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Abstract

Automatic target recognition involves detecting and rec-
ognizing potential targets automatically, which is widely
used in civilian and military applications today. Quadratic
correlation filters were introduced as two-class recognition
classifiers for quickly detecting targets in cluttered scene
environments. In this paper, we introduce two methods that
integrate the discrimination capability of quadratic correla-
tion filters with the multi-class recognition ability of multi-
layer neural networks. For mid-wave infrared imagery, the
proposed methods are demonstrated to be multi-class target
recognition classifiers with very high accuracy.

1. Introduction

Automatic target recognition (ATR) involves detecting
and recognizing potential targets automatically in digitized
video data [22]. ATR was first introduced in the 1980s with
aircraft-mounted targeting pods for military aircraft [21, 8].
Numerous ATR algorithms have been proposed during the
last few decades [22, 21, 3, 2, 1], and it is still a crucial el-
ement to many military applications today [22, 8]. An ATR
system can be divided into four parts [3, 9]: detection, clut-
ter rejection, feature extraction and classification. In this pa-
per, we consider the latter two items together by introducing
a quadratic correlation filter (QCF) coupled with a convolu-
tional neural network (CNN).

QCFs were introduced by Mahalanobis el al. in [13]
to perform target detection. The original QCF is based
on the Fukunaga-Koontz Transform (FKT), which keeps
the eigenvectors corresponding to the largest and smallest
eigenvalues. A single-layer perceptron QCF was introduced
in [14] and shown to be effective for two-class target de-
tection. In many military mid-wave infrared (MWIR) ap-
plications, multi-class target recognition is required. This
suggests the modification of the two-class target detection
methods to support multi-class target recognition.

CNNs were introduced by LeCun et al [10, 11] to
build networks that are invariant to certain transforma-
tions of the inputs. Rather than performing the feature ex-
traction manually, it is built into the network and learned
through the training process [4]. A typical CNN has cor-
relation and pooling layers followed by fully-connected
layers for performing the feature extraction and classifi-
cation. Neural network approaches are broadly catego-
rized as learning-based ATR [22]. In [9], one learning-
based ATR approach uses K-means to cluster dense His-
togram of Gradient (HOG) features for infrared (IR) targets,
where similar visual words are grouped together in a Bag-
of-Words (BoW) classification style. Another proposed
method is the maximum margin correlation filter (MMCF),
which uses a correlation filter coupled with a support vector
machine (SVM) to classify targets [19, 20].

In this paper, we introduce a couple of learning-based
ATR approaches by extending the two-class target detection
method in [14] to a quadratic multi-layer perceptron and
integrating a quadratic correlation filter (QCF) into a CNN
for target recognition. We demonstrate the performance of
our methods using the ATR Algorithm Image Database [23]
mid-wave infrared (MWIR) dataset.

2. Quadratic Correlation Filters
The quadratic correlation filter (QCF) was developed

in [13] to efficiently detect targets in a cluttered scene. In
their paper, a couple of methods are proposed to find a QCF
H to perform target detection. The filter H = FFT−GGT

can be a composite matrix consisting of a filter F to detect
targets and a filter G to detect the background [13, 14]. It
can be applied efficiently to evaluate a scene at every loca-
tion s in the image. If a region of the image x at location
s is rearranged in vectorized form denoted as xs, then the
application of the QCF H is ϕ(xs) = xT

s Hxs, which can
be performed efficiently using a 2D cross-correlation:

ϕ(x) =
∑
i

|x⊗ fi|2 −
∑
j

|x⊗ gj |2 (1)
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Figure 1: Target detection using a quadratic correlation filter (QCF) learned from a single-layer perceptron neural net-
work (SLPNN): (a) Original image with an armoured personnel carrier (BMP2), (b) correlation output. We observe that the
BMP2 can be detected, but not recognized or identified, using this method.

where i is the index of column vectors fi of F and j index
of column vectors gj of G.

