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Abstract—We propose localized conditions to check exponential stability
of spatially distributed linear systems. This paper focuses on systems
whose coupling structures are defined using a geodesic on proximity
communication graphs. We reformulate the exponential stability condition
in the form of a feasibility condition that is amenable to localized imple-
mentations. Using finite truncation techniques, we obtain decentralized
necessary and sufficient stability certificates. In order to guarantee global
stability, it suffices to certify localized conditions over a graph covering,
where the computational complexity of verifying each localized certificate
is independent of network size. Then, we analyze linear networks with
symmetric state-space matrices. Several robustness conditions against
local matrix perturbations are obtained that are useful for tuning network
parameters in a decentralized manner while ensuring global stability.

I. INTRODUCTION

The interest in stability verification of distributed and networked
control systems dates back to a few decades ago. In the context of
infinite-dimensional systems, the existing results in the literature is
limited to characterization of stability conditions in the form of global
(centralized) certificates [1]–[4]. The ongoing research in the context
of finite-dimensional systems is mainly focused on developing decen-
tralized stability conditions for some particular classes of dynamical
networks [5]–[12]. The stability conditions for the class of spatially
invariant systems are studied in [13], where it is shown that stability
conditions in space can be equivalently verified in a proper Fourier
domain using standard tools. In [14], the authors use linear matrix
inequalities to develop a framework to verify stability of a class of
spatially invariant systems in a localized fashion. A more general
methodology to study stability properties of spatially interconnected
systems is proposed in [15], that does not require spatial invariance
in the underlying dynamics of the system. In [16], a spatial truncation
technique is offered to check stability of a class of spatially decaying
systems using covering Lyapunov equations. In [17], the authors
consider robust stability analysis of sparsely interconnected networks
by modeling couplings among the subsystems with integral quadratic
constraints. They show that robust stability analysis of these networks
can be performed by solving a set of sparse linear matrix inequalities.
The string stability of a platoon of vehicles is studied in [18], where
the authors extend the well-known string stability conditions for linear
cascaded networks to nonlinear settings. In [12], the problem of
designing decentralized control laws using local subsystem models is
addressed, where their approach allows decentralized control design
in subsystem level using standard robust control techniques. As it
is discussed in [12], analysis based on their results may result in
quite conservative stability conditions. The authors of [19] propose
an approach based on quadratic invariance, where one needs to verify
stability conditions in a centralized manner. In [20], a localized and
scalable algorithm to solve a class of constrained optimal control
problems for discrete-time linear systems is proposed that uses a
system level synthesis framework. The authors define some notions
of separability that allow parallel implementation of their algorithm.
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Almost all these previous works deal with synthesizing a linear
network using decentralized sufficient conditions. In this paper, we
analyze autonomous networks, where it is assumed that a feedback
control law has been already applied and network is operating
in closed-loop. We propose necessary and sufficient conditions for
localized verification of exponential stability of a class of finite-
and infinite-dimensional spatially distributed systems. Preliminary
versions of some of our results, without proofs and simulations, were
presented in [21], [22]. This submission contains several new results
and extensions with respect to its conference versions.

The recent works [23]–[25] suggest that stability of the class of
spatially decaying systems can be verified in a localized manner using
spatial truncation techniques. In this work, our focus is on a class of
spatially distributed systems whose subsystems are distributed over a
spatial domain and communicate with each other via signal broad-
casting within a finite range. Two subsystems can communicate with
each other if their spatial distance is less than their communication
range. Spatially distributed proximity graphs are employed to model
the communication graph of this class of dynamical networks; see
Figure 4 for an illustrate example. The state matrix of a network in
this class is a band (sparse) matrix, which depends on the underlying
communication graph of the network. In Section IV, we formally
define the class of proximity graphs and introduce a notion of spatial
coverings for their corresponding networks. For a given covering of
a network, we identify a (small) subset of all subsystems, so called
leading subsystems, that plays a crucial role in the verification of
localized stability conditions. In Section V, we provide several cen-
tralized quantitative characterizations of exponential stability property
of spatially distributed linear systems. It is shown that some of these
characterizations are more amenable to localized and decentralized
verification schemes. Several necessary conditions for exponential
stability are obtained in Section VI that can be verified in a localized
manner. We provide a formula for each subsystem to compute a
local stability threshold using local information, which are estimates
for the global stability threshold. In general, our proposed necessary
conditions are conservative, which is a reasonable price for localizing
stability conditions. In Section VII, it is shown that global stability
of a network can be guaranteed by only verifying a set of localized
sufficient conditions in vicinity of leading subsystems. We prove that
these sufficient conditions are also necessary and almost optimal. The
significant feature of our localized verifiable conditions is that they
depend only on the spatially localized portions of the state matrix
of the system and they are independent of the size of the entire
system. The sufficient conditions in Section VII are pivotal for the
design of robust spatially distributed network against new adjustment
(e.g., eliminating an existing or adding a new communication link) in
subnetwork level as it suffices to verify stability conditions for those
affected parts of network.

The sufficient conditions in Theorem 8.4 provide a reliable tool to
re-examine exponential stability of a symmetric linear system on a
spatially distributed network when communication/transmission links
between some subsystems are lost or added, as it suffices to verify
localized stability conditions for affected subsystems. In Section VIII,
we show that our proposed necessary and sufficient conditions take a



more tractable form for symmetric linear networks. It is proven that
the global stability threshold of a symmetric linear network can be
enhanced by improving the localized stability threshold via adjusting
components of properly localized portions of the state matrix. In
Section IX, we show how one can design a new symmetric linear
network via adjusting coupling weights (i.e., elements of the state
matrix) in a localized fashion. We support our theoretical findings by
considering a thorough example in Section X.

The outstanding feature of our proposed framework is that it
provides necessary and sufficient conditions for stability verification
of both finite- and infinite-dimensional linear networks that defined
over discrete spatial networks. The computational complexity of our
proposed sufficient conditions does not depend on network size and
one only needs to verify them for leading subsystems. In Section
XI, we discuss that our proposed methodology can be applied to
other related research fields, including stability analysis of systems
with linear partial differential equation (PDE) models and spatially
distributed nonlinear models.

II. MATHEMATICAL NOTATIONS

The set of nonnegative integers, nonnegative real numbers and
complex numbers with nonnegative real parts are shown by Z+, R+

and C+, respectively. The real and imaginary parts of a complex
number z ∈ C are represented by <(z) and =(z) respectively. For a
matrix A with complex entries, we denote its Hermitian by A∗ and
we define its Hermitian and skew-Hermitian matrix decomposition by

A = Ah + Aah,

where Ah = (A+A∗)/2 and Aah = (A−A∗)/2. For a countable
set V , let `p(V), 1 ≤ p ≤ ∞, contain all vectors c = [c(i)]i∈V with
bounded norm

‖c‖p :=

{ (∑
i∈V |c(i)|

p
)1/p if 1 ≤ p <∞,

supi∈V |c(i)| if p =∞.

Whenever it is not ambiguous, we simply use abbreviated notation `p

to represent the linear space `p(V). The set Bp, 1 ≤ p ≤ ∞, contains
all matrices A on `p with bounded induced norm

‖A‖Bp := sup
‖c‖p=1

‖Ac‖p.

For a set F , we denote its cardinality by #F and define its
characteristic function by

χF (s) :=

{
1 if s ∈ F,
0 otherwise.

III. PROBLEM STATEMENT

The communication topology of a spatially distributed network can
be described by a spatial (possibly infinite) graph

G := (V, E), (1)

where V is the set of nodes (also known as vertices) and E is the
set of edges. Every node in the graph G corresponds to a subsystem
and every edge represents a direct communication link between those
subsystems at the two ends of that edge. In this paper, we consider
networks whose subsystems communicate with each other through
broadcasting within finite signal range. Therefore, two subsystems
can communicate with each other if their distance in the spatial
domain is not greater than their communication range. It is assumed
that all subsystems are using identical communication modules and
that all of them have identical communication range. The resulting
communication graph for this class of networks can be modeled by
spatially distributed proximity graphs.

Fig. 1: Illustration of the spectral condition (7) for an exponentially stable
linear system (5) whose spectrum lies somewhere in the blue shaded
region for some δ > 0.

Assumption 3.1: Throughout this paper, all communication graphs
are undirected and unweighted.

The above assumption implies that communication links are bidi-
rectional and all subsystems have identical communication capabili-
ties.

Definition 3.2: For an undirected and unweighted graph G =
(V, E), define a geodesic distance ρ : V × V → Z+ ∪ {+∞} by
imposing that:

(i) ρ(i, i) = 0 for all i ∈ V;
(ii) ρ(i, j) is the number of edges in a shortest path connecting two

distinct nodes i, j ∈ V; and
(iii) ρ(i, j) = +∞ if there is no paths connecting distinct nodes

i, j ∈ V .
A geodesic distance on a graph ([26]) can be utilized to assess

communication cost between two given subsystems. When two sub-
systems are not neighbors (i.e., not connected through a direct link),
they can still communicate with each other via a chain of intermediate
subsystems that connect them over a shortest path, however the
communication cost between two subsystems becomes higher when
their geodesic distance is bigger.

