefore the number of additions and multiplications required in the second
step is O(N) by (5.11), (6.7) and (6.8). By (5.4), the number of additions
and multiplications required in the third step of the proposed MAPS al-
gorithm is O(N). Combining the above arguments, we conclude that the
number of additions and multiplications required in the proposed MAPS al-
gorithm to reconstruct an approximation gη of the original signal f is about
O(N).

For a bounded signal f on the domain D, we denote its L∞ norm by
‖f‖∞ := supx∈D |f(x)|, and for a phase retrievable frame F = {fm ∈ Rn, 1 ≤
m ≤M}, we use∥∥F‖P = inf

T⊂{1,··· ,M}
max

(
inf
‖v‖2=1

( ∑
m∈T
|〈v, fm〉|2

)1/2
,

inf
‖v‖2=1

( ∑
m 6∈T
|〈v, fm〉|2

)1/2
)

(6.9)

to describe the stability to reconstruct a vector v from its phaseless frame
measurements |〈v, fm〉|, 1 ≤ m ≤M . In the next theorem, we show that the
signal gη reconstructed from the proposed MAPS algorithm with the phase
adjustment threshold value M0 properly chosen provides an approximation
to the original signal in magnitude measurements.

Theorem 6.2. Let the domain D, the generator Φ := (φλ)λ∈Λ, the family
T = {Tθ, θ ∈ Θ} of open sets, and the linear space V (Φ) be as in Theorem
3.2. Assume that the generator Φ is uniformly bounded in the sense that

(6.10) ‖Φ‖∞ := sup
λ∈Λ
‖φλ‖∞ <∞,

and the sampling set Γ = ∪θ∈ΘΓθ are so chosen that Γθ ⊂ Tθ for all θ ∈ Θ,
Φθ,Γθ = {Φθ(γ), γ ∈ Γθ}, θ ∈ Θ, are phase retrievable frames, and

(6.11) max
θ∈Θ

#Γθ(‖Φθ,Γθ‖P )−2 <∞.

Given a signal f ∈ V (Φ) and a bounded noise η = (η(γ))γ∈Γ, let gη be the
reconstructed signal from noisy phaseless samples zη(γ), γ ∈ Γ in (6.2) via
the MAPS algorithm (6.1)–(6.6), where

(6.12) M0 = 24
(

max
θ∈Θ

#Γθ
(
‖Φθ,Γθ‖P

)−2
)
‖η‖2∞

and

(6.13) ‖η‖∞ := sup
γ∈Γ
|η(γ)| <∞.

Then there exist fη, hη ∈ V (Φ) with the same magnitude measurements on
the whole domain,

(6.14) Mhη =Mfη ,
17



which are approximations to the original signal f and the reconstruction gη
respectively,

(6.15) ‖fη − f‖∞ ≤ 4
√

6
(

max
θ∈Θ

√
#Γθ

(
‖Φθ,Γθ‖P

)−1
)
RΛ(r0)‖Φ‖∞‖η‖∞

and

(6.16) ‖gη − hη‖∞ ≤ 6
√

6
(

max
θ∈Θ

√
#Γθ

(
‖Φθ,Γθ‖P

)−1
)
RΛ(r0)‖Φ‖∞‖η‖∞.

In the noiseless environment (i.e. η = 0), it follows from Theorem 6.2 that
the signal reconstructed from the MAPS algorithm with phase adjustment
threshold value M0 = 0 has the same magnitude measurements on the whole
domain as the original signal, cf. Theorem 4.1.