A design of QCFs H proposed in [14] minimizes the sum
of the squared error between the output statistic ϕ and the
true label d for all training samples. It is based on the back
propagation training algorithm for kernel neurons to gener-
ate the filter [25]. Denote the statistic of an image patch xn

by
ϕ(xn) = xT

nHxn, 1 ≤ n ≤ Ne,

where Ne = 2NS is the total number of training images.
We expect that xn is a target when ϕ(xn) is positive and
large, it is the background when ϕ(xn) is negative and
small.

Denote the output of the single-layer perception dn ∈
{−1, 1} by 1 when the training image is a target and by
−1 when it is the background. To meet the expectation,
we use a differentiable squashing function, σ(ϕ(xn)) =
tanh(ϕ(xn)), to force the output of ϕ(xn) to be between
−1 and +1, and minimize the objective function

J(H) =
1

2

Ne∑
n=1

|dn−σ(ϕ(xn))|2 =
1

2

Ne∑
n=1

|dn−σ(xT
nHxn)|2.

(2)
We can iteratively solve for H using the gradient descent
algorithm

Ht+1 = Ht − η∇J(Ht), t ≥ 0, (3)

and H0 = 0, where the gradient∇J(H) is given by

∇J(H) = −
Ne∑
n=1

|dn−σ(ϕ(xn))|
(
1− σ2(ϕ(xn))

)
xnxT

n .

(4)

We denote the solution to (3) as H∗ which occurs after
the convergence criterion has been met or T iterations have
occurred. Given a test image patch x, we can classify it as a
target or the background by examining σ(ϕ(x)) which will
be between 0 and 1 for a target and between −1 and 0 for
background, see Figure 1.

3. Proposed Methods

In Section 2, we recalled a single-layer perceptron QCF
for two-class target detection. However, target recogni-
tion requires a multi-class discriminator. Therefore, in this
section we propose a multi-layer perceptron neural net-
work with a quadratic filter input layer for multi-class target
recognition. Since multi-layer perceptron neural networks
are fully-connected networks, the input size must match the
training input patch size. To remedy this, we propose an all-
convolutional CNN with a QCF layer for multi-class target
recognition and take advantage of the invariance properties
of the CNN [4]. In addition, an all-convolutional CNN of-
fers the ability to perform pixel-wise image classification
using only image patches for training [17]. This makes this
type of CNN ideal for ATR applications.

3.1. Quadratic Multi-layer Perceptron Neural Net-
work for Target Recognition

In this subsection, we introduce a quadratic multi-layer
perceptron neural network (QMLPNN) for multi-class tar-
get recognition, see Figure 2. Given an input patch xn, 1 ≤
n ≤ N of size m, the output of the first hidden layer is
a quadratic function, which is learned during the network
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Figure 2: Quadratic multi-layer perceptron neural net-
work (QMLPNN) for target recognition. The first layer is
composed of a quadratic filter which requires a 3D weight
tensor. The rest of the network forms a standard MLPNN.

training, of the form

z(2)n =
(
σ(xT

nH
(1)
k xn + b

(1)
k )
)
1≤k≤K1

, (5)

where K1 is the number of hidden nodes in the first layer,
H(1) =

(
H

(1)
k

)
1≤k≤K1

is a three-dimensional weight ten-

sor of dimensionm×m×K1, b(1) =
(
b
(1)
k

)
1≤k≤K1

forms
a bias vector and σ is a non-linear activation function. The
other hidden layers are composed of conventional activation
functions,

z(`+1)
n =

(
σ(〈h(`)

k , z(`)n 〉+ b
(`)
k )
)
1≤k≤K`

, 2 ≤ ` ≤ L− 1,

(6)
where K` is the number of hidden nodes, H(`) =(
h
(`)
k

)
1≤k≤K`

forms the weight matrix of dimension K` ×
K`−1, b` =

(
b
(`)
k

)
1≤k≤K`

forms the bias vector for the `-th
layer, and L is the total number of layers [4, 15].