Definition 3.3: For a communication graph G = (V, E) and a
nonnegative integer τ , a matrix A = [a(i, j)]i,j∈V is called τ -banded
if its entries satisfy

a(i, j) = 0 if ρ(i, j) > τ. (2)

The set of all τ -banded matrices is represented by Bτ (G) or the
abbreviated notation Bτ whenever it is not ambiguous.

For a matrix A = [a(i, j)]i,j∈V , we define its boundedness norm
by

‖A‖∞ := sup
i,j∈V

|a(i, j)|

and its Schur norm by

‖A‖S := max
{

sup
i∈V

∑
j∈V

|a(i, j)|, sup
i∈V

∑
j∈V

|a(i, j)|
}
. (3)

It has been proved that the following hold,

‖A‖∞ ≤ ‖A‖Bp ≤ ‖A‖S ≤ D1(G) (1 + τ)d ‖A‖∞ (4)

for all matrices A ∈ Bτ ∩ Bp, where 1 ≤ p ≤ ∞ [27]. Therefore, a
matrix with finite bandwidth is bounded on `p, 1 ≤ p ≤ ∞, if and
only if it has bounded entries.

The focus of this paper is on the following class of finite- or
infinite-dimensional linear dynamical systems

d

dt
ψ(t) = Aψ(t) (5)



Fig. 2: Illustration of 2-neighborhood of subsystem i, marked by red
color, on a generic communication graph.

with initial condition ψ(0) ∈ `p for some 1 ≤ p ≤ ∞, where
ψ(t) = [ψi(t)]i∈V and the state matrix A = [a(i, j)]i,j∈V is time
independent and belongs to Bτ for some finite bandwidth τ ≥ 0.
A practical implication of having a τ -banded state matrix is that
subsystems with geodesic distance greater than τ do not have a direct
impact on each other’s dynamics.

The exponential stability of the linear system (5), i.e., there exist
strictly positive constants E and α such that

‖ψ(t)‖2 ≤ E e−αt ‖ψ(0)‖2 for all t ≥ 0, (6)

is one of fundamental and widely studied subjects in distributed
control systems literatures, see [3], [13], [28]–[30] and references
therein. Recall that the solution of the linear system (5) is given by

ψ(t) = eAtψ(0), t ≥ 0.

Then its exponential stability is guaranteed by requiring the spectrum
of the state matrix A to lie strictly in the left-half complex plane,
i.e.,

σ(A) ⊆
{
z ∈ C | <(z) ≤ −δ

}
(7)

for some δ > 0; see Figure 1 for an illustration.

The objective of this paper is to characterize spatially localized
conditions, in the form of necessary and sufficient conditions, to verify
the exponential stability condition (7) for both finite- and infinite-
dimensional systems. This is particularly relevant to the following
practical problem in analysis and design of networked systems: how
do localized modifications (e.g., adding new or eliminating existing
links in the communication graph or adjusting coupling weights in
the state matrix) affect the global exponential stability? It is compu-
tationally advantageous to devise a method that allows us to localize
and inspect stability only in relevant parts of a network, instead of
verifying stability conditions globally. Moreover, localized stability
certificates are suitable for decentralized/distributed implementations
as they are only required to utilize local data.

In the following sections, we solve this problem and show that
our localized stability conditions can be implemented in a decen-
tralized/distributed manner and their computational complexity is
independent of network size (e.g., see Theorems 7.1 and 8.4).

Remark 3.4: According to Assumption 3.1, the communication
graph of the linear network (5) is undirected. It should be emphasized
that this assumption does not imply that the state matrix is necessarily
conjugate symmetric. In fact, our results hold for all linear dynamical
networks with arbitrary state matrices having small bandwidth and
real/complex entries.

IV. PROXIMITY GRAPHS AND THEIR COVERINGS

For a given communication graph G = (V, E) equipped with a
geodesic distance ρ, the r-neighborhood of subsystem i ∈ V is

Fig. 3: A 2-covering of a spatially distributed system with 19 subsystems.
This network can also be covered by 1-neighborhood of 6 leading
subsystems.

defined by
B(i, r) :=

{
j ∈ V | ρ(i, j) ≤ r

}
,

see Figure 2 for an illustrative example.
In this paper, we require that the communication graph G = (V, E)

has the following global feature: number of subsystems in the r-
neighborhood and 2r-neighborhood of each subsystem are compara-
ble.

Assumption 4.1: The counting measure µG : 2V 7−→ Z+ of the
communication graph G = (V, E) is a doubling measure, i.e., there
exists a positive number D0(G) ≥ 1 such that

µG(B(i, 2r)) ≤ D0(G)µG(B(i, r)) (8)

hold for all i ∈ V and r ≥ 0, where µG(F ) := #F for all F ⊂ V .

The minimal constant D0(G) for the inequality (8) to hold is
known as the doubling constant of the counting measure µG [27],
[31]. For a communication graph G, one can verify that the doubling
constant D0(G) of its counting measure µG dominates its maximal
node degree, i.e.,

dmax(G) ≤ D0(G).

This implies that every subsystem in a spatially distributed network,
whose communication graph satisfies Assumption 4.1, communicates
with at most D0(G) other subsystems in that network directly.

Definition 4.2: For an integer N > 0, an N -covering of a commu-
nication graph G = (V, E) is a set of indices VN = {im | m ≥ 1}
such that for every subsystem i ∈ V there exists at least one im such
that i ∈ B(im, N/2).

A simple procedure to identify an N -covering is by the following
procedure:

(i) taking an arbitrary subsystem i1 ∈ V for every connected
component of G, and then

(ii) iteratively finding new subsystems im ∈ V for all m ≥ 2 such
that

ρ(im, i1) = min

{
ρ(i, i1)

∣∣∣∣ i 6∈ m−1⋃
m′=1

B(im′ , N/2)

}
. (9)

The resulting N -covering VN from the above algorithm satisfies
the following property [27]: every subsystem i ∈ V is in the
(N/2)-neighborhoods of im ∈ VN at least once and in the 2N -
neighborhoods of im ∈ VN at most (D0(G))5 times, i.e.,

1 ≤ α1 ≤ α2 ≤ D0(G)5 (10)

in which

α1 =
∑

im∈VN

χB(im,N/2)(i), (11)



α2 =
∑

im∈VN

χB(im,2N)(i), (12)

and D0(G) is the doubling constant in (8).
The set of all subsystems in VN are referred to as leading sub-

systems of a spatially distributed system. The importance of leading
subsystems will become more evident later in the paper, e.g., see
results of Theorems 7.1, 7.2 and 8.4, where it is shown that global
stability of a network can be inferred by only verifying a set of
localized sufficient conditions in vicinity of leading subsystems.

The set of leading subsystems constructed through the above
procedure is neither unique nor optimal, see Figure 3 for an illus-
trative example. Therefore, in our results, we can safely employ
any subset ṼN ⊂ V that satisfies inequalities (10) as the set of
leading subsystems. The number of leading subsystems in an N -
covering decreases as N increases. This may impose some trade-
offs between the number of leading subsystems and their minimal
required on-board computational capabilities: when the number of
leading subsystems decreases, they should, in turn, be equipped with
more powerful computers to enable them to verify stability conditions
for larger covering regions.

Definition 4.3: For a communication graph G = (V, E), its
counting measure µG has polynomial growth if there exist positive
constants D1(G) and d such that

µG(B(i, r)) ≤ D1(G)(1 + r)d (13)

for all i ∈ V and r ≥ 0.

For a spatially distributed network with communication graph
G, the smallest constants d and D1(G) for which the inequality
(13) holds are so called Beurling dimension and density of that
network, respectively [27]. For a spatially distributed network whose
subsystems are embedded on a d-dimensional manifold and direct
communication link between two subsystems exists only if their
spatial locations are within a certain range1, its Beurling dimension is
the same as the dimension of the manifold and its density is related
to Ricci curvature of the underlying manifold.

We remark that a doubling measure µG has polynomial growth,

µG(B(i, r)) ≤ D0(G) (1 + r)log2D0(G)

for all i ∈ V and r ≥ 0. However, the Beurling dimension d of
the graph G is usually much smaller than log2D0(G) in the above
estimate.

V. CENTRALIZED EXPONENTIAL STABILITY CONDITIONS

In this section, we present several equivalent versions of the
exponential stability condition (7) of a linear system on a spatially
distributed proximity graph, which will be used in the next two sec-
tions to derive localized sufficient and necessary stability conditions.