By Theorem 6.2, we obtain∥∥|gη| − |f |∥∥∞ ≤ ‖gη − hη‖∞ + ‖f − fη‖∞

≤ 10
√

6
(

max
θ∈Θ

√
#Γθ

(
‖Φθ,Γθ‖P

)−1
)
RΛ(r0)‖Φ‖∞‖η‖∞.(6.17)

Take λ0 ∈ Λ so that ‖φλ0‖∞ ≥ ‖Φ‖∞/2. Then for any signal f ∈ V (Φ) and
ε ≥ 0, we have

(6.18)
∣∣|f(γ)± εφλ0(γ)| − |f(γ)|

∣∣ ≤ ‖Φ‖∞ε, γ ∈ Γ

and

max
(∥∥|f + εφλ0 | − |f |

∥∥
∞,
∥∥|f − εφλ0 | − |f |∥∥∞)

=
∥∥∥max

(∣∣|f + εφλ0 | − |f |
∣∣, ∣∣|f − εφλ0 | − |f |∣∣)∥∥∥∞

≥ ‖εφλ0‖∞ ≥
1

2
‖Φ‖∞ε.(6.19)

By (6.17), (6.18) and (6.19), we conclude that the reconstructed signal gη
from the proposed MAPS algorithm is a suboptimal approximation to the
original signal f in magnitude measurements.

Take g ∈ V (Φ). For the noise η = (η(γ))γ∈Γ in (6.2) given by η(γ) =
|g(γ)| − |f(γ)|, γ ∈ Γ, one may verify that the signal gη reconstructed from
the MAPS algorithm could have the same magnitude measurements as the
signal g has, i.e., gη ∈ Mg. This together with (6.17) leads to the bi-
Lipschitz property for the phaseless sampling operator on V (Φ).

Corollary 6.3. Let the domain D, the generator Φ, the family T of open
sets, the phaseless sampling set Γ, and the linear space V (Φ) be as in The-
orem 6.2. Then the phaseless sampling operator

S : V (Φ) 3 f 7−→ (|f(γ)|)γ∈Γ

is bi-Lispchitz in magnitude measurements, i.e., there exist positive constants
C1 and C2 such that

(6.20) C1

∥∥|g| − |f |∥∥∞ ≤ ‖Sf − Sg‖∞ ≤ C2

∥∥|g| − |f |∥∥∞
for all signals f, g ∈ V (Φ).
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We finish this section with the proof of Theorem 6.2.

Proof of Theorem 6.2. Take θ ∈ Θ and define

(6.21) gη,θ =
∑
λ∈Λ

cη,θ;λφλ,

where cη,θ;λ, λ ∈ Λ, are given in (6.3). Then there exists a subset Γ′θ ⊂ Γθ
such that

( ∑
γ∈Γ′

θ

∣∣gη,θ(γ)− f(γ)
∣∣2) 1

2
+
( ∑
γ∈Γθ\Γ′

θ

∣∣gη,θ(γ) + f(γ)
∣∣2) 1

2

=
( ∑
γ∈Γ′

θ

∣∣|gη,θ(γ)| − |f(γ)|
∣∣2) 1

2
+
( ∑
γ∈Γθ\Γ′

θ

∣∣|gη,θ(γ)| − |f(γ)|
∣∣2) 1

2

≤
√

2
( ∑
γ∈Γθ

∣∣|gη,θ(γ)| − |f(γ)|
∣∣2) 1

2

≤
√

2
( ∑
γ∈Γθ

∣∣|gη,θ(γ)| − zη(γ)
∣∣2) 1

2
+
√

2
( ∑
γ∈Γθ

∣∣|f(γ)| − zη(γ)
∣∣2) 1

2

≤ 2
√

2
( ∑
γ∈Γθ

∣∣|f(γ)| − zη(γ)
∣∣2) 1

2 ≤ 2
√

2
√

#Γθ‖η‖∞,(6.22)

where the third inequality follows from (6.4) and the last inequality holds
by (6.2). By (6.3) and the definitions of the sets Kθ and Γθ, θ ∈ Θ, we have

(6.23) gη,θ(γ)± f(γ) =
∑
λ∈Kθ

(cη,θ;λ ± cλ)φλ(γ), γ ∈ Γθ.

