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Abstract—The recovery of missing samples from available
noisy measurements is a fundamental problem in signal process-
ing. In the graph setting, the aim is to recover missing samples
on a subset of vertices using samples from other vertices. This
process is also sometimes known as graph signal inpainting,
reconstruction, forecasting or inference. Many of the existing
algorithms do not scale well with the size of the graph and/or they
cannot be implemented efficiently in a distributed manner. In this
paper, we develop efficient distributed algorithms for the recovery
of time-varying graph signals. The a priori assumptions are that
the signal is smooth with respect to the graph topology and
correlative across time. These assumptions can be incorporated
in an optimization formulation of the algorithm via Tikhonov
regularization terms. Although this approach is widely used
in many graph signal processing problems, our formulation is
tailored to yield algorithms that can be efficiently implemented
in a distributed manner. Two different distributed algorithms,
arising from two different formulations, are proposed to solve
the optimization problems. The first involves the ¢>-norm, and
a distributed least squared recovery algorithm (DLSRA) is
proposed that leverages the graph topology and sparsity of the
corresponding Hessian matrix. The proposed DLSRA is different
from other Newton-like methods as there is no need to update
the approximate inverse of the Hessian during the iterations.
The second involves the ¢;-norm and the philosophy of the
alternating direction method of multipliers (ADMM) is utilized to
develop the algorithm. To achieve a totally distributed algorithm,
the proposed inexact Newton method is incorporated into the
conventional ADMM to give a distributed ADMM recovery
algorithm (DAMRA). The two distributed algorithms require
only data exchanges between vertices in localized neighbourhood
subgraphs. This is in contrast to centralized methods where
global data exchanges are required. Experiments on a variety of
synthetic and real-world datasets demonstrate that the proposed
algorithms are superior to the existing methods in terms of the
computational complexity and convergence rate.

Keywords: Graph signal recovery, Distributed algorithm,
Least squares method, Alternative direction method of multi-
pliers (ADMM).

I. Introduction

Graph signal processing is an emerging discipline which
finds applications in a diverse range of fields, e.g. sensor
networks, image processing, power grids and big data [1]-
[7]. Graph signal processing (GSP) deals with signals residing
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on irregular discrete domains, that are modelled by graphs,
and generalizes techniques from classical signal processing
for regular domains. In recent years, several traditional tools
in the regular domain have been extended to the graph domain,
including the graph Fourier transform [3], graph filter [8],
[9], graph wavelet filter bank [10]-[13], graph signal recovery
[14], etc. Nevertheless, there is still a variety of problems that
remain unsolved.

A graph signal is defined by two entities: (i) the graph
topology which can be specified mathematically via a graph
matrix, such as the adjacency or Laplacian; and (ii) the signal
values that are indexed by the graph vertices, which can be
represented as vectors. For example, the temperature measure-
ment at the nodes of a sensor network can be modeled as a
graph signal. Two fundamental, but complementary problems
in GSP is to (i) estimate the topology, and/or (ii) estimate
the signal, from partial or incomplete information from one
or both entities. Recent works on topology estimation can be
found in [15]-[19]. In this paper we are concerned with the
second problem of signal recovery, which is also known as
graph signal inpainting, reconstruction, forecasting or infer-
ence. Such a problem arises in many real-world scenarios,
for instance in wireless sensor networks. In sensor networks,
the signals are inevitably corrupted by some random distur-
bances and sensor malfunction occurs due to the complexity
associated with the sheer number of sensors deployed and
environmental factors. Therefore graph signal recovery is an
important practical problem.

There has been much work devoted to signal recovery in
the regular domain, such as for images [20], [21] and videos
[22], [23]. These classical techniques cannot however deal
with problems on irregular domains directly. By exploiting the
graph topology via the graph matrix (adjacency or Laplacian),
extensions to the graph domain are found in [14], [24]-[27]
for time-static signals and in [16], [28]-[31] for time-varying
signals. A common theme in these works is the notion of signal
smoothness w.r.t. graph topology and signal correlations along
the temporal axis which are then exploited in formulating the
recovery algorithm. More detailed comparisons of these works
are found in subsection I-B.

It is desirable for any graph signal processing algorithm
to scale well with the number of nodes in the graph, so
that computational efficiency will still be achieved with large
graphs. Generally speaking, graph signal processing can be im-
plemented in a centralized manner or a distributed manner. The
former requires the entire data to be available in a facility for
data processing, whereas the latter requires only data within a
localized subgraph, before processing in distributed facilities.



In the language of optimization, the centralized manner yields
the (globally) optimal or exact solution to the corresponding
optimization problem. This approach is therefore preferable, in
principle, if the cost of the communication between the central
processing node and other nodes are low. However, for graphs
of large size, the centralized manner is often impractical as the
communication resource required is prohibitive. Furthermore,
there is a lack of robustness with this approach, e.g. a failure
in the central node due to a malicious attack. Due to these
considerations, the distributed manner is therefore preferable
in practice, where for the corrupted nodes, the recovered
values are obtained via local interactions with their neighbors.
There is no need to share information globally and this
has the added benefit of increased privacy protection. There
are also some scenarios where only distributed processing is
possible. For example, due to energy constraints, sensors in
some wireless networks have limited communication range
and can only communicate with its local neighbors. In some
literature the term ‘distributed’ is taken to mean immediate
neighbors that are one hop (one edge) away from a node in
consideration. We shall adopt a more generalized interpretation
of ’distributed’ where the neighbors can be several hops
away, but the maximum number of hops is small relative
to the diameter of the graph. There is however a lack of
distributed algorithms for time-varying graph signal recovery.
The recovery algorithms in [16], [29], [31] require centralized
processing and can lead to good recovery performance for
graphs of small and moderate orders. The distributed recovery
algorithm in [28] relies on the gradient-descent, and suffers
from slow convergence. These considerations motivate us to
develop efficient distributed algorithms for the recovery of
time-varying graph signals.

A. Notation

We use the common convention of representing matrices
and vectors with bold letters and scalars with normal letters.
For a matrix C, denote its transpose and pseudo-inverse by
CT and C' respectively. Let 0(1) be the vector of appropriate
size with all entries taking the value 0(1). For a set F', denote
its cardinality by p(F'). For the recovery problem on graph
G =(V,E), denote M CV (U C V) as the set consisting of
uncorrupted (corrupted) vertices.

B. Problem statement and related work

Graph signal recovery aims to restore the missing or cor-
rupted samples on a subset of vertices using the uncorrupted
samples on other vertices, also known as the graph signal-
inpainting, reconstruction, forecasting or inference. In general,
the model of the corrupted graph signal is given by
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where b is the measurement, x is the original signal, x,q €
CMMI is the uncorrupted part of x and x;; € CHI is the
corrupted or missing part. Signal values residing on k € M

are contaminated by low level noise, i.e., by = x + € with
lex| < 0,k € M is the uncorrupted signal with low-level noise
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added. Without loss of generality, the uncorrupted nodes are
indexed first and the corrupted nodes are indexed next. When
the signal at the each vertex is time-varying, we have vector
valued time series and (I.1) can be written as b; = x; + &;
for t = 0,...,T — 1, where T denotes the number of time
instants. The ensemble to vectors can be concatenated to give
X = [Xo‘X1| ven ‘XT—l]-

There are several approaches that have been proposed for
recovering the graph signals in both the time-static and time-
varying cases. Some a priori assumption about the underlying
signal is first made. This is then exploited in formulating
the recovery algorithm. Using the notion of low-pass ban-
dlimited (w.r.t. graph spectrum) signals, recovery algorithms
were proposed in [26], [27]. The techniques in [26], [27]
however require the bandwidth of the signal and the eigen-
basis (of the graph Laplacian) to be known, and this may not
be feasible in practice, especially with large graphs. Another
common assumption is that the graph signal is smooth with
respect to the underlying graph topology, i.e. signal values of
two neighboring vertices do not vary significantly, and this is
observed in many practical scenarios. Low-pass bandlimited
signals are smooth but smooth signals need not be strictly
bandlimited. The notions of smooth and low-pass are related
but it is easier to incorporate the former in any recovery
algorithm. A commonly used framework for recovery (and
other mathematically similar problems) is the use of the
Tikhonov regularization in an optimization formulation, e.g.
ridge regression and LASSO. For static graph signals, the
recovery can be formulated as [14], [24], [25]

min - |[Byx — blf3 + BoRg(x) 12)
where Rg(x) is the regularization that measure the non-
smoothness, (3 is a trade-off factor between the fidelity (first
term) and non-smoothness, b = B b, and

B[ 0]
A common class of regularizer is given by [4], [14], [32].