Theorem 5.1: Suppose that the state matrix A of the linear system
(5) is in B2. Then, its exponential stability (6) is equivalent to each
of the following statements:

(i) Spectrum of the state matrix A is strictly contained in the open
left-half complex plane, i.e.,

σ(A) ⊂
{
z ∈ C | <(z) ≤ −δ

}
(14)

for some δ > 0.
(ii) zI−A is invertible for all z ∈ C+ and

A0 := inf
z∈C+

‖(zI−A)−1‖−1
B2 > 0. (15)

1e.g., when every subsystem communicates by broadcasting a signal using
its on-board communication hardware modules.

(iii) There exists a positive constant A0 such that

‖(zI−A)c‖2 ≥ A0‖c‖2 (16)

and

‖(zI−A∗)c‖2 ≥ A0‖c‖2 (17)

for all z ∈ C+ and c ∈ `2.
(iv) There exists a positive constant A0 such that

min
{
‖Ad‖22, ‖A∗d‖22

}
≥ A2

0 + |d∗Aahd|2

+
(

max{0,d∗Ahd}
)2 (18)

for all d ∈ `2 with ‖d‖2 = 1.

The equivalence among the first three statements of Theorem 5.1
can be easily established, while the last statement is obtained from
the third one by minimizing the left-hand expression of (16) and (17)
over all z ∈ C+. For the completeness of this paper, a detailed proof
of this theorem is given in Appendix A.

The constant A0 in statements (ii), (iii), and (iv) of Theorem 5.1
can be chosen to be identical; in that case, we refer to A0 as stability
threshold of the linear system (5). Furthermore, it can be proven that if
the statement (ii) of Theorem 5.1 holds, then the spectral set property
(14) will also hold with δ = A0. However, the converse is not true
in general as constant A0 in statement (ii) may depend on A and its
dimension (if it is finite-dimensional). For example, the square matrix
A = [a(i, j)] ∈ Rn×n that is defined by

a(i, j) =


1 if j = i+ 1
−1 if j = i
0 otherwise

has spectrum σ(A) = {−1}, but the inverse matrix A−1 =
[ǎ(i, j)] ∈ Rn×n has its B2-norm tending to infinity as n goes to
infinity, where

ǎ(i, j) =

{
−1 if 1 ≤ i ≤ j ≤ n
0 otherwise.

For this reason, in order to investigate matrices with spectra contained
in the open left-half complex plane, we prefer to use the bound
estimate (15) instead of the spectral set property (14).

As it is shown in the following illustrative example, the stability
threshold of a spatially invariant linear system can be calculated
explicitly.

Example 5.2: It is well-known [3] that a spatially invariant linear
system (5) with a Toeplitz state matrix

A0 =
[
p(i− j)

]
i,j∈Z

is exponentially stable if there exists δ0 > 0 such that

<(p̂(ξ)) ≤ −δ0

for all ξ ∈ R, where

p̂(ξ) =
∑
j∈Z

p(j)e−2πjξ
√
−1.

By direct computation, we have

‖(zI−A0)c‖2 ≥
(

inf
ξ∈R
|z − p̂(ξ)|

)
‖c‖2 (19)

and

‖(zI−A∗0)c‖2 ≥
(

inf
ξ∈R
|z̄ − p̂(ξ)|

)
‖c‖2 (20)

for all z ∈ C+ and c ∈ `2. From these inequalities, we can calculate
the following estimate for the stability threshold A0 of the spatially



invariant linear system

A0 = inf
z∈C+

inf
ξ∈R

∣∣z − p̂(ξ)∣∣, (21)

that satisfies A0 ≥ δ0.
We finish this section with a remark on the connection between

exponential stability of a linear system and matrix stability.
Remark 5.3: The notion of matrix stability for a matrix B ∈ B2,

i.e., there exists a positive constant E such that

‖Bc‖2 ≥ E‖c‖2 for all c ∈ `2,

is one of fundamental tools in frame theory, sampling theory, wavelet
analysis and many other fields [32]–[37], where matrix stability
verification in a decentralized/distributed manner has been studied in
[27], [38]. By Theorem 5.1, exponential stability of the linear system
(5) with a state matrix A can be understood as uniform stability of
the family of matrices zI−A and zI−A∗, z ∈ C+.

VI. DECENTRALIZED NECESSARY CONDITIONS

In this section, we utilize finite truncation techniques to obtain
several decentralized necessary conditions for exponential stability of
the spatially distributed linear network (5). In Section VII, it is shown
that these conditions become also sufficient for large value of N .

Definition 6.1: Suppose that the communication graph G = (V, E)
of a spatially distributed network satisfies Assumption 3.1. For every
node i ∈ V and integer N ≥ 0, the truncation operator χNi : `2 7−→
`2 is defined by

χNi [c(j)]j∈V :=
[
χB(i,N)(j) c(j)

]
j∈V . (22)

The truncation operator χNi localizes a vector to the N -
neighborhood of the subsystem i ∈ V and its action can be
equivalently expressed by a diagonal matrix whose (j, j)-th diagonal
entry is equal to χB(i,N)(j) := χ[0,1](ρ(i, j)/N) for all j ∈ V .

Theorem 6.2: Let G = (V, E) be the communication graph of a
spatially distributed network. Suppose that the state matrix A of the
linear system (5) belongs to Bτ ∩ B2 for some integer τ ≥ 0 and
the system is exponentially stable with stability threshold A0. Then,
inequalities

‖(zI−A)χNi c‖2 ≥ A0‖χNi c‖2 (23)

and

‖(zI−A∗)χNi c‖2 ≥ A0‖χNi c‖2 (24)

hold for all vertices i ∈ V , positive integers N ≥ 1, complex numbers
z ∈ C+, and vectors c ∈ `2.

Proof: Conditions (23) and (24) are the localized version of (16)
and (17) in Theorem 5.1. Since inequalities (16) and (17) hold for all
c in the Hilbert space `2, they also hold for all vectors in {χNi c | c ∈
`2}, which is a subset of `2. Moreover, the constant in (23) and (24)
can be selected to be the same as the one in (16) and (17).

The necessary conditions (23) and (24) are spatially localized and
can be verified in a decentralized/distributed manner by having access
only to local information about the state matrix A. However, they
require evaluations over all complex numbers z ∈ C+. This burden
can be resolved by taking infimum of norm quantities in the left hand
side of conditions (23) and (24) over all z ∈ C+.

Theorem 6.3: Let the communication graph G, stability threshold
A0 and state matrix A be as in Theorem 6.2. Then, inequality

min
{
‖AχNi d‖22, ‖A∗χNi d‖22

}
≥ A2

0 + ΦNi (d) (25)

hold for all N ≥ 1, i ∈ V , and d ∈ `2 with χNi d = d and ‖χNi d‖2 =
1, where

ΦNi (d) =
|d∗χNi Aahχ

N
i d|2 +

(
max

{
0,d∗χNi Ahχ

N
i d
})2

‖χNi d‖22
.

Proof: It is straightforward to verify that

inf
z∈C+

‖(zI−A)χNi d‖22 = d∗χNi A∗AχNi d− ΦNi (d)

and

inf
z∈C+

‖(zI−A∗)χNi d‖22 = d∗χNi AA∗χNi d− ΦNi (d).

These two expressions along with the conclusions in Theorem 6.2
completes the proof.

For i ∈ V and N ≥ 1, let us define

BN (i) := inf
‖χNi d‖2=1

√
min

{
‖AχNi d‖22, ‖A∗χNi d‖22

}
− ΦNi (d).

(26)

Using the following relationship

{χNi d | d ∈ `2} ⊆ {χN+1
i d | d ∈ `2} ⊆ `2,

we have that

BN (i) ≥ BN+1(i) (27)

for all N ≥ 1 and i ∈ V . By Theorem 6.3, this sequence is bounded
below by A0, i.e.,

BN (i) ≥ A0 (28)

for all N ≥ 1 and i ∈ V . In fact, the sequence BN (i) decreases to
A0 as N increases for every i ∈ V , i.e.,

lim
N→∞

BN (i) = A0 for all i ∈ V (29)

by (27) and the fact that⋃
N≥1

{
χNi d

∣∣ d ∈ `2 }
is a dense subset of `2.

For a spatially invariant linear system with a Toeplitz state matrix
A0 =

[
p(i− j)

]
i,j∈Z, the local stability threshold BN (i) in (26) is

independent of the node index i. If the state matrix A0 is further
assumed to have finite bandwidth τ , we can obtain an estimate for
the local stability threshold.