We denote the set of all target class types by C and label
each input pattern by dn ∈ C , 1 ≤ n ≤ N . We note that the
last layer hasKL hidden nodes which is equal to the number
of classes in C . Given this, we write H(L) =

(
h
(L)
c

)
c∈C

for convenience. The objective function En(H,b) for the

input patch xn is defined as

En(H,b) =

−
∑
c∈C

[dn = c] log

(
exp (〈h(L)

c , z
(L)
n 〉+ b

(L)
c )∑

j∈C exp (〈h(L)
j , z

(L)
n 〉+ b

(L)
j )

)
(7)

where [i = j] is the Iverson bracket notation for the Kro-
necker delta function, H = {H(1),H(2), ...,H(L)} and
b = {b(1),b(2), ...,b(L)}.

Training is accomplished using gradient descent with
gradients determined by the backpropagation algorithm. All
layers will result in a weight matrix with the exception of
the first layer, which is a three-dimensional tensor. The er-
ror term is

δ(L) = −
(
[dn = c]− P

[
dn = c|z(L)

n ;H(L),b(L)
] )

c∈C
(8)

for the last layer, and

δ(`) =
(
H(`)

)T
δ(`+1) ◦

(
σ′(〈h(`)

k , z(`)n 〉+ b
(`)
k )
)
1≤k≤K`

(9)
for internal layers 2 ≤ ` ≤ L − 1, where we use the
notation ◦ to represent the element-wise Hadamard prod-
uct [15]. The internal layers in the network have standard
fully-connected nodes. As in [4, 15], the gradients associ-
ated with error term δ(`+1) is

∇H(`)En(H,b) = δ(`+1)(z(`)n )T . (10)

However, the framework in the first layer (5) is specifically
designed for multi-target recognition networks. The gra-
dient associated with the objective function En(H,b), is
defined by

∇
H

(1)
k

En(H,b) = δ
(2)
k xnxT

n , 1 ≤ k ≤ K1. (11)

3.2. Quadratic Correlation Filter Convolutional
Neural Network for Target Recognition

In this section, we introduce a quadratic correlation filter
convolutional neural network (QCFCNN) for automatic tar-
get recognition. The weight matrix H(1) =

(
H

(1)
k

)
1≤k≤K1

for the first layer, illustrated in Figure 3, contains multiple
QCFs H(1) of size M1 ×M1 that are applied to the input
image. To apply the weight matrix in the first layer, we de-
fine

Θ
(1)
k = H

(1)
k +

(
H

(1)
k

)T
, (12)

and perform its eigendecomposition

Θ
(1)
k Vk = VkΛk (13)
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Figure 3: First layer of a quadratic correlation filter convo-
lutional neural network (QCFCNN) for target recognition.
The input is correlated with a learned weight eigenvector,
squared, multiplied by the eigenvalue and summed together.
The rest of the QCFCNN is a standard fully convolutional
neural network.

where the diagonal matrix Λk has real eigenvalues λk,M1
≥

λk,M1−1 ≥ · · · ≥ λk,1 as its diagonal entries and orthonor-
mal matrix Vk = [vk,1, · · · ,vk,M1

] contains the corre-
sponding eigenvectors. The first layer is

z(2)n =
(
σ
( M1∑
i=1

λk,i|xn ⊗ vk,i|2 + b
(1)
k

))
1≤k≤K1

(14)

for every location in the image x of height M and width
K, where the symbol ⊗ indicates the 2D cross-correlation
operation. The internal layers are standard convolutional
layers,

z(`+1)
n =

(
σ
(K`−1∑

i=1

h
(`)
k,i⊗z

(`)
n,i+b

(`)
k

))
1≤k≤K`

, 2 ≤ ` ≤ L−1,

(15)
where L is the total number of layers in the CNN.