Rg(x) = Sp(x) = [|(T- W,.)x|? (1.3)
where W,, = W/\,,.x (W), and W is the adjacency matrix
(to be defined explicitly later) with A,,..(W) denoting the
largest magnitude eigenvalue. Common p values are p = 2
(¢2-norm), and p = 1 (¢1-norm) in which S (x) is also known
as the total variation. When p = 2, the minimization in (1.2)
becomes a least squares problem and it admits a closed form
solution,

X*

(BLBam + Bo(I—W,) T (I— Wn))ilB%BM
— (Bam+ Bo(I=W,)"I-W,)) b (14)

Recovering x directly via the formula (I.4) requires cen-
tralized processing. The recovered signal x* is obtained by
solving a linear system of equations. However, with this
approach, the computational burden is high when the graph
is of large order. To overcome this problem, a distributed



approach was presented in [25], where the linear equations
is solved by applying the iterative formula

x® =0, x™D = (I-aCr)x™ +agby  (L5)

that can be implemented in a distributed manner in each
iteration, where Cpq = B + Bo(I — W,)T(I — W,,).
Here g is a global parameter which should satisfy 0 <
ap < 2/Amax(Caq) to ensure the convergence of (L5),
where Amax(Caq) denotes the largest magnitude eigenvalue
of Ca4. At each iteration in (I.5), the value of each node
is updated via interaction with its neighbors. This distributed
algorithm can lead to good recovery results, but it suffers from
a low convergence rate due to the gradient-like nature of the
algorithm. The algoritm also requires the determination of
Amax, Which can be computationally costly when the graph
is of large size. To avoid eigenvalue calculation, we propose
a different regularization, which is also more general, that is
based on highpass graph filters.

For time-varying signals, a straightforward approach is to
apply the methods discussed above on each time instant ¢
independently. However, better results can be achieved by
exploiting the correlation of the signal across time, see [16],
[28]-[31]. The approaches in [28]-[30] are essentially based
on the Tikhonov regularization in (I.2) but the first (fidelity)
term will now consider the signal for all time instants, i.e. the
ensemble X = {xq, - ,x7r_1}. In [28], the assumption is
that the time difference signal A; = x; — x;_1 is smooth and
the regularizer Rg(x) used is a Laplacian quadratic form of
A;. In [29], a sequence of graphs is used to model the time
evolution and the sequence is combined, via Cartesian product,
to give an extended graph. The extended graph models both
correlations across vertices and time. The regularizer Rg(x),
a.k.a. space-time kernel [29], is then on the extended graph
signal X and eigendecomposition is required to determine the
kernel. The regularizer jointly penalizes the non-smoothness
in time/vertex but for online implementation, there is limited
flexibility in specifying the temporal frequency response. In
[30], the regularizer Rg(x) consists of two terms to separately
model the non-smoothness over vertex and time. Applications
considered in [30] were in the denoising of dynamic meshes
and the inpainting of time-lapse video. The denoising problem
leads to a joint vertex-temporal filter where the FFC (Fast-
Fourier-Chebyshev) filter was proposed. The FFC can be
implemented distributively w.r.t. the graph topology but cannot
have online (real-time) processing. The FFC however cannot
be applied to the inpainting problem as the associated operator
cannot be expressed as a function of the shift matrix. The
efficient distributed implementation for inpainting was not
addressed in [30]. More recently, concepts from the Vector
Autoregressive (VAR) model [33], [34] were used to model
time-varying graph signals [15], [16], [31]. The graph topology
is embedded in the modelling by imposing some structure
in the matrix coefficient of the VAR. The resulting graph
VAR (GVAR) models have matrix coefficients with sparsity
structures that are related to the adjacency/Laplacian. In [16],
the correlation at the current time instant is also considered
but only one previous time step is used in the VAR model. The
recovery algorithms in [31] and [16] do not explicitly factor

in any smoothness assumption over the vertices at the current
time instant. It should be mentioned that the works in [15],
[16], [31] is concerned with graph signal modeling which has
more general applications, e.g. graph topology identification.

C. Main contributions

Most of the methods reviewed above do not scale well
with the size of the graph and/or they cannot be implemented
efficiently in a distributed manner. Most methods also do
not consider the ¢;-norm which can promote sparsity. The
exception is in [30] but the work does not consider efficient
distributed implementation via online (real-time) processing.
The motivation of this work is therefore to develop novel
recovery algorithms that will address the shortcomings. The
contributions of this work can be summarised as follows:

1) A tailored formulation of the recovery problem is for-
mulated, using the Tikhonov regularization framework,
that allows for efficient distributed implementation of
the algorithms. Separate penalty terms, that accounts for
graph topology smoothness and temporal correlations
respectively, are used. This gives flexibility in specifying
the trade-offs with the fidelity terms. Two types of
norms, namely the ¢;- and ¢s-norms, are considered for
the penalty terms, and the former promotes some form
of sparsity.

2) A new distributed algorithm is developed for solving
the recovery problem with the ¢5-norm. The algorithm
is an inexact Newton-like algorithm that does not require
update of the inverse Hessian matrix, which is compu-
tationally expensive. The key idea behind the approach
is the decomposition of a large graph (representing the
entire network) into a sequence of small size subgraphs
that are overlapping. The optimization is performed
locally on each subgraph and the fusion of the local
solutions asymptotically approximates the global solu-
tion. With this decomposition, the proposed algorithm
solves for the recovered signal by only using information
from a localized subgraph of vertices. It is shown that
the algorithm has a high convergence rate and matrix
eigendecomposition is not required. The algorithm also
has the light/heavy property (to be detailed later) where
the computational load of some nodes are light. The
convergence of the distributed algorithm is also shown
under conditions that are satisfied in practice.

3) The solution of the mixed ¢1/¢5-norm problem requires a
decomposition of the objective function. The alternating
direction methods of multiplier (ADMM) is ideally
suited for its solution. However a direct application of
the ADMM will not give a distributed algorithm (from
a graph signal processing perspective). An approximate
form of ADMM which has distributed implementation
is developed.

D. Organization

In Section II, we briefly review some preliminaries on
graphs and introduce the concept of overlapping graph de-
composition (see (II.1)). We also briefly review relevant graph



signal processing concepts and present a new definition of
smoothness of graph signals in the vertex domain (see Def-
inition II.2). In Section III, we first introduce the notion of
temporal correlation in graph signals (see Definition III.1). We
then formulate the recovery problem for time-varying graph
signals (see (IIL.5)). In Section IV, we consider the ¢5-norm
formulation and develop an iterative algorithm to solve the
recovery problem which can be implemented in a distributed
manner (see Algorithm IV.1). We also show that the algorithm
converges at an exponential rate (see Theorem IV.2). In Section
V, we consider the formulation with mixed ¢;- and ¢>-norms.
A distributed algorithm that is based on the ADMM is devel-
oped here (see Algorithm V.1). In Section VI several numerical
examples are presented that will show the performance of the
two proposed distributed algorithms. Comparisons with other
methods are also found here. Concluding remarks are found
in Section VII. All proofs are found in the Appendix.