Example 6.4: [Continuation of Example 5.2] For every N ≥ τ ,
i ∈ Z and c = [c(j)]j∈Z ∈ `2, we have

‖(zI−A0)χNi c‖22 =

i+N+τ∑
k=i−N−τ

∣∣∣∑
l∈Z

pz(k − l)cN,i(l)
∣∣∣2

=

i+N∑
k=i−N

∣∣∣∑
l∈Z

pz(k − l)cN,i(l)
∣∣∣2

+

i+N∑
k=i+N−τ+1

∣∣∣∑
l∈Z

pz(k − l)cN,i(l − 2N − 1)
∣∣∣2

+

i−N+τ−1∑
k=i−N

∣∣∣∑
l∈Z

pz(k − l)cN,i(l + 2N + 1)
∣∣∣2,

where z− p̂(ξ) =
∑
j∈Z pz(j)e

−2π
√
−1jξ and χNi c =

[
cN,i(j)

]
j∈Z.

Therefore, we get

‖(zI−A0)χNi c‖22 ≥
i+N−τ∑
k=i−N+τ

∣∣∣∑
l∈Z

pz(k − l)cN,i(l)
∣∣∣2



+
1

2

i+N∑
k=i+N−τ+1

∣∣∣∑
l∈Z

pz(k − l)(cN,i(l − 2N − 1) + cN,i(l))
∣∣∣2

+
1

2

i−N+τ−1∑
k=i−N

∣∣∣∑
l∈Z

pz(k − l)(cN,i(l + 2N + 1) + cN,i(l))
∣∣∣2

≥ 1

2

i+N∑
k=i−N

∣∣∣ i+N∑
l=i−N

pz(k − l)c̃N,i(l)
∣∣∣2,

where c̃N,i =
[
c̃N,i(j)

]
j∈Z is a periodic vector taking the same

values with χNi c on intervals [i−N, i+N ]. Thus,

‖(zI−A0)χNi c‖22 ≥
infξ∈Z/(2N+1) |z − p̂(ξ)|2

2
‖χNi c‖22

for all c ∈ `2. Using the same argument, we can show that

‖(zI−A∗0)χNi c‖22 ≥
infξ∈Z/(2N+1) |z̄ − p̂(ξ)|2

2
‖χNi c‖22

for all c ∈ `2. As a result, we obtain the following estimate for the
local stability threshold of the spatially invariant linear system (5),

BN (i) ≥
√

2

2
inf
z∈C+

inf
ξ∈Z/(2N+1)

|z − p̂(ξ)| (30)

for all N ≥ τ and i ∈ Z. This together with (21) implies that

BN (i) ≥
√

2

2
A0 (31)

for all N ≥ τ and i ∈ Z, where A0 is the stability threshold of the
spatially invariant linear system. To summarize the above argument,
the stability threshold A0 is obtained in a centralized fashion using
Theorem 5.1, while our estimate for the local stability threshold can
be calculated via spatially localized conditions given in Theorem 6.2.
By comparing (28) and (31), one observes that our decentralized
and localized stability conditions provide more loose estimate for the
stability threshold A0. This is the price of going from centralized to
decentralized/distributed verification.

VII. DECENTRALIZED SUFFICIENT CONDITIONS

In this section, we introduce several decentralized sufficient con-
ditions to verify exponential stability of the linear system (5) that
is defined on a spatially distributed proximity graph. Our proposed
sufficient conditions are based on the limit property (29) and the fact
that the localized stability thresholds are uniformly bounded below
by the stability threshold, according to (28).

Theorem 7.1: Let the communication graph G = (V, E) of a
spatially distributed network satisfy Assumption 3.1 and its counting
measure µG have the polynomial growth (13). Suppose that the state
matrix A belongs to Bτ∩B2 for some τ ≥ 0. If there exists a positive
integer N0 ≥ τ and a positive number BN0 satisfying

BN0 ≥ 4τ

√
α∗2
α∗1
‖A‖S N−1

0 (32)

such that ∥∥(zI−A)χN0
im

c
∥∥
2
≥ BN0

∥∥χN0
im

c
∥∥
2

(33)

and ∥∥(zI−A∗)χN0
im

c
∥∥
2
≥ BN0

∥∥χN0
im

c
∥∥
2

(34)

hold for all z ∈ C+, c ∈ `2 and im ∈ VN0 (the set of leading
subsystems according to Definition 4.2), then the linear system (5)
with state matrix A is exponentially stable and its stability threshold

A0 satisfies

A0 ≥
1

2
BN0

√
α∗1
α∗2
, (35)

in which

α∗1 := inf
i∈V

∑
im∈VN0

χB(im,N0/2)(i), (36)

α∗2 := sup
i∈V

∑
im∈VN0

χB(im,2N0)(i). (37)

A detailed proof of Theorem 7.1 is included in Appendix B. The
sufficient conditions (33) and (34) in Theorem 7.1, in their current
form, require verification for all complex numbers z ∈ C+. In
the following result, we obtain an equivalent verifiable condition by
eliminating the complex variable and combining these two conditions
into one.

Theorem 7.2: Suppose that all assumptions of Theorem 7.1 hold.
Then the linear system (5) with state matrix A ∈ Bτ ∩ B2 for some
τ ≥ 1, is exponentially stable if there exist a positive integer N0 ≥ τ
and a constant BN0 satisfying (32) such that

min
{
||AχN0

im
d‖22, ‖A∗χN0

im
d‖22

}
≥ B2

N0
+ ΦN0

im
(d) (38)

for all im ∈ VN0 and vectors d ∈ `2 with χNimd = d and ‖χNimd‖2 =
1, where ΦN0

im
is defined in Theorem 6.3.

We omit a detailed proof of this theorem as it uses similar
arguments as in the proof of Theorem 6.3. The sufficient conditions
in Theorems 7.1 and 7.2 assert that exponential stability can be only
verified in neighborhoods of the leading subsystems, i.e., one only
needs to validate the condition (38) for leading subsystems in VN0 ,
rather than checking them for every single subsystem. This feature
drastically reduces time-complexity of the verification process and
makes it attractive for real-world applications. Our results also suggest
an important design protocol: all leading subsystems of a spatially
distributed system should be equipped with high performance com-
puting and communication modules to allow them to verify localized
stability conditions more reliably and timely.

For the set of leading subsystems VN0 in Theorem 7.1, the
corresponding covering constants α1, α2 in (11) and (12) satisfy the
following inequities according to (10):

1 ≤ α1 ≤ α2 ≤ D1(G)5. (39)

As a result, the right hand side of (32) tends to zero when N0 →∞.
This implies that the sufficient conditions (33) and (34) for exponen-
tial stability of the linear dynamical network (5) is also necessary,
cf. Theorem 6.2. From Theorems 7.1 and 6.2, we conclude that
exponential stability of the linear system (5) can be verified via
a decentralized/distributed manner. Moreover, the global stability
threshold A0 in (16) and (17) and the local stability threshold BN0

in (33) and (34) are comparable through the following inequalities

A0 ≤ BN0 ≤ 2

√
α∗2
α∗1

A0 (40)

for those integers N0 satisfying (32).
The implication of small N0 in real-world applications is that the

leading subsystems can be equipped with less powerful computers
to verify stability conditions. The requirement (32) on size of N0

is conservative, but it is almost optimal. In the following example,
it shows that a linear network may not be exponentially stable even
though conditions (33) and (34) are met with some constant B′N0

that has the same order of N−1
0 as the lower bound in (32) for large

enough N0.



Example 7.3: Let us consider a spatially invariant system whose
state matrix is a bi-infinite Toeplitz matrix A1 = [a1(i − j)]i,j∈Z
with Fourier symbol∑

k∈Z

a1(k)e−2πk
√
−1ξ = −1 + e−2π

√
−1ξ.

It is straightforward to check that A1 is 1-band matrix with ‖A1‖∞ =
1 and property 0 ∈ σ(A1). Therefore, the linear system (5) with state
matrix A1 is not exponentially stable. In the following, we show that
(33) and (34) hold for this system with constant B′N0

= 1
2
N−1

0 . For
every z ∈ C+, i ∈ Z and N0 ≥ 1, we have

inf
‖χN0
i c‖2=1

‖(zI−A1)χN0
i c‖22

= inf∑2N0+1
j=1 |dj |2=1

{
|(z + 1)d1|2 + |d2N0+1|2

+

2N0+1∑
j=2

|(z + 1)dj − dj−1|2
}

= inf∑2N0+1
j=1 |dj |2=1

|z + 1|2 + 1

− 2<
{

(z + 1)

2N0+1∑
j=2

djdj−1

}
. (41)

Let us write z = a+ b
√
−1 ∈ C+. Then, we get

|z + 1|2 − 2<
{

(z + 1)

2N0+1∑
j=2

djdj−1

}

= (a+ 1)2 − 2(a+ 1)<
{ 2N0+1∑

j=2

djdj−1

}

+b2 + 2b=
{ 2N0+1∑

j=2

djdj−1

}

≥ 1 + 2<
{ 2N0+1∑

j=2

djdj−1

}
−
{
=

2N0+1∑
j=2

djdj−1

}2

=
(

1 + <
{ 2N0+1∑

j=2

djdj−1

})2
−
∣∣∣ 2N0+1∑
j=2

djdj−1

∣∣∣2
≥

(
1−

2N0+1∑
j=2

|dj ||dj−1|
)2
−
( 2N0+1∑

j=2

|dj ||dj−1|
)2

= 1− 2

2N0+1∑
j=2

|dj ||dj−1|, (42)

where all the inequalities hold because of∣∣∣ 2N0+1∑
j=2

djdj−1

∣∣∣ ≤ ( 2N0+1∑
j=2

|dj |2
)1/2( 2N0+1∑

j=2

|dj−1|2
)1/2

≤ 1.