By (6.9), (6.22), (6.23) and the phase retrievable frame assumption for Φθ,Γθ ,
we obtain that

(6.24)
( ∑
λ∈Kθ

|cη,θ;λ − δ̃η,θcλ|2
)1/2

≤ 2
√

2
√

#Γθ
(
‖Φθ,Γθ‖P

)−1‖η‖∞

for some δ̃η,θ ∈ {−1, 1}.
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Let δ̃η,θ, θ ∈ Θ, be as in (6.24). Then for any θ, θ′ ∈ Θ, we have

〈δ̃η,θcη,θ, δ̃η,θ′cη,θ′〉 =
∑

λ∈Kθ∩Kθ′

δ̃η,θ δ̃η,θ′cη,θ;λcη,θ′;λ

≥
∑

λ∈Kθ∩Kθ′

|cλ|2 −
∑

λ∈Kθ∩Kθ′

|cλ||δ̃η,θcη,θ;λ − cλ|

−
∑

λ∈Kθ∩Kθ′

|δ̃η,θ′cη,θ′;λ − cλ||cλ|

−
∑

λ∈Kθ∩Kθ′

|δ̃η,θcη,θ;λ − cλ||δ̃η,θ′cη,θ′;λ − cλ|

≥ 1

2

∑
λ∈Kθ∩Kθ′

|cλ|2

−3

2

∑
λ∈Kθ∩Kθ′

(
|δ̃η,θcη,θ;λ − cλ|2 + |δ̃η,θ′cη,θ′;λ − cλ|2

)
.(6.25)

This together with (6.12) and (6.24) implies

(6.26) 〈δ̃η,θcη,θ, δ̃η,θ′cη,θ′〉 ≥ −24#Γθ
(
‖Φθ,Γθ‖P

)−2‖η‖2∞ ≥ −M0

for all θ, θ′ ∈ Θ. This proves that phases of cη,θ, θ ∈ Θ, in (6.3) can be
adjusted so that (6.5) holds.

Let δη,θ ∈ {−1, 1}, θ ∈ Θ, be signs in (6.5) used for the phase adjustment
of vectors cη,θ, θ ∈ Θ, in (6.3). We remark that the above signs are not
necessarily the ones in (6.24), however as shown in (6.32) below they are
related. Define

(6.27) fη =
∑

|cλ|>2
√
M0

cλφλ.

Then for x ∈ D, we obtain from (2.5) and (5.2) that

|f(x)− fη(x)| ≤ 2
√
M0

∑
λ 6∈Vfη

|φλ(x)| ≤ 2
√
M0RΛ(r0)‖Φ‖∞,

which proves (6.15).
By (6.12), (6.24) and (6.25), we obtain that

(6.28) 〈δ̃η,θcη,θ, δ̃η,θ′cη,θ′〉 > M0

for all θ, θ′ ∈ Θ with Kθ ∩Kθ′ ∩ Vfη 6= ∅. This together with (6.5) implies
that

δη,θ δ̃η,θ = δη,θ′ δ̃η,θ′

hold for all pairs (θ, θ′) satisfying Kθ ∩ Kθ′ ∩ Vfη 6= ∅. Hence for λ ∈ Vfη
there exists δλ ∈ {−1, 1} such that

(6.29) δη,θ δ̃η,θ = δλ
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for all θ ∈ Θ satisfying λ ∈ Kθ. Decompose the graph Gfη into the union of
connected components (Vη,i, Eη,i), i ∈ Iη, and the signal fη as in (1.4), (1.5)
and (1.6),

(6.30) fη =
∑
i∈Iη

∑
λ∈Vη,i

cλφλ.

Observe that for any edge (λ, λ′) of Vfη , there exists θ0 ∈ Θ such that
λ, λ′ ∈ Kθ0 by (2.11). Hence

(6.31) δλ = δη,θ0 δ̃η,θ0 = δλ′ .