II. PRELIMINARIES

A. Fundamentals of Graphs

Let G := (V,E) be a graph, where V = {1,2,--- ,N}
is the set of vertices and F is the set of edges [35], [36].
Denote the weighted adjacency matrix by W, whose (4, j)th
entry [W]; ; is the weight of the edge between vertices ¢ and j
that represents the correlation between vertices 4,5 € V. The
combinatorial Laplacian matrix is defined by L := D — W.
The random-walk normalized Laplacian is defined as L™ :=
D~ 'L = I-D~!'W. Throughout this paper, we only consider
undirected graphs G without self-loops and multiple edges.
This means that the unnormalized adjacency and Laplacian
matrices are symmetric and the main diagonal of the adjacen-
cy are all zeros. The random-walk normalized Laplacian is
however not symmetric. The adjacency and Laplacian matrices
are examples of the graph shift matrix S, which represents a
fundamental operator of graph signals just like the unit delay
z~! in traditional signal processing.

For graph G = (V, E), the geodesic distance p(i,j) is
defined as the number of edges in the shortest path between
vertices ¢ and 7, i.e. the smallest number of hops from ¢ to
j and vice-versa [35]. The geodesic distance on a graph can
be used as a measure of the communication cost between two
given agents. When two agents are not neighbors (i.e., not
connected via a direct link), they can still communicate with
each other via a chain of intermediate agents along a path
of shortest distance. When the geodesic distance increases,
the number of agents involved, and hence the cost, also
increases. The diameter of a graph D is defined as the
greatest geodesic-distance between any two pair of vertices,
i.e. D = max p(i, ).

i,jEV

The r-neighborhood vertices of an uncorrupted node k €
M is defined as B(k,r) == {j € V : p(k,j) < r}.
Associated with these vertices are edges whose endpoints
are in the set B(k,r), to be denoted by E(k,r). The vertex
and edge subsets together form the r-neighborhood subgraph
which is defined as G, := (B(k,r), E(k,r)). The distributed
algorithms to be presented later are based on constructing a
suitable subgraph for every uncorrupted vertex in the set M.

The radius 7 > 1 is chosen large enough such that for every
vertex ¢ € V, there are at least two vertices k,! € M such that
i € B(k,r)NB(l,r), i.e. every vertex in the graph G belongs
to at least two subgraphs. We then decompose the graph G
into a family of subgraphs G .,k € M, i.e.

G = UkemGr,r; (IL.1)

which are overlapping, i.e. Gi NG, # 0 for some k,l € M.
We remark that the overlapping decomposition is a key idea
in the distributed algorithms - see Algorithm IV.1.

We now introduce the notion of the geodesic-width of a
linear graph operator A, which is related to the concept of
geodesic distance.

Definition IL.1. The geodesic-width o := o(A) of a graph
operator A = [a(i, j)]; jev is the smallest nonnegative integer
o such that a(i,j) = 0 for all 4,j € V with p(i,j) > o.

For an operator A with geodesic-width o, each elemen-
t of the processed signal y = Ax can be evaluated as
y(i) = >_ (i jy<o A, 7)2(j). The summation over the index
set p(i,7) < o indicates that, for a given node ¢, only the
input signal values z(j) in the o-hop neighbourhood subgraph
B(i,0) will contribute to the output y(i).

The graphs considered in this work have the polynomial
growth property, which is defined as: there exist positive
constants D1(G) and d such that

u(B(i, 7)) < Di(G)(r +1)¢ 11.2)

for all - € V and » > 0. The minimum value of the constants
d and D1(G) in (IL.2) are termed as the Beurling dimension
and density of the graph G respectively [35]. In other words,
the number of vertices in the r-neighborhood is bounded by
some polynomial in the radius r.

The overlapped decomposition (II.1) plays a crucial role
in the proposed recovery algorithm. For the implementation
of the proposed distributed algorithms, the radius r should
be substantially smaller than the diameter D of the graph to
economize the computational and communication costs, while
on the other hand, the radius r cannot be chosen too small
as the distributed algorithm has faster convergence for larger
radius r, see (IV.14) and Theorem IV.2.

B. Graph Signal

Signals residing on a graph G can be represented by the
vector x =[x x5 - xy]T, where the element z; is indexed
by the vertex 7+ € V. In many real world applications, the
data x belongs to some finite sequence space, i.e. x € (P
(1 < p < o0) [13], [35]. In other words, the graph signals in
many applications are bounded and/or with finite energy.

For signal recovery, a prior assumption is that the signals
are smooth with respect to the graph topology. The conven-
tional smoothness definition in (I.3) requires the calculation
of Amax(W) which can be computationally expensive when
the graph size NN is large. In this paper, we introduce a new
measure of non-smoothness.



Definition IL.2. A signal x on graph G = (V, E) is smooth if

Sg = |Hix|[p, 1<p<oo (11.3)

is small, where H; is a high-pass graph filter having zero
response to the constant signal, i.e., H;1 = 0.

Now the measure of non-smoothness (II.3) is a generaliza-
tion of the total variation in (I1.3), where H; = I — W,,.
Definition II.2 is a generic definition of smoothness that
encompasses previous definitions. From the graph spectral
perspective, a smooth signal has components mainly in the
low frequencies. Therefore the high frequency components are
close to zero and it is reasonable to specify the level of non-
smoothness via the highpass filtered graph signal H;x.

We next address the requirements for the graph filter H; in
Definition II.2. The zero response property H;1 = 0 implies a
highpass characteristic for the filter. The graph filter H; should
be bounded [13] and have small geodesic-width o to allow for
distributed algorithms. Graph filters are usually constructed
from matrix polynomials of the graph shift matrix S,

H, = Pi(S) =pol + >_ S,
=1

(IL4)

where p;, [ = 0,--- ,n denote the polynomial coefficients.
Polynomial filters can be implemented without eigendecompo-
sition. If S = L the condition H;1 = 0 requires P; (0) = 0,
since L'™1 = 0 (L™ has eigenvalue 0 and eigenvector 1).
This implies pg = 0. A simple example of a polynomial filter
is the spline filter:

1 n
H, — (iLrW) 7 (IL5)
where n > 1 is the prescribed order. Since L™ 1 = 0, it can
be readily verified that H;1 = 0, i.e. the spline filter also has
zero response to the constant signal. In this paper, H; is the
spline filter for the non-smoothness measure (II.3). However
other types of filters could potentially be used for H; as long
as they have the zero response property.

III. TIME-VARYING GRAPH SIGNALS RECOVERY

In this section we present the problem formulation of signal
recovery via the Tikhonov regularization framework. This
framework is a powerful and versatile technique in many
signal and data analysis problems. The key idea is to introduce
penalty term(s) to reflect some assumptions of the signal of
interest, e.g. smooth signal. This has been successfully applied
for static graph signals via the penalty Rg(x) in (I1.2) for
smoothness over graph topology. We first consider exploiting
the temporal smoothness of the time-varying signals on graph
by leveraging the VAR model. Then, the recovery problem of
the time-varying signals is formulated as different optimization
problems with either the 5 norm or the mixed ¢1/¢5-norms.