Therefore, it follows from (41) and (42) that

inf
‖χN0
i c‖2=1

‖(zI−A1)χN0
i c‖22

≥ inf∑2N0+1
j=1 |dj |2=1

2− 2

2N0+1∑
j=2

|dj ||dj−1|

= inf∑2N0+1
j=1 |ej |2=1,ej∈R

2− 2

2N0+1∑
j=2

ejej−1

= inf∑2N0+1
j=1 |ej |2=1,ej∈R

|e1|2 + |e2N0+1|2

+

2N0+1∑
j=2

|ej − ej−1|2

= 2 sin
π

4N0 + 4
≥ 1

2
N−1

0

for all z ∈ C+, i ∈ Z, and N0 ≥ 1, where the last equality follows
from [39, Lemma 1 of Chapter 9]. Following a similar argument, we
have

inf
‖χN0
i c‖2=1

‖(zI−A∗1)χN0
i c‖22

= inf∑2N0+1
j=1 |dj |2=1

{
|d1|2 + |(z + 1)d2N0+1|2

+

2N0∑
j=1

|(z + 1)dj − dj+1|2
}

≥ 1

2
N−1

0 .

Thus, the conditions (33) and (34) hold with constant B′N0
=

(2N0)−1 for all N0 ≥ 1. On the other hand, we observe that
the underlying communication graph of this system with node set
V = Z has Beurling dimension 1, density 2, and the set of leading
subsystems VN0 = (N0 + 1)Z with covering constants C1 = 1
and C2 = 4. Therefore, the lower bound for the constant BN0 in
(32) is 26N−1

0 . One observes that although conditions (33) and (34)
hold with some constant B′N0

, whose value is smaller than 26N−1
0

but vanishes with the same rate of N−1
0 , the linear system is still not

exponentially stable. This explains the critical role and near-optimality
of the sufficient condition (32).

VIII. SYMMETRIC LINEAR SYSTEMS

In this section, we consider exponential stability of the following
linear system

d

dt
ψ(t) = Bψ(t) (43)

with initial condition ψ(0) ∈ `2, whose state matrix B is Hermitian.
For example, it is straightforward to check that the linear system (5)
with state matrix A and initial condition ψ(0) ∈ `2 is exponentially
stable if the linear system (43) with state matrix B = 1

2
(A + A∗)

and initial condition ψ(0) is exponentially stable. In the following,
we present several equivalent conditions for exponential stability of
the symmetric linear systems (43), which take more simpler forms
than those conditions in Theorem 5.1.

Theorem 8.1: The exponential stability of the linear system (43)
with a Hermitian state matrix B in B2 is equivalent to each of the
following statements:

(i) B is strictly negative definite.
(ii) There exists a positive constant A0 such that

‖(zI−B)c‖2 ≥ A0‖c‖2 (44)

for all z ∈ C+ and c ∈ `2.
(iii) There exists a positive constant A0 such that

c∗Bc ≤ 0 (45)

and

‖Bc‖2 ≥ A0 ‖c‖2 (46)

hold for all c ∈ `2.

Condition (46) implies that constant A0 is equal to the absolute
value of the maximal eigenvalue of negative definite matrix B.



Example 8.2: When the linear system (5) is spatially invariant
with a Hermitian Toeplitz state matrix B0 =

[
p(i − j)

]
i,j∈Z, its

Fourier symbol p̂(ξ) becomes real-valued and takes negative values.
According to (21), stability threshold of the symmetric spatially
invariant linear system is equal to

A0 = inf
ξ∈R
−p̂(ξ).

Building upon Theorem 8.1, we propose the following necessary
conditions that can be verified by evaluating maximum or minimum
eigenvalues of some localized matrices, cf. Theorems 6.2 and 6.3.

Theorem 8.3: Let G = (V, E) be the communication graph of a
spatially distributed linear network (43). Suppose that the symmetric
linear system (43) is exponentially stable with stability threshold A0,
whose state matrix B is a Hermitian matrix in Bτ ∩ B2 for some
τ ≥ 0. Then, the following localized inequalities

c∗χNi BχNi c ≤ 0 (47)

and

c∗χNi B2χNi c ≥ A2
0 ‖χNi c‖22 (48)

hold for all N ≥ τ , i ∈ V , and c ∈ `2.

Proof: It is similar to the proof of Theorem 6.3.
Inequalities (47) and (48) are localized version of global stability

conditions (45) and (46) in Theorem 8.1. For symmetric linear
systems, sufficient conditions for the exponential stability take rather
simple forms.

Theorem 8.4: Suppose that all assumptions of Theorem 7.1 hold
and state matrix B ∈ Bτ ∩B2 is Hermitian for some τ ≥ 0. Then, the
linear system (43) with state matrix B is exponentially stable if there
exists a positive integer N0 and a positive number BN0 satisfying
(32) such that

c∗χN0
im

BχN0
im

c ≤ 0 (49)

and

c∗χN0
im

B2χN0
im

c ≥ B2
N0
‖χN0

im
c‖22 (50)

hold for all im ∈ VN0 and c ∈ `2.

Proof: For every z ∈ C+ and c ∈ `2, by Theorem 8.1, it suffices
to prove the uniform stability for the family of matrices zI−B, i.e.,

‖(zI−B)c‖2 ≥
BN0

2

√
α∗1
α∗2
‖c‖2. (51)

From sufficient conditions (49) and (50), it follows that

‖(zI−B)χN0
im

c‖22 = |z|2 ‖χN0
im

c‖22
−2<(z) c∗χN0

im
BχN0

im
c + ‖BχN0

im
c‖2

≥ B2
N0
‖χN0

im
c‖22

for all c ∈ `2 and im ∈ VN0 . Applying the above estimate and using
similar argument used in the proof of Theorem 7.1, one can conclude
the inequality (51) for all z ∈ C+.

For a given Hermitian matrix B = [b(i, j)]i,j∈V in Bτ ∩ B2,
the sufficient conditions (49) and (50) in Theorem 8.4 are spatially
localized in neighborhoods of each leading subsystem im ∈ VN0 ,
where each leading subsystem has to only have access to localized
portions of state matrix B determined by truncation operator χN0

im
. In

particular, the requirement (49) holds if the largest eigenvalue of the
spatially localized principal submatrix [b(j, j′)]j,j′∈B(im,N) is non-
positive for every subsystem im ∈ VN0 . For a Hermitian matrix B,

let us define

B̃N (i) = inf
‖χNi c‖2=1

‖BχNi c‖2 (52)

in which N ≥ 1 and i ∈ V . The quantity B̃N (i) is equal to the square
root of the smallest eigenvalue of the spatially localized matrix

χNi B2χNi =

 ∑
k∈B(j,τ)∩B(j′,τ)

b(j, k)b(k, j′)


j,j′∈B(i,N)

(53)

that can be evaluated in a decentralized/distributed manner. Then,
the constant B̃N0 in (50) can be thought of as the uniform stability
threshold for small-scale systems with state matrices χN0

im
B2χN0

im
for

all im ∈ VN0 .
Using a similar argument that leds to (29), one can verify that
{B̃N (i)}∞N=τ is a decreasing sequence that converges to A0 for every
i ∈ V , i.e.,

lim
N→∞

B̃N (i) = A0 (54)

for all i ∈ V . Inequalities (40) and (51) imply that the global
stability threshold of a symmetric linear dynamical network can be
enhanced by improving the localized stability threshold via adjusting
components of properly localized portions of the state matrix. The
following section shows how this idea can be implemented.

IX. DESIGN OF SPATIALLY DISTRIBUTED NETWORKS

In this section, we consider the problem of coupling weight
adjustment between a given pair of subsystems in an exponentially
stable symmetric linear dynamical network (43). The coupling weight
between subsystems k, l ∈ V can be adjusted in a localized manner
via the following class of feedback control laws

u(t) = wEkl ψ(t) (55)

that modifies the dynamics of (43) as follows

d

dt
ψ(t) = Bψ(t) + u(t), (56)

where w is a scalar feedback gain, Ekl = [e(i, j)]i,j∈V , and

e(i, j) =

{
1 if (i, j) ∈ {(k, l), (l, k)}
0 otherwise.