Combining (6.29) and (6.31), there exists δi, i ∈ Iη, such that

(6.32) δη,θ δ̃η,θ = δi

for all θ ∈ Θ satisfying Kθ ∩ Vη,i 6= ∅. Set

hη =
∑
i∈Iη

δi
∑
λ∈Vη,i

cλφλ.

Then fη and hη have the same magnitude measurements on the whole do-
main by (1.4), which proves (6.14).

For all λ 6∈ Vfη , we obtain from (6.24) that

(6.33) |dη,λ| ≤
∑

Kθ3λ(|δη,θcη,θ;λ − δη,θ δ̃η,θcλ|+ |cλ|)∑
Kθ3λ 1

≤ 3
√
M0.

For any λ ∈ Vη,i, i ∈ Iη, we get

|dη,λ − δicλ| ≤
∑

Kθ3λ |δη,θcη,θ;λ − δicλ|∑
Kθ3λ 1

=

∑
Kθ3λ |cη,θ;λ − δ̃η,θcλ|∑

Kθ3λ 1
≤
√
M0.(6.34)

Combining (6.33) and (6.34), we obtain

|gη(x)− hη(x)| ≤
∑
λ 6∈Vfη

|dη,λ||φλ(x)|+
∑
i∈Iη

∑
λ∈Vη,i

|dη,λ − δicλ||φλ(x)|

≤ 3
√
M0

∑
λ∈Λ

|φλ(x)| ≤ 3
√
M0‖Φ‖∞

∑
λ∈Λ

χB(λ,r0)(x)

≤ 3
√
M0RΛ(r0)‖Φ‖∞ for all x ∈ D,(6.35)

which proves (6.16). This completes the proof. �
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7. Numerical Simulations

In this section, we present some numerical simulations to demonstrate
the performance of the MAPS algorithm proposed in the last section, where
signals are one-dimensional non-uniform cubic splines and two-dimensional
piecewise affine functions on a triangulation.

Denote the positive part of a real number x by x+ = max(x, 0). In the
first simulation, we consider phaseless sampling and reconstruction of cubic
spline signals f on the interval [a, b] with non-uniform knots a = t0 < t1 <
. . . < tN = b, see the left image of Figure 1 where a = 0, b = 100 and
N = 100. Those signals have the following parametric representation

(7.1) f(x) =
N−4∑
n=0

cnBn(x), x ∈ [a, b],

where

Bn(x) = (tn+4 − tn)

4∑
l=0

(x− tn+l)
3
+∏

0≤j≤4,j 6=l(tn+l − tn+j)
, 0 ≤ n ≤ N − 4

are cubic B-splines with knots tn+l, 0 ≤ l ≤ 4 [40, 42]. In our simulations,
we assume that

cn ∈ [−1, 1], 0 ≤ n ≤ N − 4,

are randomly selected, and

tn = a+ (n+ εn)
b− a
N

, 1 ≤ n ≤ N − 1

for some εn, 1 ≤ n ≤ N − 1, being randomly selected in [−0.2, 0.2]. Then
cubic spline signals in the first simulation have (b − a)/N as their rate of
innovation.

Consider the scenario that phaseless samples of the signal f in (7.1) on a
discrete set Γ are corrupted by a bounded random noise,

(7.2) zη(γ) = |f(γ)|+ η(γ), γ ∈ Γ,

where η(γ), γ ∈ Γ, are randomly selected in the interval [−η, η] for some
η ≥ 0,

(7.3) Γ := ∪N−1
n=0 Γn :=

N−1⋃
n=0

{
tn + k

tn+1 − tn
K + 1

∈ (tn, tn+1), 1 ≤ k ≤ K
}
,

and K ≥ 7 is a positive integer.
Denote by gη the reconstructed signal from the above noisy phaseless