A. Exploiting temporal correlation

In many real-world applications, sensors continuously ac-
quire data which can be modelled as time-varying graph
signals [28]. The ensemble of the time sequence of graph

signals is denote as X = {xq, - ,x7_1}, where T' denotes
the number of time instants and x; denotes a static graph signal
at time instance . We refer to x; as the ¢ snapshot of X.
A plausible assumption, in practice, is that the acquired data
vary smoothly over time. For instance, the consecutive global
sea pressure data recorded by a pressure sensor network are
smooth over time, i.e. readings typically do not change signifi-
cantly over time. Furthermore, the graph signal values within a
localized neighborhood of vertices are usually correlated with
each other. Specifically, the signal value (k) of vertex k at
time ¢ is not only correlated with x;_;(k), but also correlated
with its neighbors x;_;(i), ¢ € B(k,r). These correlations
will be exploited in the development of the recovery of time-
varying signals on graphs. To formalize this notion, we first
invoke the vector autoregressive (VAR) model [33] to give the

predicted signal:
t
X = Z Ct,lXt—l
=1

where C; ;,t > 1 are the matrix coefficients accounting for the
correlations. The requirements of C, ; are that: (i) as an opera-
tor, it should behave like a low-pass graph filter to capture the
smooth time variation; (ii) the geodesic-width should be small
to capture localised correlation. These requirements can be
achieved if C,; is modelled as a polynomial of the Laplacian
matrix C; = &(L™) = Y8 _ e (L™)™ with ¢ # 0.
This is then similar to the graph polynomial VAR model in
[31]. Now other parametrizations for C;;, such as the edge-
variant filter [38], are possible but with polynomial functions,
the determinations of the matrix coefficients is relatively
straightforward as will be described below. In [16], the model
considered is given by x; = Agx; + A1x;_; which has only
one time-lag, whereas (III.1) is more general as the number
of time-lags is arbitrary. The first term with Agx; models the
correlation between vertices of the current time signal. Note
that the current time signal x; is not included in (III.1) as the
current time correlation across vertices is considered separately
via the non-smoothness term in (II.3). Now the works in [16]
and [31] are primarily focussed on graph signal modelling via
VAR, whereas our work uses VAR as means to incorporate
the notion of temporal correlation. Based on the model (III.1),
we can define the temporal correlation as follows.

(IIL1)

Definition ITL.1. A time-varying signal X = {x¢,- -+ ,X7_1}
is temporally correlated if there exist matrices C;; such that

T—-1 t
Sr = E ‘ Xt — g Ct,lxtfl’
t=1 =1

is small for 1 < ¢ < oc.

q
, (IIL.2)
q

Now St can be used as a penalty term to reflect the temporal
correlation assumption just like Sg in (I1.3) is used as a penalty
measure to reflect the smoothness across the vertices. If C;; =
C,fort=1,---,7T — 1, the temporal evolution dynamic is
time-invariant and this will be assumed here.

In many practical applications, we only have one time
realization of the data and have no prior knowledge of the
temporal evolution dynamics. In such scenarios, a learning



approach can be used to estimate the matrix coefficients from
the dataset. For instance, we may learn the evolution dynamic
by solving the optimization problem with a p-norm objective
function,

T-1 t
P

minimize Xy — Cixs_ ‘ II1.3

ginimize Z H t ; x| s (ML.3)

where x;_;, | = 1,---,t are the training data. Using the

polynomial model for the C;, the optimization problem (II1.3)
reduces to determining the optimal coefficients ¢ ,,, | =
1,---,T—1,m=0,---, K. The problem is convex if p > 1
and can be efficiently solved using interior point algorithms,
for which freeware such as CVX [39] are readily available. A
simple example of (III.1) is given by

% = (I— LY )%, 1, (IIL4)

where 7 € [0,1]. The above system can be considered as
discretization of the dynamical system dx/dt = Lg"x with
time step size 7.

B. Recovery problem formulation

For a time-varying graph signal X = {xqo, - ,X7-1},
recovery can be achieved through two different approaches.
The first is to simultaneously recover the signals for all time
instants, which is also known as batch processing. However
with this approach, the computational cost is high and there
will be a long processing delay for large 7. The second
approach is to sequentially recover x;, t = 0,---,T — 1,
one time instant ¢ at a time, which is also known as online
processing. We adopt the second approach in this paper, but
the proposed algorithms can also be used in the first approach.
Additional matrix algebraic techniques, such as matrix vector-
ization and Kronecker product, are however needed with the
first approach.

Based on the notion of smoothness discussed above, the
recovery problem is formulated as an unconstrained optimiza-
tion problem. The objective function consists of a data fidelity
term and non-smoothness penalty terms. Using Definition I1.2
and Definition III.1, the problem is given by

1 -
min Z[[Baex — b5 + af Hux|[} + 8]jx - xa, ais)

where the parameters «, 3 are weighting factors, H; is a
highpass graph filter in Definition II.2, and the predicted signal

is given by
t
Xq = Z Clitfl-
=1

Since recovery is performed sequentially, the prediction is
based on X;—; (I = 1,...,t), which are the recovered signal
from previous time instants, and are not the true underlying
signals x;—; (I = 1,...,t). For xo (when t = 0), we set 8 = 0
since there is no previously recovered data.

Different p and ¢ values in (IIL.5) require different algo-
rithms for its solution. We consider two cases in this work.
The first case is when p = ¢ = 2. We then have a least squares
problem and a closed-form solution can be readily obtained.

The second case is when p = 1 and ¢ = 2 and the objective
function is non-differentiable. Distributed algorithms to solve
both problems will be formulated in the next two sections. The
computational cost of these algorithms scales linearly with the
graph size .

IV. GRAPH SIGNAL RECOVERY WITH THE {5-NORM

With p = ¢ = 2, the minimization (III.5) becomes a least-
squares problem,

1 ~
min L Baex— B2+ el x4 8 - av)

A closed form solution can be readily derived and is given by

% =D {buma (IV.2)
where
Dy =B +20HTH, 4 261 (IV.3)
and B ~
b./\/l7d = b + 208x4. Iv.4a)

A direct computation of (IV.2) requires the inversion of the ma-
trix D 4. The computational burden for this inversion is high
when the graph size N is large. There can also be numerical
issue associated with inverting a large size matrix. This direct
approach theoretically requires all measurement data b M,d to
be available before the solution can be obtained, i.e. a central-
ized approach. To avoid these issues a distributed algorithm
is preferable [27], [40], [41]. Most distributed algorithms for
graph signals are based on a polynomial approximation to a
function of the graph shift matrix [41]. However DX} is not a
function of the graph shift matrix. Therefore, the polynomial
approximation approach is not applicable for this recovery
problem.

Instead of polynomial approximation, we propose a differ-
ent distributed algorithm to solve Problem (IV.1). The strategy
behind the algorithm is to ’divide-and-conquer’. The key
idea is to introduce a family of localized subproblems over
subgraphs Gy, 2 in the decomposition (II.1),

i 5[ B M x b [ - M 451
(Iv.s)
for k& € M. Note that the radius is 2r here but is r in (IL.1).
The indicator operators M}, (k € M) are |V| x |V| diagonal
matrices whose (,%)th entries are unity if ¢ € B(k,r) and
zero otherwise. The indicator operator M3?" has the effect of
zeroing out values in x that are outside the subgraphs Gy o,
i.e. M} can be viewed as a localization operator.
Now the gradient, w.r.t. x, of the objective function in (IV.5)
is given by:

(BuMZ) " (BuMZ)x — (BuMZ) b
+2a(H M) (HMP)x + 28(M37) T (M77)x
—20 (M?x) Txd7

v:

where D 5, and b M,d are defined in (IV.3) and (IV.4). Setting
V = 0 gives

M7 DyMx = M7 b (IV.6)



As (M7 "D «M7") is rank deficient due to M?", we seek the
least error norm solution via the pseudo-inverse:

Vi = (MZDAMY ) MZbpga, k€M, (V)

which represents the localized solution of the minimization
problem (IV.1) in B(k,2r). A crucial observation is that vy, ,
provides a local approximation to the global solution x of the
minimization problem (IV.1) in B(k,r) [13], [35], i.e.

Vi, (i) ~ %(i), i € B(k,r),

when r is large enough. Note that in the subproblems, the
radius is 27 but with the local approximation, the radius is r,
i.e. to obtain an approximate local solution, we need to solve a
larger problem. Technically, other values that are greater than
r could also be used. The choice of 27 is found by experi-
mentation and represent a compromise between accuracy and
complexity (as measured by the problem size).