The conclusion of Theorem 8.4 plays a critical role in computing an
admissible range of values for the scalar w such that the resulting
closed-loop network

d

dt
ψ(t) = (B + wEkl)ψ(t) (57)

remains exponentially stable with stability threshold equal or greater
than the original network. From network design perspective, when an
existing coupling between subsystems k and l satisfies b(k, l) > 0 in
the state matrix B = [b(i, j)]i,j∈V , local weight adjustment law (55)
will strengthen the existing coupling when w > 0 and weaken the
existing coupling (and possibly zero it out) whenever w < 0.

To state the following main result of this section, we let Bτ (M)
denote the set of all band matrices B ∈ Bτ with bounded entries
‖B‖∞ < M , where τ ∈ Z+ and M ∈ R+.

Theorem 9.1: Suppose that the communication graph G = (V, E)
of the linear control network (56) satisfies Assumption 3.1, its
counting measure µG enjoys the polynomial growth property (13), and
the state matrix B is a strictly negative definite matrix in Bτ (M)∩B2.
A positive integer N0 exists such that

B̃N0 := inf
im∈VN0

B̃N0(im)



Fig. 4: The red dots show spatial locations of 500 subsystems that are
randomly and uniformly distributed in a square-shape region of size
100 × 100. The blue links represent the communication graph among
these subsystems as discussed in Section X.

≥ 4M

√
α∗2
α∗1

D1(G) τ(τ + 1)dN−1
0 (58)

in which B̃N (i) is defined by (52). For every pair of subsystems
k, l ∈ V with ρ(k, l) ≤ τ , let us define the following quantities

ηkl = inf
ρ(k,im)≤N0
ρ(l,im)≤N0

inf
‖PN0

im
c‖2=1

<
(
(PN0

im
c)∗EklBPN0

im
c
)

(59)

and

βkl = sup
ρ(k,im)≤N0
ρ(l,im)≤N0

sup
‖PN0

im
c‖2=1

<
(
(PN0

im
c)∗EklBPN0

im
c
)
, (60)

where PN0
im

is the projection matrix onto the eigenspace of the
localized matrix χN0

im
B2χN0

im
corresponding to its smallest eigenvalue,

which is equal to
(
B̃N0(im)

)2. Then, the following design rules hold:

(i) When ηkl > 0, there exists ε0 > 0 such that for all w in (0, ε0)
the resulting closed-loop network (57) is exponentially stable with
the state matrix B + wEkl that still belongs to Bτ (M).

(ii) When βkl < 0, there exists ε1 > 0 such that for all w in (−ε1, 0)
the resulting closed-loop network (57) is exponentially stable with
the state matrix B + wEkl that still belongs to Bτ (M).

A detailed proof of the above theorem can be found in Appendix
C. Suppose that

{
eN0
im1

, . . . , eN0
imk

}
is an orthonormal basis of the

eigenspace corresponding to the smallest eigenvalue of (53). Then,
the projection matrix in Theorem 9.1 can be explicitly represented
by

PN0
im

=

k∑
s=1

eN0
ims

(eN0
ims

)T .

When the smallest eigenvalue is simple with normalized eigenvector
qN0
im

, the project matrix is given by

PN0
im

= qN0
im

(qN0
im

)∗.

In this case, the norm constraint ‖PN0
im

c‖2 = 1 implies that PN0
im

c =

Fig. 5: A 2-covering of the communication graph in Figure 4.

qN0
im

. This gives us the following closed-form solutions

inf
‖PN0

im
c‖2=1

<
(
(PN0

im
c)∗EklBPN0

im
c
)

= <
(

(qN0
im

)∗EklBqN0
im

)
and

sup
‖PN0

im
c‖2=1

<
(
(PN0

im
c)∗EklBPN0

im
c
)

= <
(

(qN0
im

)∗EklBqN0
im

)
that are useful in calculating quantities ηkl and βkl. Computation of
quantities ηkl and βkl only involve those entries b(i, j) of state matrix
B whose indices satisfy

i, j ∈ B(k, 2N0 + τ) ∩B(l, 2N0 + τ).

Therefore, the requirements ηkl > 0 and βkl < 0 in Theorem 9.1 can
be verified by utilizing localized information about the state matrix
B in neighborhoods of subsystems k, l ∈ V .

The design parameter N0 determines the size of neighborhoods
required to compute quantities ηkl and βkl using localized matri-
ces. Suppose that N0 and B̃N0 are chosen properly to satisfy the
inequality (58). According to (4), (32), and (35), stability threshold
of all networks with state matrices in Bτ (M) is lower bounded by
ÃN0 := 1

2
B̃N0

√
α∗1/α

∗
2. Theorem 9.1 shows that state matrix of the

resulting closed-loop networks still belong to Bτ (M), which implies
that their stability threshold is guaranteed to be greater than ÃN0 .

In summary, the result of Theorem 9.1 asserts that: a properly
chosen positive feedback gain w when ηkl > 0, and a properly
chosen negative feedback gain w when βkl < 0, will both result in
exponentially stable closed-loop networks with guaranteed stability
thresholds.

Remark 9.2: The conclusions of Theorem 9.1 will remain true if
matrix Ekl is replaced by rotation matrix Rkl(θ) whose (k, l)-th and
(l, k)-th entries are sin θ, (k, k)-th entry is cos θ, and (l, l)-th entry
is − cos θ for some 0 ≤ θ ≤ π. Moreover, one can establish similar
results when the matrix Ekl in Theorem 9.1 is replaced by Lij where
Lij = eie

∗
i +eje

∗
j −Eij and ei’s are the standard basis for `2. This

is particularly useful when the state matrix B is a graph Laplacian.

X. NUMERICAL SIMULATIONS

In this section, we interpret and illustrate some of the key concepts
that are described and utilized in previous sections. We consider
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Fig. 6: Location of all 500 eigenvalues of the state matrix of the linear
dynamical network as discussed in Section X.

a linear dynamical network consisting of 500 subsystems which
are randomly and uniformly distributed over a square-shape region
of size 100 × 100 square meter. Let us denote spatial location of
subsystem i ∈ {1, 2, . . . , 500} by xi ∈ [0, 100] × [0, 100]. The
communication graph of this network is denoted by G = (V, E) and
defined as follows: there is an undirected communication link between
subsystems i and j, i.e., {i, j} ∈ E , only if the Euclidean distance
between subsystems i and j, i.e., ‖xi−xj‖2, is less than or equal to
10 meter; otherwise, there is no communication link between the two
subsystems. Figure 4 depicts a sample communication graph obtained
according to the above procedure, and Figure 5 is a 2-covering of
the underlying connected graph, where the graph has diameter 18,
Beurling dimension 2 and density 8.1389, and the number of leading
subsystems is 62 (i.e., there are 62 localized regions).

We assume that state variable of each subsystem is scalar, i.e.,
ψi ∈ R for all i ∈ {1, 2, . . . , 500}. We utilize shortest path on
communication graph G as geodesic distance ρ(i, j) to define state
matrices of this class of linear networks. In our simulations, the
bandwidth is set to τ = 1. We construct state matrix A = [a(i, j)] ∈
R500×500 of our linear networks using the communication graph of
Figure 4,

a(i, j) =


−1 if j = i

sgn(ζ) 0.05 e−α‖xi−xj‖
β

if 0 < ρ(j, i) ≤ τ
0 if ρ(j, i) > τ,

where decay parameters are α = 0.05 and β = 0.9. In order to show
that our methodology works for a broad class of systems, sign of
each entry a(i, j) is chosen randomly using sgn(ζ), where sgn(·)
is the sign function and ζ is a random variable drawn from the
standard normal distribution. After executing these steps, we adopted
one sample matrix A for our simulation purposes. The resulting linear
dynamical network is time-invariant, whose dynamics is governed
by (5) with state vector ψ ∈ R500. The value of the Schur norm
(3) of the state matrix is ‖A‖S = 2.0057 and all eigenvalues of
A are located in the left-hand-side of the imaginary axis as it is
shown in Figure 6. The red-dashed line in Figure 6 corresponds to
{z ∈ C | z = −A0+ξ

√
−1 for all ξ ∈ R}, where the global stability

threshold A0 is equal to 0.7702.
In Figure 7, we show that the number of leading agents, according

to Definition 4.2, in a N0-covering of the network decreases as N0

increases. We applied the algorithm described in Definition 4.2 in
order to find N0-coverings. This algorithm may not be optimal, but
it works well for both finite and infinite graphs. The following table
shows our data for a sample execution of this algorithm on G:
We note that the number of leading subsystems is equal to the network
size when N0 = 1, and it is equal to 1 when N0 is equal to the graph
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Fig. 7: Number of leading subsystems in N0-covering decreases as N0

increases.