Training is accomplished by standard backpropagation
for convolutional neural networks. The standard error func-
tion for CNN network internal layers is

δ
(`)
k = upsample

(K`+1∑
i=1

h
(`+1)
k,i ⊗f δ

(`+1)
k

)

◦σ′
(K`−1∑

i=1

h
(`)
k,i ⊗ z

(`)
n,i + b

(`)
k

)
(16)

which can be used to define the gradient, where 2 ≤ ` ≤
L − 1, 1 ≤ k ≤ K` and the notation ⊗f denotes a full
2D cross-correlation operation. However, for the gradient

definition, we must first define the vectorization of a d × d
subimage X

(n)
l,m,

vec
(
X

(n)
l,m

)
= [x

(n)
l,m, · · · , x

(n)
l,m+d−1, x

(n)
l+1,m, · · · ,

x
(n)
l+1,m+d−1, · · · , x

(n)
l+d−1,m, · · · , x

(n)
l+d−1,m+d−1]

T .
(17)

Finally, we can evaluate the gradient for the first layer by

∇
H

(1)
k

En(H,b) =
∂En

∂H
(1)
k

=
∂En

∂Θ
(1)
k

∂Θ
(1)
k

∂H
(1)
k

=
∑
l,m

δ
(2)
k vec

(
X

(n)
l,m

)
vec
(
X

(n)
l,m

)T
,

(18)

where 1 ≤ k ≤ K1.

4. Numerical Experiments
We conducted our simulations using the SENSIAC ATR

Algorithm Image Database [23]. This database is a mid-
wave infrared (MWIR) dataset from the U.S. Army Night
Vision and Electronic Sensors Directorate (NVESD). It
contains 207GB of MWIR data which includes 10 vehi-
cle target types and 2 scenarios of humans. As shown
in Figure 4, we considered all 10 vehicle target types,
which include a Pickup Truck (PICKUP), Sport Utility
Vehicle (SUV), Armored Personnel Carriers (BTR70 and
BMP2), an Infantry Scout Vehicle (BRDM2), a Main Battle
Tank (T72), an Anti-Aircraft Weapon (ZSU23-4), a Self-
Propelled Howitzer (2S3), an Armoured Reconnaissance
Vehicle (MTLB), and a Towed Howitzer (D20). A 40× 80
bounding box is formed around each target using the ground
truth data to generate a target image patch, x, for training.

In our simulations, we select images that contain targets
less than 3000 meters in range from the camera at any time
of day. We train a single neural network (NN) using a differ-
ent class of targets within each range of aspect angles. For
instance, we may divide up a 360◦aspect angle range into
4 separate classes for each target category. For a 10 target
set, this will yield a total of 40 classes. All of these factors
make this a difficult dataset to classify. In our simulations,
a misclassification is only counted if a target is classified
outside of its target category (i.e. aspect angle is ignored).
We train and test the networks using image patches with the
target centered in the patch. For the QCFCNN, we also train
with example background image patches to segment target
areas from background using the embedded QCF. Since this
network is built using all convolutional layers, we can train
with image patches and subsequently use it to perform clas-
sification on larger images giving a weakly-supervised net-
work, see [17].

In our simulations, we apply the QCFCNN in Section 3.2
for target recognition. Shown in Figure 5 are some exam-
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Figure 4: Target images in the visible spectrum: (a) civilian pickup truck (PICKUP), (b) civilian sport utility vehicle (SUV),
(c) armoured personnel carrier (BMP2), (d) armoured personnel carrier (BTR70), (e) main battle tank (T72), (f) infantry scout
vehicle (BRDM2), (g) towed howitzer (D20), (h) armoured reconnaissance vehicle (MTLB), (i) anti-aircraft weapon (ZSU23-
4), and (j) self-propelled howitzer (2S3). We observe that many of the vehicles are very similar in appearance which makes
the target recognition task more difficult.

ples of correctly classified targets containing labeled im-
ages and class label maps created from the output of the
QCFCNN. These examples are created from targets that are
less than 1500 meters from the camera. It is assumed that
target detection has been accomplished and that a window
has been created surrounding the detection. The target class
is determined by taking the mode of a window around the
centroid of the connected components in the QCFCNN out-
put. Some misclassification can occur for the QCFCNN,
see Figure 6 for some examples of misclassification. We
observe that most of the misclassifications occur when there
is similarity between the target types.