Now the radius parameter r in the graph decomposition
(II.1) is chosen so that, for each ¢ € V, there are at least two
uncorrupted vertices j, k € M such that i € B(j,r)NB(k,r).
Therefore, by solving the series of localized subproblems
(IV.5) and taking the overlap effect into account, we will have
at least two solution values for each vertex ¢+ € V. Now only
the vertices in M that are at most r geodesic distance away
from 4, i.e. vertices in B(i,7) N M, will contribute to the
solution at ¢. Combining these solutions via a local patch gives
the following aggregated value
V(7). (Iv.8)

N 1
o) = Ba M 2

keB(i,r)NM

Using (IV.7) and (IV.8), the patched solution for all vertices
is given by:

v, = ( 3 Mr,)_1 > Mivi, =Jbya (V)
k'eM keM
where
-1
J= ( 3 M',;',) 3 M (MFDAMY) MY
k'eM keM
(IV.10)

Note that the role M} in (IV.9) is to localize the solution vy, ,.
to B(k,r). Now the patched solution vy, can be considered
a first approximation to the exact solution x in (IV.2) and
J considered as an approximation to Dj\j. The next Lemma
gives an error bound on this approximation.

Lemma IV.1. For graph G, the patched solution satisfies

[vr —%[[2 < 6, [1%|2, V.11
where the error matrix norm is defined as
0r = IT = IDp|2- (IV.12)

Lemma IV.1 can be readily derived by using b Mm = Dpx.
Consider the following quantity:

(DU(G)P (20 +1)%?
k—1

Oro = p ( — %r) (3r 4 20 +1)4,

(IV.13)

where § = In(k/(k — 1)), k > 1 is the condition number
of the matrix D := B + 20HTH; + 261, 0 > 1 is the
geodesic-width of the graph filter Hy, and d and D1 (G) are the
Beurling dimension and density of the graph G respectively.
It is shown in the appendix that

o < b g, (IV.14)

i.e. 0,, is an upper bound for the error norm. Now when
r — 00, 0r,, — 0. Therefore we have

lim &, = 0.

T—>00

Iv.1s)

Theoretically, this means that the inverse matrix D/_\/} can
be approximated by J arbitrarily close if a sufficiently large
radius 7 is chosen. The actual §,- value in practice however is
much smaller than the upper bound 6, , - see discussion after
Theorem IV.2.

The exact solution in (IV.2) via matrix inversion is not
practical for large graphs and is not distributed. We next
develop an simple yet efficient distributed method for solving
(IV.1). The method is based on an approximation to the clas-
sical Newton’s method that exploits second order derivative
information to accelerate convergence. With ¢(x) denoting the
objective function in (IV.1), the conventional (exact) Newton’s
iteration is given by

x(m) = x(m=) — (V2p(x(m 1)) T g (x (D)
_ X(m—l) _ ij (DMX("”_l) — BM,d)' (IV16)

The iterations in (IV.16) require the knowledge of D_/_\/ll but
we are trying to avoid the calculation of Dﬁ directly. We
therefore propose to replace the inverse Hessian Djwl with J
in (IV.16). The rationale is that J is an approximation to DX}.
This gives an inexact-Newton’s method with iterations given
by

X = Thpgg + (T — IDpg)x ™D (IV.17)

Now (IV.17) can also be equivalently expressed as follows.

v(m) — Jp(m—1)

b = pm=1) _ D v (IV.18)
M) — xm=1) 4 ()

for m > 1, where
x© =0, bO® = BM,d- (Iv.19)

The equivalence between (IV.17) and (IV.18) with the initial
condition (IV.19) can be readily shown using the fact that
x(m) — x(m=1) — (M) The jterative equations in (IV.18)
forms the basis of our distributed recovery algorithm. The
next Theorem establishes the condition for convergence of the
algorithm to the exact solution.

Theorem IV.2. If the radius parameter r is chosen such that

or <1 (Iv.20)

then x(™) for m > 0, using (IV.18) and (IV.19), converges to
the true optimal solution x in (IV.2) at an exponential rate, i.e.

||X(m) _ 5(”2 < 57‘m||i||27 m > 0. Iv.21)



TABLE I: Error matrix norm J,. for various graphs considered
in the experiment in Section VI.

Graph N [

T
Circulant 256 0.001
Random Geometric | 4096 | 8 x 104
Sea pressure 500 5x 1074
US temperature 218 3x 1074
Sea temperature 100 0.031

Using (IV.14), we can see that the condition (IV.20) is
satisfied, and hence the convergence of {x(’”),m > 0} to
the ground truth Z is guaranteed, for all r satisfying

4
r> (7’1 + ?d In 7‘1)0. (Iv.22)

where
=2+ %ln (18d02dﬁ(D1 (Q))Q) > %

Note that the requirement (IV.22) is a sufficient but not a nec-
essary condition for convergence. The theoretical lower bound
estimate in (IV.22) is quite loose and numerical simulations
performed in Section VI indicate that » = 2 or 3 is sufficient
to ensure that (IV.20) is satisfied. Table I shows that actual ¢,
values for the examples considered in Section VI. Theorem
IV.2 tells us that convergence to the exact solution will be
achieved as long as J is a reasonable approximation to Djwl
to ensure J,. < 1, i.e. it does not have to be arbitrarily close.
In most cases, as seen in Table I, d,- is quite small, which will
then result in fast convergence rates as shown in Section VI.

Now the iterative algorithm can be implemented in a dis-
tributed manner, as described in Algorithm IV.1. By virtue of
the polynomial growth property of typical graphs, the number
of uncorrupted neighbors is small and independent of the graph
size N. Therefore the patching operation can also implemented
in a distributed manner. Multiplication with D can be also
implemented in a distributed manner as its geodesic-width 20
is typically small. At each step of the iteration in Algorithm
IV.1, every vertex kK € M is required to: (i) store data
of size O((r + 0)%%); (ii) perform O((r + ¢)3?) arithmetic
operations for local recovery; (iii) perform O((r + o))
arithmetic operations for the update; and (iv) transmit data
to its (2r 4+ 20)-neighbors. In total, the complexity of the
algorithm is O (u(M) K (r+0)**+ NK;(1/2+0)??) where
K7 denotes the number of iterations. The complexity grows
linearly with the graph size N and this indicates that the
algorithm has a good scaling property.

Light/Heavy Computation Property: There are three com-
putational steps in Algorithm IV.1; namely (i) Local Recovery
(LR), (i1) Patch (P) and (iii) Update (U). Now only the
uncorrupted nodes need to perform all three steps, i.e. heavy
computation load. The corrupted nodes only need to perform
the P and U steps, i.e. light computation load. This property
is also found in the algorithm proposed in [27] where the
concept of a communication graph and a processing graph is
proposed. The former is for diffusion of information (requiring
light computations) and the latter is for data regression via

the basis of the Graph Fourier Transform (requiring heavy
computations). However the algorithm [27] is gradient descent
based that utilizes the first order information only, whereas
our proposed algorithm exploits the second order information
that leads to fast convergence. Furthermore the work in [27],
though considers sampling pattern that could be time varying,
does not consider time-varying graph signals. Note that the
distributed GTVR method [25] does not have this property.

Algorithm IV.1 Distributed Least Squared Recovery Algorith-
m (DLSRA)

Operation: Fogr each & € M, calculate J, =
(MiTDMMiT)~ . i )

Initialization: b\") = M2 b4 = (bat.a(0))icp(k.2r) and
m = 0.

Iteration:

1) Local Recovery (LR) step
Vir = 3D ke M.
2) Patch (P) step

vy (i) = Vg (1),1 € V.

1
u(B(i,r) N M) 2

kEB(i,r)NM
3) Update (U) step
2™ () = 2™ (3) + v, (i)
B D) = b (i) = Y Dpm(ig)ve(h)i € V-

j€B(i,20)
4) If |v,-(7)| < &,i € V, terminate the algorithm; Otherwise,
form b,(cmﬂ) = (b(m+1)(i))i€B(k727«) and set m = m + 1.

We conclude this section by comparing the proposed
method with other Newton-like methods.