N0 1 3 5 7 9 11 13 15 17 18
#VN0 500 55 23 14 9 7 6 3 3 1

diameter.
The parameter BN0 in the inequality (33) and (34) can be inter-

preted as an estimate for the global stability threshold A0; cf. with
inequalities (23) and (24). Figure 8 depicts that the quantity in the
right hand side of the inequality (32), which is a lower bound for
the localized stability threshold BN0 , decays rapidly as radius of N0-
covering increases. The following table gives the corresponding BN0 ,
which has been rounded up to fit in our table, for a sample simulation:

N0 1 3 5 7 9 11 13 15 17 18
The lower bound for BN0 66.6 16.7 7.7 4.3 2.7 1.9 1.5 0.92 0.81 0.45

We observe that for N0 = 18, the lower bound for BN0 is around
0.45. This is compatible with the estimate in (40) as 0.45 is a lower
bound for the localized stability threshold.

The inequality (35) shows the relationship between the global
stability threshold A0 and localized stability threshold BN0 and how
one should choose a proper value for N0 in Theorem 7.1. Figure
9 illustrates how the lower bound in inequality (35) decays as N0

increases. The red-dashed line marks the value of A0 = 0.7702. In
computing this lower bound, the value of BN0 is assumed to be equal
to the lower bound of (32). According to Figure 9 and the following
table, N0 should be chosen any integer number between 5 and 18.

N0 1 3 5 6 7 9 11 13 15 17 18
A0 4.01 1.34 0.80 0.67 0.57 0.45 0.37 0.31 0.27 0.24 0.22

In Theorem 7.1, parameters α∗1 and α∗2 play a crucial role in having
a proper estimate of the localized stability threshold BN0 . Figure 10
depicts quantitative behavior of these two parameters. The numerical
values for α∗2 is given in the following table.

XI. DISCUSSION AND CONCLUSION

This work proposes a decentralized algorithm to verify exponential
stability of linear dynamical network that are defined over spatial
proximity communication graphs. Several necessary and sufficient
conditions have been formulated that can be utilized to check ex-
ponential stability of a large class of finite- and infinite-dimensional
linear systems. There are several related problems and areas that can
benefit from our proposed methodology in this paper:
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Fig. 9: Lower bound for A0

Stability of Partial Differential Equations (PDE): There has been
continued interested in characterizing stability conditions of dy-
namical systems with PDE models [2], where the main focus has
been on obtaining centralized conditions. Stability of linear PDEs
with spatially-invariant coefficients can be characterized in terms
of spectrum of the corresponding linear operators [2], [3], where
similar spectral methods cannot be applied to check stability of linear
PDEs with spatially varying coefficients2. Some linear PDEs with
spatially invariant or varying coefficients can be discretized over their
underlying spatial domain at certain scale and they be approximated
by the resulting counterparts, which results in infinite-dimensional
linear systems similar to (5). Whenever the resulting state matrix is
banded for some small τ > 0, our proposed methodology can be
applied to verify stability of the linear PDEs using spatially localized
certificates.

Stability of Spatially Distributed Nonlinear Systems: Our method-
ology can be extended to check stability of equilibria of spatially
distributed systems with nonlinear dynamics. Let us consider a
nonlinear system of the form

d

dt
ψ = F (ψ), t ≥ 0, (61)

where ψ(t) = [ψi(t)]i∈V ∈ `2 and F : `2 → `2. It is assumed
that a suitable notion of a solution exists for this system. Following
Definition 3.3, we say that the nonlinear system (61) is τ -banded
over the communication graph G = (V, E) if F (ψ) = [Fi(Ψi)]i∈V

2This can be compared to the more familiar case of finite-dimensional
linear time-invariant (LTI) systems versus linear time-varying systems (LTV).
Stability of an LTI system can be inferred from location of eigenvalues of
its state matrix, while stability of a LTV system cannot be deduced from
eigenvalues of its time-varying state matrix.
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Fig. 10: Behavior of α∗1 and α∗2 as size of covering N0 increases.
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for some continuously differentiable functions Fi on Cq , where q =
#(B(i, τ)∩V) and Ψi = [ψj ]j∈B(i,τ)∩V for all i ∈ V . Let us define
the gradient A(ψ∗) = ∇ψF (ψ∗) (with respect to ψ at working point
ψ∗) of the nonlinear system (61) with (i, j)-th entry a(i, j) given by

a(i, j) =

{
∂Fi
∂ψj

(ψ∗) if ρ(i, j) ≤ τ
0 if ρ(i, j) > τ,

where ρ is a geodesic distance on G. By assuming that ψ∗ is a
hyperbolic equilibrium and the initial state ψ(0) is close to ψ∗, our
proposed localized stability certificates can be applied to the nonlinear
dynamic system (61) with the linearized state matrix A(ψ∗) to infer
stability in a spatially localized manner.

Stability of Spatially Distributed Systems on `∞: Let us consider the
following control system

d

dt
ψ(t) = Aψ(t) + ξξξ(t), (62)

with initial condition ψ(0) ∈ `∞, that is driven by a time-dependent
bounded control or exogenous noise ξξξ(t) = [ξi(t)]i∈V . Suppose that
the control system is exponentially stable on `∞, i.e., there exist
strictly positive constants C and α such that

‖eAtψ(0)‖∞ ≤ Ce−αt‖ψ(0)‖∞ (63)

for all t ≥ 0, then we have

‖ψ(t)‖∞ ≤

∥∥∥∥∥
∫ t

0

eA(t−s)ξξξ(s)ds+ eAtψ(0)

∥∥∥∥∥
∞

≤ Ce−αt‖ψ(0)‖∞ + C

∫ t

0

e−α(t−s)‖ξξξ(s)‖∞ds

≤ Ce−αt‖ψ(0)‖∞ + Cα−1 sup
0≤t≤s

‖ξξξ(s)‖∞.

This implies that control system (62) with bounded input has bounded
state ψ(t) for all t ≥ 0. It is proven in [29] that if the linear system
(62) is exponentially stable on `2, i.e., the inequality (6) holds, then it
is also exponential stable on `∞, i.e., the inequality (63) holds. When
the state matrix A belongs to Bτ ∩ B2, we have that the constant C
in (63) will depend only on the constants E,α given in (6), Beurling
dimension d, Beurling density D1(G) and doubling constant D0(G)
of the graph G, bandwidth τ , and the value of ‖A‖∞. From this
argument, we conclude that our proposed methodology in this paper
can be applied to the control system (62) driven by input (which can
be a feedback control law or exogenous noise) to infer global stability



in a decentralized manner.

APPENDIX

PROOF OF THEOREMS

A. Proof of Theorem 5.1

We divide the proof into the following three implications

(i)⇐⇒ (ii)⇐⇒ (iii)⇐⇒ (iv)

and prove them one by one. First, we start with (i)⇐⇒(ii). The
sufficiency follows as the quantity ‖(zI − A)−1‖B2 is continuous
about z with <(z) ≥ 0 and it tends to zero as |z| → +∞. For the
necessity, we have

(wI−A)−1 = ((w − a)I−A)−1
∞∑
n=0

(−a((w − a)I−A)−1)n

(64)

for all w ∈ C with <(w) > −A0, where a = min{0,<(w)}. The
Neumann series expansion in (64) holds as

|a|‖((w − a)I−A)−1‖B2 ≤ |a|/A0 < 1.

Therefore,

σ(A) ⊂ {z ∈ C, <(z) ≤ −A0}, (65)

which proves statement (i) with δ = A0.
Next, we show (ii)⇐⇒(iii). The sufficiency holds as matrices zI−

A and zI−A∗, where <(z) ≥ 0, have uniformly bounded inverses.
To prove the necessity, let us pick a z ∈ C with <(z) ≥ 0. By the
`2-stability property (16), it suffices to prove that the range of zI−A
is the entire `2 space. Let us suppose, on the contrary, that orthogonal
complement of the range is nontrivial, i.e., there exists 0 6= d ∈ `2
such that d∗(zI−A)c = 0 for all c ∈ `2. Thus, (z̄I−A∗)d = 0,
which together with the `2-stability property (16) for z̄I−A∗ implies
that d = 0. This is a contradiction, which proves our claim.

Finally, we prove (iii)⇐⇒(iv). The implication follows from the
following:

inf
<(z)≥0

‖(zI−A)c‖22

= inf
<(z)≥0

|z|2c∗c− z̄c∗A∗c− zc∗Ac + c∗A∗Ac

= c∗A∗Ac− |c
∗Aahc|2 + (max(0, c∗Ahc))2

‖c‖22
and

inf
<(z)≥0

‖(zI−A∗)c‖22

= c∗AA∗c− |c
∗Aahc|2 + (max(0, c∗Ahc))2

‖c‖22
for all c ∈ `2.