In our simulations, we train the QMLPNN with
the quasi-Newton limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) optimization algo-
rithm [16, 12], and the QCFCNN with stochastic gradient
descent and an adaptive gradient algorithm (AdaGrad)
[7, 18]. Their performance for target recognition could be
evaluated by a confusion matrix, see Figure 7. As seen
from their bottom right corners, there is a low probability
to misclassify MTLB and D20 targets, (cf. Figure 6), while
there is a very high accuracy to recognize other targets.

For our simulations, the MLPNN has an input layer, two
hidden layers and an output layer. The QMLPNN is iden-
tical to the MLPNN, but with the first layer replaced with
quadratic function. We used a nine layer CNN with con-
volution, ReLU and pooling layers followed by a softmax
layer. The QCFCNN is identical to the CNN, but with the
first convolution layer replaced with a QCF.

Table 1: Comparison of target recognition classifiers. The
QMLPNN with quadratic layer has 7.3% increase in accu-
racy over the basic MLPNN. Similarly, the QCFCNN with
quadratic correlation filter layer has an increase in accuracy
of 2.32%. The QMLPNN has a 39.46% increase in accu-
racy and the QCFCNN has a 40.03% increase in accuracy
over the baseline linear SVM (without retraining).

Method Training Iter/Tol Accuracy
QMLPNN L-BFGS 1000 iter 0.9813

MLPNN [24] L-BFGS 1000 iter 0.9083
QCFCNN AdaGrad 4680 iter 0.9870
CNN [4] AdaGrad 4680 iter 0.9638
SVM [6] C-SVC 0.001 tol 0.5867

We conducted experiments to compare our methods for
target recognition with the standard convolutional neural
network (CNN) [4], a conventional MLPNN [24] and a lin-
ear support vector machine (SVM) [6]. Table 1 shows the
results from our simulations, where we use 1000 iterations
for QMLPNN and MLPNN, 4680 iterations (or 20 epochs)
for QCFCNN and CNN, and a tolerance of 0.001 in the lib-
svm MATLAB software package for the linear SVM [5].
From Table 1, we learn that substitution of a quadratic layer
causes an increase in accuracy from 90.8% for the standard
MLPNN to 98.1% for the QMLPNN, and a jump in accu-
racy from 96.38% for the standard CNN to 98.7% for the
QCFCNN.

5. Conclusions
The single-layer perceptron QCF has satisfactory per-

formance for two-target discrimination as demonstrated
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 5: Some correctly classified examples: QCFCNN output class label map and labeled image for (a)-(b) main bat-
tle tank (T72); (c)-(d) pickup truck (PKP); (e)-(f) self-propelled howitzer (2S3); (g)-(h) sport utility vehicle (SUV); (i)-(l)
armoured personnel carrier (BMP2); (m)-(p) infantry scout vehicle (BRDM2); (q)-(t) armoured personnel carrier (BTR70).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6: Some mislabeled Examples: QCFCNN output class label map and labeled image for (a)-(b) BRDM2 labeled as
BTR70; (c)-(d) BMP2 labeled as BRDM2; (e)-(f) BTR70 labeled as BRDM2; (g)-(h) BTR70 labeled as BMP2; (i)-(j) SUV
labeled as PKP; Most misclassifications are due to the similarity between target classes.

(a) (b)

Figure 7: (a) Quadratic multi-layer perceptron neural network (QMLPNN) and (b) Quadratic correlation filter convolutional
neural network (QCFCNN) confusion matrices for target recognition with the ATR Algorithm Image Database [23] dataset.
As can be seen in both matrices, the target recognition accuracy is very high. However, in both matrices, there is some
probability of misclassification of the D20 and MTB (MTLB) target types as seen in the lower right corner.
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in [14]. The proposed QCFCNN and QMLPNN, that inte-
grate QCF with multi-layer neural networks, have very high
multi-target recognition rate for mid-wave infrared images.
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