Remark IV.3. The power of the Newton’s method lies primary
in the use of second derivative information via the Hessian.
Different Newton-like methods primarily differ in how the
inverse Hessian is approximated and/or updated. There are
many Newton-like methods in the literature but we will
focus primarily on distributed methods. In the decentralized
quasi-Newton method proposed in [42], the localized Hessian
was constructed by decentralizing the conventional Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update. It falls under the
class of quasi-Newton methods where the secant condition
is satisfied. In the approximate Newton method [43], the
distributed approximation of the inverse Hessian was achieved
by invoking the truncated Taylor series for matrix inverse
and the secant condition is not satisfied. There are distinct
differences between our proposed DLSRA and the existing
ones. Firstly, the proposed construction of the approximate
inverse Hessian leverages on the overlapping decomposition
of the graph. This approach better exploits the graph topology
for signal recovery when compared with (i) the quasi-Newton
method where the Hessian approximation is constrained by the



BFGS formula; and (ii) the approximate Newton method that
relies on the Taylor series. Secondly, the approximated inverse
Hessian of the proposed method, i.e., matrix J in (IV.10),
needs only to be calculated once and is fixed during the
iterations. With the existing methods the approximated Hessian
or Hessian inverse needs to updated at every iteration. Thirdly,
the proposed algorithm has the Light/Heavy Computation
Property described above, and this is not shared by the existing
methods.

V. RECOVERY WITH MIXED £1- AND {5-NORMS

We now consider using the ¢;-norm for the non-smoothness
measure Sg. This is motivated from images processing where
it was demonstrated in [37] that the ¢;-norm can sometimes
lead to better results than the /o-norm. Images generally
consist of smooth regions with some discontinuities, i.e. edges.
Some graph signals may also have underlying discontinuities
and we would like to preserve these discontinuity as much as
possible during the recovery process. As the ¢1-norm is often
used as a proxy for the {y-norm, we can use the /;-norm as a
penalty to promote sparsity in the highpass components of the
graph signal x. This is equivalent to promoting smoothness in
as many vertices as possible and there will be non-smooth
vertices where the highpass component will be relatively
large. These large highpass components are for the underlying
discontinuities in the signal and this will be demonstrated in
subsection VI-F.

With p =1 and ¢ = 2, the minimization (III.5) becomes

1 .
m}in §||BMX — b+ ozHH1x||1 + Bl|x — Xde V.1)

Such a formulation has been considered previously in the
context of denoising signals in the regular domain. This
formulation, which is known as the total variation approach for
denoising [44], [45]. A formulation that uses a mixed norm
was also considered in [30] for the inpainting of time-lapse
video. However, unlike (V.1) which considers each time instant
x; separately and in succession, the formulation in [30] con-
siders the entire ensemble X (of time signals) simultaneously.
The latter precludes the use of online (real-time) processing
and requires batch processing where measurements for all time
instants must be available before processing. The objective
function in (V.1) is similar to that found in LASSO, for which
the alternative direction method of multipliers (ADMM) [46]
(which can handle ¢;-norm terms) can be used for finding
the solution. The conventional ADMM however cannot be
implemented in a distributed manner. We develop here an
approximate version of the ADMM algorithm that has a
distributed implementation. By denoting z = H;x, we can
reformulate problem (V.1) as

1 -
m)in §||BMX —bull3 +allz] + IBHX - XdHi

st. Hix—z=0. (V.2)

The augmented Lagrangian function of the above problem is
1 - 2
Ly(x,2,w) = 5[Bax = ball3 + allzll + Bljx = xall,

+ywl (Hix — z) + %HHlx —z|3, (V.3)

where w is the (scaled) dual variable and v > 0 is the
penalty parameter [46]. With the augmented Lagrangian, the
(scaled) alternative direction method of multipliers (ADMM)
seeks to iteratively find the solutions of (V.2) via the following
iterations

x(M*D) = argmin L (x,z™), w(™)
2"t = argmin L., (x(m+D) 7z w(m)

wm D) — w(m) 4 Hx(m+1) _ gm1)

(V.4)

The first two steps/equations are basically optimizing the
augmented Lagrangian L. with two out of the three sets of
variables fixed. The primal variable x(™*1) can be obtained by
solving a least squares problem, with fixed z = z(") and w =
w(™) | representing the current solution for these variables.
To solve for the auxiliary variable z(mH), with fixed x =
x(Mm+1) and w = w(™) the proximal operator for the £1 norm,
which is soft thresholding operator, can be used. The iterative
algorithm for the solution of (V.2) is therefore given by the
following three equations:

x(m+1) _ A —1(m) (V.5)
Z(m+1) _ Sa/’y<H1X(m+1) —|—W(m)) (V.6)
wmth) = wm) L H (D g (mt), (V.7)

where
A =By +281+yHIH,,

c™ = b+ 26x4 +yHT (2™ — wm™),

and S, /- (t) is the elementwise soft thresholding operator

tz_a/’Ya ﬁi>0&/’7
[Sa/'y(t)]i = Sa/'y(ti) = 0, |tz| < 0‘/’7
ti+aly, t;<—aly

for t = [t ...tn]T [46]. If we now examine (V.5)-(V.7), we
can see that (V.6) and (V.7) can be implemented in a dis-
tributed manner because (i) H; has small geodesic-width (and
multiplication can be achieved distributively); and (ii) S, /- is
an elementwise operator. The main obstacle to a completely
distributed implementation is therefore (V.5). In conventional
ADMM, the primal variable x(™*1 is typically solved via
the use of matrix factorization such as Cholesky, the use of
certain matrix inverse Lemma, or some iterative methods such
as gradient-based method and limited-memory BFGS method
[46]. The matrix factorization and matrix inverse approach
generally require centralized computations and are thus not
suitable for distributed implementation. If the matrix A is
diagonally dominant, x(™*1) can be solved in a distributed
manner using the Jacobi method, which has guaranteed con-
vergence. However, A is not necessarily diagonally dominant
in our problem, so the Jacobi method is unsuitable.

However the computation of x(m+1) in (V.5) is similar to the
computation of X in (IV.2). Therefore the iterative distributed
algorithm (IV.18), which was formulated for the latter, can also
be used for the former, but with appropriate modifications. The
matrix D is replaced with A and the vector b(™) is replaced



with ¢("™), both as defined above. We denote the process for
obtaining x(™*1) using Algorithm (IV.18) as

x(m*+1) — DLSRA(A, ¢(™)). (V.8)

Strictly speaking, DLSRA(A, c(™)) solves (V.5) approximate-
ly. Therefore the ADMM algorithm we are proposing, where
(V.5) replaced with (V.8) is an approximate ADMM. The
algorithm, termed as DAMRA, is summarised in Algorithm
V.1 and can be viewed as a distributed version of the ADMM
algorithm for graph signals.

Algorithm V.1 Distributed ADMM Recovery Algorithm
(DAMRA)

Iteration:

1) Given z("™), w(™) apply the Algorithm IV.1 to determine
x(Mm+1) in a distributed manner, where D M is substituted
with By + 281 + yHTH; and vector b(™) with b +
26x4+vHT (2™ —w (™)) respectively. Denote the solution
using this distributed algorithm by x(™+1),

2) Caleulate s(i) = Y;cp Hi(i,5)2™(j) and
y(i) = s(i) + w™ (i), then update z(m+V(;) =
Sg/(y(i)),ieV.

3) Update w(™+1) (i) = w(™ (i) + s(i) — 2™V (3),i € V.
4) Evaluate |20V (i) — 2™ (i)] < e,i € V, if yes,
terminate the iteration; Otherwise, set m = m + 1.

Convergence and approximation error: The convergence of
the conventional ADMM has been theoretically shown in [46].
Our proposed DAMRA is, strictly speaking, an approximate
version of ADMM and therefore convergence results from
conventional ADMM cannot be directly applied. However if
the approximation using DLSRA is good, it can be argued
heuristically that convergence is also achieved with DAMRA
but a rigorous proof is not currently available. This heuristic
argument has been backed by many numerical simulations
performed. Table II compares the result using the exact
ADMM with the approximation via DAMRA for the random
geometric graph (details in subsection VI-B). The result using
the exact and inexact methods are practically indistinguishable.
The convergence rate between the two are also virtually the
same. These results support the assertion of the approximation
using DAMRA does not result in any material difference in
the performance.