B. Proof of Theorem 7.1

Let us pick z ∈ C+ and c ∈ `2. By Theorem 5.1, it suffices to
prove the uniform stability for matrices zI−A and zI−A∗, i.e.,

‖(zI−A)c‖2 ≥
BN0

2

√
α1

α2
‖c‖2 (66)

and

‖(zI−A∗)c‖2 ≥
BN0

2

√
α1

α2
‖c‖2. (67)

For every subsystem i ∈ V and integer N ≥ 0, we define operator
ΨN
i : `2 → `2 by

ΨN
i : [c(j)]j∈V 7−→

[
ψ0(ρ(i, j)/N)c(j)

]
j∈V

in which ψ0 is the trapezoid function given by

ψ0(t) =


1 if |t| ≤ 1/2
2− 2|t| if 1/2 < |t| ≤ 1
0 if |t| > 1.

Similar to the truncation operator χNi in (22), the operator ΨN
i

localizes a vector to the N -neighborhood of subsystem i, which
can be represented as a diagonal matrix whose diagonal entries are
ψ0(ρ(i, j)/N) for all j ∈ V , and it can be thought of as a smooth
version of the truncation operator χNi : `2 → `2 in (22). By the local
stability assumption (33), we have

‖(zI−A)ΨN0
im

c‖2 ≥ BN0‖Ψ
N0
im

c‖2 (68)

for all c ∈ `2 and im ∈ VN0 . Let us denote A = [a(i, j)]i,j∈V .
Then, for every c = [c(j)]j∈V we obtain∑
im∈VN0

‖(AΨN0
im
−ΨN0

im
A)c‖22

=
∑

im∈VN0

‖(AΨN0
im
−ΨN0

im
A)χ2N0

im
c‖22

≤
∑

im∈VN0

∑
i∈V

{ ∑
ρ(i,j)≤τ

|a(i, j)|χB(im,2N0)(j) |c(j)|

×
∣∣∣∣ψ0

(
ρ(i, im)

N0

)
− ψ0

(
ρ(j, im)

N0

)∣∣∣∣ }2

≤ 4
∑

im∈VN0

∑
i∈V

{ ∑
ρ(i,j)≤τ

|a(i, j)| ρ(i, j)

N0
χB(im,2N0)(j) |c(j)|

}2

≤ 4τ2N−2
0 ‖A‖

2
S

∑
im∈VN0

‖χ2N0
im

c‖22

≤ 4τ2N−2
0 α2‖A‖2S ‖c‖22, (69)

in which the second inequality follows from the Lipschitz property
for the trapezoid function ψ0 and the third one holds by the second
inequality in (4). By combining (68) and (69), we get

√
α2 ‖(zI−A)c‖2 ≥

( ∑
im∈VN0

‖ΨN0
im

(zI−A)c‖22
)1/2

≥
( ∑
im∈VN0

‖(zI−A)ΨN0
im

c‖22
)1/2

−
( ∑
im∈VN0

‖(AΨN0
im
−ΨN0

im
A)c‖22

)1/2
≥ BN0

( ∑
im∈VN0

‖ΨN0
im

c‖22
)1/2

− 2
√
α2 τ N

−1
0 ‖A‖S‖c‖2

≥
(
BN0

√
α1 − 2

√
α2 τ N

−1
0 ‖A‖S

)
‖c‖2.

This together with (32) proves (66). By applying similar arguments,
we can establish the lower bound estimate in (67).

C. Proof of Theorem 9.1

According to our assumptions, the state matrix B is a strictly
negative definite matrix in Bτ (M)∩B2. By Theorem 8.4, it suffices
to find proper positive or negative weight adjustment w such that

c∗ χN0
im

(
B + wEkl

)
χN0
im

c ≤ 0 (70)

and ∥∥(B + wEkl)χ
N0
im

c
∥∥2
2
≥
(
B̃N0

)2 ∥∥χN0
im

c
∥∥2
2

(71)

hold for all im ∈ VN0 and c ∈ `2, where B̃N0 is the constant in (50)
for the matrix B.



The proof of part (i) of the theorem is as follows. Since B ∈ Bτ (M)
and ρ(k, l) ≤ τ , we have |b(k, l)| < M . Hence,

B + wEkl ∈ Bτ (M)

if

|w| ≤ M − |b(k, l)|. (72)

We observe that (32) holds according to (4), (58), and the as-
sumption B ∈ Bτ (M). Therefore, B is strictly negative definite by
Theorem 7.1. Moreover, it follows from (66) and (58) that

c∗Bc ≤ −BN0

2

√
C0

C1
‖c‖22

≤ −2MD1(G) τ(τ + 1)dN−1
0 ‖c‖22 (73)

for all c ∈ `2. Direct calculations reveal that∣∣c∗Eklc∣∣ ≤ ‖c‖22 for all c ∈ `2.

This together with (73) implies that B + wEkl is negative definite
matrices and, as a result, inequality (70) holds for all w satisfying

|w| < 2MD1(G) τ(τ + 1)dN−1
0 . (74)

Now, suppose that im ∈ VN0 such that k, l ∈ B(im, N0), where k
and l are indices of Ekl. From the definition of the projection matrix
PN0
im

, it follows that there exists C̃N0(im) > BN0(im) such that

‖BχN0
im

c‖22 ≥ B̃N0(im)2 ‖Pimc‖22
+ C̃N0(im)2 ‖χN0

im
c−Pimc‖22 (75)

for all c ∈ `2. In fact, the second smallest eigenvalue of the matrix
χN0
im

B2χN0
im

, if it exists, can be employed as the constant C̃N0(im) in
(75). Let us choose c1 = Pimc and c2 = χN0

im
c−Pimc for c ∈ `2.

Then,
‖χN0

im
c‖22 = ‖c1‖22 + ‖c2‖22.

For any positive weight w, we obtain

‖(B + wEkl)χ
N0
im

c‖22
= c∗χN0

im
B2χN0

im
c + 2w<

(
c∗χN0

im
EklBχ

N0
im

c
)

+ w2‖EklχN0
im

c‖22
≥ c∗χN0

im
B2χN0

im
c + 2w<

(
c∗χN0

im
EklBχ

N0
im

c
)

≥ B̃N0(im)2 ‖c1‖22 + C̃N0(im)2 ‖c2‖22 + 2w<
(
c∗1EklBc1

)
− 2w ‖Eklc2 ‖2‖BχN0

im
c‖2 − 2w ‖Eklc1‖2 ‖Bc2‖2

≥
(
B̃N0(im)2 + 2wηkl

)
‖c1‖22

+
(
C̃N0(im)2 − 2wMD1(G)(σ + 1)d

)
‖c2‖2

− 4wMD1(G)(σ + 1)d ‖c1‖2 ‖c2‖2
≥ B̃N0(im)2 ‖χN0

im
c‖22 +

(
C̃N0(im)2 − B̃N0(im)2

)
‖c2‖22

− 2wMD1(G)(σ + 1)d
(
D1(G)(σ + 1)d

ηij
+ 1

)
‖c2‖22,

in which the second inequality holds according to (75) and the third
inequality follows from (4) and the observation

‖Eklc‖2 ≤ ‖c‖2 for all c ∈ `2.

Hence, the inequality (71) holds when

0 < w <
ηkl
(
C̃N0(im)2 − B̃N0(im)2)

2MD1(G)(σ + 1)d
(
MD1(G)(σ + 1)d + ηkl

) . (76)

This together with (72) and (74) proves the first conclusion with ε0

given by

ε0 = min

{
M − |b(k, l)|, 2MD1(G)σ(σ + 1)dN−1

0 ,

ηij
(
C̃N0(im)2 − B̃N0(im)2

)
2MD1(G)(σ + 1)d

(
MD1(G)(σ + 1)d + ηij

)}.
The proof of part (ii) of the theorem is as follows. Similar to the
arguments used in proof of part (i), for negative weight w, one can
obtain

‖(B + wEkl)χ
N0
im

c‖22 ≥
(
B̃N0(im)2 + 2wβkl

)
‖c1‖22

+
(
C̃N0(im)2 + 2wMD1(G)(σ + 1)d

)
‖c2‖2

+ 4wMD1(G)(σ + 1)d ‖c1‖2 ‖c2‖2
≥ B̃N0(im)2 ‖c1‖22 + C̃N0(im)2 ‖c2‖22

+ 2wMD1(G)(σ + 1)d
(

1− D1(G)(σ + 1)d

βkl

)
‖c2‖22.

Therefore, the second conclusion holds by letting

ε1 = min

{
M − |b(k, l)|, 2MD1(G)σ(σ + 1)dN−1

0 ,

−βij
(
(C̃N0(im))2 − (B̃N0(im))2)

2MD1(G)(σ + 1)d
(
MD1(G)(σ + 1)d − βij

)}.
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