samples via the proposed MAPS algorithm. Presented on the top left and
right of Figure 2 are the reconstructed signal gη via the proposed MAPS
algorithm and the difference |gη| − |fo| between magnitudes of the recon-
structed signal gη and the original signal fo plotted on the left of Figure 1
respectively, where η = 0.01,K = 9 and the maximal error ‖|gη| − |fo|‖∞ in
magnitude measurements is 0.2104. This demonstrates the approximation
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Figure 2. Plotted on the top left is a signal gη reconstruct-
ed via the proposed MAPS algorithm, while on the top right
is the difference |gη|− |fo| between magnitude measurements
of the reconstructed signal gη and the original signal fo plot-
ted on the left of Figure 1. The signal hη in Theorem 6.2 is
plotted on the bottom left which has five “islands” decom-
position (1.4), (1.5) and (1.6). On the bottom right is the
average of maximal reconstruction error Eη,K in 200 trials
with respect to different noise levels η and oversampling rates
K.

property in Theorem 6.2. Unlike four “islands” decomposition (1.4), (1.5)
and (1.6) for the original signal fo, signals fη and hη used to approximate
the original signal fo and the reconstructed signal gη in Theorem 6.2 have
five “islands” decomposition (1.4), (1.5) and (1.6), see the bottom left of
Figure 2.

Performance of the proposed MAPS algorithm depends on the noise level
η and also the oversampling rateK, the ratio between the densityK(b−a)/N
of the sampling set Γ in (7.3) and the rate (b−a)/N of innovation of signals
in V (Φ). Denote by

Eη,K := ‖|gη| − |f |‖∞
the maximal reconstruction error in magnitude measurements between the
original signal f and the reconstructed signal gη for different noise levels
η and oversampling rate K. Plotted on the bottom right of Figure 2 are
average of the maximal reconstruction error Eη,K in 200 trials against the
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noise level η and oversampling rate K. This indicates that the maximal
reconstruction error Eη,K depends almost linearly on the noise level η, and
decreases as the oversampling rate K increases, cf. (6.17) and Theorem 6.2.

Let D be a triangulation composed by the triangles Tθ, θ ∈ Θ, and denote
the set of all inner nodes of the triangulation by Λ. In the second simulation,
we consider piecewise affine signals

(7.4) f(x, y) =
∑
λ∈Λ

cλφλ(x, y)

on the triangulation D, where the basis signals φλ, λ ∈ Λ are piecewise
affine on triangles Tθ, θ ∈ Θ with φλ(λ) = 1 and φλ(λ′) = 0 for all other
nodes λ′ 6= λ, see the right image of Figure 1. From the definition of basis
signals φλ, λ ∈ Λ, a signal f of the form (7.4) has the following interpolation
property,

f(x, y) =
∑
λ∈Λ

f(λ)φλ(x, y).

In the simulation, phaseless samples of a piecewise affine signal f on a dis-
crete set Γ = ∪θ∈ΘΓθ are corrupted by the bounded random noise,

(7.5) zη(γ) = |f(γ)|+ η(γ), γ ∈ Γ,

where η(γ), γ ∈ Γ, are randomly selected in the interval [−η, η] for some
η ≥ 0 and for every θ ∈ Θ, the set Γθ contains 7 points randomly selected
inside Tθ. Shown on the left of Figure 3 is a signal gη reconstructed from
the noisy phaseless samples (7.5) via the proposed MAPS algorithm, where
η = 0.01, the original piecewise affine signal f is plotted on the right of
Figure 1, and the maximal reconstruction error ‖|gη| − |f |‖∞ in magnitude
measurements between the original signal f and the reconstructed signal gη
is 0.0360.

Figure 3. Plotted on the left is a reconstructed signal gη
via the MAPS algorithm, while on the right is the difference
||gη| − |f || between magnitude measurements of the recon-
structed signal gη and the original signal f plotted on the
right of Figure 1.
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In the simulation, we consider the performance of the proposed MAP-
S algorithm to construct piecewise affine approximation when the original
signal f of the form (7.4) has evaluations f(λ), λ ∈ Λ on their inner nodes
being randomly selected in [−1, 1]. Denote by gη the reconstructed signal
from the noisy phaseless samples (7.5) via the proposed MAPS algorithm
and let Eη := ‖|gη| − |f |‖∞ be the maximal reconstruction error in mag-
nitude measurements between the original signal f and the reconstructed
signal gη for different noise levels η. Shown in Table 1 is the average of max-
imal reconstruction error Eη in 200 trials. This confirms the conclusion in
Theorem 6.2 that the maximal reconstruction error depends almost linearly
on the noise level η ≥ 0.