Remark V.1. There have been variants of the ADMM algo-
rithms, including some which have distributed implementation.
The distributed linearized ADMM (DLADMM) algorithm in
[47] is one that has been recently proposed. By using the gra-
dient information of the cost functions, it alleviates the com-
putational burden found in conventional ADMM for certain
convex optimization problems. There are distinct differences
between the proposed DAMRA and the DLADMM algorithm.
Firstly, the cost functions are assumed to be separable in
[47] but no such assumption is required in the proposed
DAMRA. Secondly, during the update of the variables in
[47], the original cost function is approximated by using the

TABLE II: Recovery performance comparison of the exac-
t ADMM with the proposed approximation via DAMRA.
The random geometric graph with N vertices is used over
T = 100 time snapshots with a 20% corruption percent-

age. The maximum error is defined as max ||x$@ct —
1<t<T—1

x;nexact ||2/ ”X?xact H2

[ N [ 256 [ 512 [ 4096 ]
Root Mean Square Error
Exact ADMM 0.303 0.295 0.277
DAMRA 0.303 0.295 0.277

[ Maximum error | 9.4 x 10~ [ 51 x 10" [ 1.5x 1077 ]

Average (over 100 time snapshots) number of iterations
Exact ADMM 20 21 32
DAMRA 20 21 32

gradient and a regularization term, i.e. linearization of the
function. This approximation results in a deviation from the
optimal solution during the update, and a greater number of
iterations will therefore be required. More importantly, since
the technique in [47] is gradient based, the cost function must
be differentiable, i.e. precludes ¢;-norm terms. Our proposed
DAMRA can handle ¢;-norm terms and no approximation to
the cost function is required.

Remark V.2. It is observed that the problem (V.1) can be
categorized as a LASSO problem which can be solved by
proximal methods [48]. The proximal gradient method is one
of the most typical proximal methods that solves the problem
by the following iterations x;1+1 = S, (xx—t;V f(x4)), where
S, is the soft-thresholding operator and the function f is the
sum of all -norm terms. Since the proximal gradient method
only uses the gradient of the function f, i.e., first-order infor-
mation, it suffers from the slow convergence characteristics
of first-order methods. However, the ADMM can exploit the
Hessian matrix of the function (via (V.8)), i.e., the second-
order information, thus it has much faster convergence speed.
This is also verified by the numerical results in Table 7.1,
Fig 7.1 in [48]. One motivation of this work is to develop
a distributed approach to realize the conventional ADMM
method. This is achieved by incorporating the Algorithm IV.1
to distributively solve the linear system in (V.5).

VI. NUMERICAL EXAMPLES

In this section, we perform several simulations to show
the performance of the two proposed distributed algorithms.
Both synthetic and real datasets that resides on several dif-
ferent types of graphs are used. The graphs considered are
the circulant graph, the random geometric graph, the graphs
associated with the real-world datasets of global sea-level
pressure [28], [49] and the US hourly temperature records
[50]. Comparisons are also made with the centralized graph
total variation regulation (CGTVR) method [14], [24], the
distributed GTVR (DGTVR) method [25], the quasi-Newton
method (QNM) [43], and the network Newton method (NNM)
with truncated order of the Neumann series being 1 [42].
The step size of the QNM and NNM methods are chosen
to gives the best performance. With the CGTVR and DGTVR
methods, we use the cost function in (IV.1) instead of the



cost function in the original formulation in [14], [24], [25].
This is to allow for a fair comparison with our proposed
methods. These existing methods however do not consider
time-varying signals in their original formulations. For a fair
comparison, we modify the original problem formulation in
the existing methods to include a time-domain non-smoothness
term ||x — x4||3 in the objective function.

For time-varying signals, X = {xq,---,Xxr_1} denotes
the ensemble of graph signals at different time instants.
The corrupted signal model in the simulations is given by
b; = xt+¢& (0 <t <T —1). In the experiments, for a
given corruption percentage, a fraction of the total number
of vertices are randomly selected. The signal values on these
vertices are set to zero to simulate corruption. For the other
(uncorrupted) vertices, uniformly distributed noise € over the
range [—0.01,0.01] is added to the signal. In all the examples,
the order of the highpass filter H; is n = 2. For corruption
percentages 10%, 20%, 30%, the radius of the subgraphs Gy, ,
in (IL.1) are r = 2, 3, 3 respectively. The radius r is chosen to
ensure the overlapped decomposition (II.1) is valid for a given
corruption percentage. Note however that r is substantially
smaller than the diameter D of the graphs considered here
(values shown in the tables or their captions).

The parameters «, (3, and  are chosen using a cross-
validation approach. For a given graph, we generate smooth
(w.r.t. vertex and time) synthetic signals, i.e. ground truth.
The synthetic signal are then corrupted and the performance
of the algorithm using different parameters are tested. The
parameters that gave the best results are then chosen. Note that
the same parameter values are used in the objective function
when comparing with other algorithms, e.g. quasi-Newton.

In all cases, the stopping criterion is e, = ||x(™+1) —
x(m)||Oo < 0.0001, i.e. the maximum signal difference be-
tween two successive iterations is smaller than the tolerance
0.0001. The performance of the recovery is measured using
RMSE = ||x, — %[|2/v'N and MRE = ||x, — X||00 /||Xo]| 00>
where x, and x are the ground truth and the recovered
signals respectively. Averages of these measures over 7' time
snapshots, for each corruption percentage, are used to compare
the performances. The measure of the convergence speed of
the algorithm is the average number of iterations (AIS), where
again, the averaging is over the number of time snapshots. To
compare computational cost, we also report on the average
CPU time (in seconds) to recover one time snapshot, denoted
as ACT. All simulations are performed on a desktop computer
with 17-9300 CPU and 32G memory. The main focus of
this work is to develop efficient distributed approximations
of the centralized algorithm. The aim is not to achieve better
performance, in terms of lower RMSE/MRE, but to achieve
fast convergence. The results (to be presented later) will show
that the RMSE/MRE of the distributed algorithm is usually
very similar to the centralized algorithm. This means that the
distributed approximations are very good.

A. Circulant graph signal

A circulant graph of size N is defined by the generating
set S'={s1, - ,8K}, sk < N/2. For a given vertex i, edges

TABLE III: Recovery performance measures on the circulant
graph with N = 256 vertices and diameter D = 44.

[ Corruption % | 10% [ 20% [ 30% |
RMSE/MRE
Corrupted signal | 10.088/0.972 | 14.388/0.983 | 17.646,/0.988
Recovered signal | 0.182/0.023 0.271/0.027 0.346/0.031
(all techniques)
AIS (Average number of iterations)

DGTVR 574 579 580
QNM 81 82 82
NNM 16 16 16

DLSRA 3 3 3

DAMRA 20 24 24

ACT (Average Computational Time)
GTVR 0.0026 0.0026 0.0026
QNM 0.1912 0.2153 0.1751
NNM 5.6 x 1074 4.6 x 107* 4.7 x107%
DLSRA 8.6 x 1072 5.8 x 1072 5.2 x 1072
DAMRA 0.0144 0.0182 0.0170

exist between the vertex ¢ and the vertices (i & s )y, where
()~ denotes the modulo operator [51]. In the experiments, we
consider a circulant graph with N = 256 and generating set
S = {1, 3}. We generate an N x 100 time-varying signal using
the dynamic model x;;1 = (I — 7Lg")x; 4+ w;, where w; is
random noise and 7 = 0.3. The initial signal xq is given
by xo(k) = 50sin(4wk/N), k = 0,--- ;N — 1. The noise
vector wy are drawn from a uniform distribution over [—1, 1].
For every time instant ¢, a percentage of the signal values at
randomly selected vertices are set to zero. For example, if the
corruption percentage is 10%, we randomly select 10% of the
vertices and set the corresponding signal values x;(i) (i €
U) to zero. Table III compares the performance of different
recovery methods. It is observed that the proposed DLSRA
algorithm possesses the fastest convergence rate.