Table 1. Maximal reconstruction error via the MAPS algorithm

η 0.04 0.03 0.02 0.01 0.008 0.004 0.002 0.001
Eη 0.1878 0.1366 0.0791 0.0305 0.0226 0.0101 0.0050 0.0025

Appendix A. Density of phaseless sampling sets

In the appendix, we introduce a necessary condition on a discrete set Γ
such that Mf,Γ =Mf for all f ∈ V (Φ). We show that that the density of
such a discrete set Γ is no less than the innovation rate of signals in V (Φ),
see Theorem A.1 and Corollary A.2.

Theorem A.1. Let the domain D, the generator Φ := (φλ)λ∈Λ, the family
T = {Tθ, θ ∈ Θ} of open sets and the linear space V (Φ) be as in Theorem
3.2. If Mf,Γ =Mf for all f ∈ V (Φ) with Mf = {±f}, then

(A.1) D+(Γ) ≥ D+(Λ).

Proof. Take x ∈ D and r ≥ r0. By (2.2) and (2.4), it suffices to prove that

(A.2) #(Γ ∩B(x, r)) ≥ #(Λ ∩B(x, r − r0)).

Assume, on the contrary, that (A.2) does not hold. Then there exists a
nonzero vector (dλ)λ∈Λ∩B(x,r−r0) such that

(A.3)
∑

λ∈B(x,r−r0)∩Λ

dλφλ(γ) = 0, γ ∈ Γ ∩B(x, r).

Recall that φλ, λ ∈ Λ, are supported in B(λ, r0) by Assumption 2.2. Hence

(A.4)
∑

λ∈B(x,r−r0)∩Λ

dλφλ(γ) = 0, γ ∈ Γ\B(x, r).

Therefore the set

W =
{
f :=

∑
λ∈Λ∩B(x,r−r0)

cλφλ : f(γ) = 0, γ ∈ Γ
}
⊂ V (Φ)

contains nonzero signals. Take a nonzero signal f ∈ W . By Theorem
4.3, f =

∑
i∈I fi for some nonzero signals fi ∈ V (Φ), i ∈ I, such that
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Mfi = {±fi}, i ∈ I, and fif
′
i = 0 for all distinct i, i′ ∈ I. This together with

f ∈W implies that fi(γ) = 0 for all γ ∈ Γ and i ∈ I. Hence 0 ∈Mfi,Γ, i ∈ I,
which contradicts with Mfi,Γ =Mfi = {±fi}, i ∈ I. �

From the above argument, we have the following result without the as-
sumption on the family T of open sets in Theorem A.1.

Corollary A.2. Let the domain D and the generator Φ := (φλ)λ∈Λ satisfy
Assumptions 2.1 and 2.2 respectively, and define the linear space V (Φ) by
(2.3). If Γ is a discrete set with Mf,Γ = Mf for all f ∈ V (Φ), then
D+(Γ) ≥ D+(Λ).

We finish this appendix with a remark that the low bound in (A.1) can
be reached when the generator Φ = (φλ)λ∈Λ satisfies that

(A.5) SΦ(λ, λ′) = ∅ for all distinct λ, λ′ ∈ Λ.

As in this case, a signal f ∈ V (Φ) is nonseparable if and only if f = cλφλ
for some λ ∈ Λ. Thus the set Γ = {a(λ), λ ∈ Λ} is a phaseless sampling set
whose upper density is the same as the rate of innovation, where a(λ), λ ∈ Λ,
are chosen so that φλ(a(λ)) 6= 0.
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