B. Random geometric graph and signal

A random geometric graph, with N vertices randomly
deployed in the region [0,1]?, has an edge between two
vertices if the physical distance is not larger than /2N ~1/2
[52], [53], [54]. We generate an N x 100 time-varying signal
using the dynamic model x;41 = (I—TLrgW)xt +w;, where w;
is random noise and 7 = 0.3. The initial signal x is given by
xo(k) = 100 cos(mny 5 /2) sin(mng,,/2), k = 0,--- ,N — 1
with vertex coordinates (ny ., nk,) € [0,1]%. The noise
vectors w; are uniformly distributed over [—1, 1]. Tables IV
compares the performance of the different methods.

We also perform signal recovery for larger random geo-
metric graphs to have an appreciation of how the algorithms
scale. The results are shown in Table V. The computational
load of the QNM is prohibitive for large N due to burden
in calculating the inverse of quasi-Hessian many times. The
proposed DLSRA algorithm performs the best by an order of
magnitude in most cases.



TABLE IV: Recovery performance measures on the random TABLE V: Recovery performance comparisons on larger

geometric graph with NV vertices and diameter D.

random geometric graph with N vertices and diameter D.
Corruption at 20%.

[ Corruption % | 10% [ 20% [ 30% |
RMSE/MRE, N = 256, D = 22 N 4096 10000 20000 30000
Corrupted signal | 15.324/0.957 | 21.530/0.981 | 26.379/0.991 D 88 126 175 215
Recovered signal | 0.207/0.015 | 0.302/0.017 | 0.387/0.021 RMSE
(all techniques) Corrupted signal | 22.291 22.349 22.444 22.431
AIS, N =256, D = 22 Recovered signal 0.277 0.276 0.276 0.275
DGTVR 606 609 610 (all techniques)
QNM 78 83 83 LS
NNM 17 17 17 DGTVR 622 618 620 619
DLSRA 3 3 3 QNM 100 90 91 92
DAMRA 16 20 21 NNM 24 17 17 17
ACT, N =256, D = 22 DLSRA 3 3 3 3
DGTVR 0.0050 0.0051 0.0051 T
QNM 0.1940 0.1788 01711 CGTVR 0.0146 | 0.0536 | 0.1370 | 0.26307
NNM 9.1 x10 8.1x10 8.3 x 10 DGTVR 0.0801 | 0.2810 0.6656 1.0512
DLSRA 1.6 x 10~4 1.2 x 1074 1.2 x 1074 ONM 999.44 | 1.8 x 103 | 1.5 x 104 | 4.9 x 104
DAMRA 0.0842 0.0738 0.0658 NNM 0.0438 | 0.0926 0.2295 0.5363
DLSRA 0.0036 | 0.0106 0.0244 0.0335

RMSE/MRE, N =512, D = 30
15.617/0.971 | 22.206,/0.986

Corrupted signal 27.212/0.993

Recovered signal | 0.203/0.015 0.295/0.018 0.373/0.020
(all techniques)
AIS, N =512, D =30
DGTVR 609 611 613
QNM 79 85 85
NNM 17 17 17
DLSRA 3 3 3
DAMRA 18 21 21
ACT, N =512, D = 30
CGTVR 0.0013 0.0013 0.0013
DGTVR 0.0105 0.0104 0.0105
QNM 0.7676 0.8253 0.8241
NNM 0.0018 0.0017 0.0017
DLSRA 3.1x 1074 2.7x 1074 2.7x 1074
DAMRA 0.2458 0.2223 0.1963

RMSE/MRE, N = 4096, D = 88
15.756,/0.989 | 22.291/0.994

Corrupted signal 27.305/0.996

Recovered signal 0.191/0.016 0.277/0.018 0.351/0.020
(all techniques)
AIS, N = 4096, D = 88
DGTVR 593 622 623
QNM 95 100 104
NNM 23 24 24
DLSRA 3 3 3
DAMRA 30 32 32
ACT, N = 4096, D = 88
DGTVR 0.0805 0.0801 0.0840
QNM 219.9960 229.4403 241.1448
NNM 0.0462 0.0438 0.0470
DLSRA 0.0045 0.0036 0.0034
DAMRA 12.1015 10.7330 9.3783

C. The global sea-level pressure data

The global sea-level pressure dataset, from a real-world ap-
plication, was originally published by the Joint Institute for the
Study of the Atmosphere and Ocean [49]. The dataset consists
of T' = 4599 pentad-mean pressure snapshots ranging from the
year 1948 to the year 2010. Each snapshot records pressure
data from 500 stations deployed worldwide. The range of the
pressure is from 94.71 kPa to 110.06 kPa. We use the 5-nearest
neighbors algorithm to construct a graph of N = 500 nodes
that captures the local interactions between the 500 stations,
as shown in Fig. 1 (top). The resulting time-varying graph
signal is therefore of dimension 500 x 4599 (= 2299500). In

TABLE VI: Recovery performance measures on the Global
Sea Pressure data with 500 vertices and diameter D = 22.

[ Corruption % | 10% [ 20% [ 30% |
RMSE/MRE
Corrupted signal | 32.017/0.988 | 45.276/0.992 | 55.453/0.995
Recovered Signal | 0.135/0.013 0.200/0.015 0.258/0.017
(except DAMRA)
DAMRA 0.122/0.012 0.174/0.015 0.226/0.017
AIS
DGTVR 462 532 5762
QNM 93 100 104
NNM 79 91 985
DLSRA 4 4 4
DAMRA 212 241 278
ACT
DGTVR 0.0080 0.0091 0.0098
QNM 0.8522 0.8934 0.9433
NNM 0.0050 0.0055 0.0059
DLSRA 3.0x 1074 3.6 x 1074 3.8x 1074
DAMRA 0.1646 0.3106 0.2934

the experiments, the time dynamics of the graph signal, char-
acterized by the parameter 7 in (IIL.4), is estimated by using
the first 1000 snapshots of x; as the training dataset. Using an
optimization approach, the estimated value is 7 = 0.3819. For
each time instant ¢ (t = 0,---,4598), a certain percentage
of the values of the graph signal x;, randomly chosen, is
corrupted. Table VI compares the performance of the different
methods. It is observed that the DAMRA algorithm gives the
best performance and the DLSRA algorithm has the fastest
convergence.

D. US temperature sensor graph and records

The US temperature sensor network acquires temperature
data on an hourly basis from 218 stations that are near to
major cities across the United States [50]. Here, the graph is
constructed by using the 6-nearest neighbors algorithm.

In the experiments, the temperature dataset is the 24 hours
temperature record on August 1st, 2010 [50]. The time-varying



TABLE VIII: Reconstruction performance on the sea surface
temperature dataset with 100 vertices and diameter D = 14.
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Fig. 1: Top: Sea-level pressure graph with 500 vertices. The
Beurling dimension is 2 and the density is 3.2800. Bottom:
Sea surface temperature graph with N = 100. The Beurling
dimension is 2 and the density is 2.8750.

signal is then of dimension 218 x 24. The first-order diffusion
model (IT1.4) is used to model the time dynamics of the signal.
Using the first 10 time snapshots of the signal x;, the estimated
parameter of the model, using an optimization approach, is
7 = 0.022. For each time instant ¢ (t = 0,--- ,23), a certain
percentage of the values of the graph signal x;, randomly cho-
sen, is corrupted. Table VII compares the performance of the
different methods. It is observed that the DAMRA algorithm
gives the best performance and the DLSRA algorithm has the
fastest convergence.

TABLE VII: Recovery performance on the US hourly temper-
ature graph with 218 vertices and diameter D = 22.

[ Corruption % | 10% [ 20% [ 30% |
RMSE/MRE
Corrupted signal 23.787/0.917 | 34.005/0.938 | 41.671/0.954
Recovered signal 0.648/0.054 1.127/0.077 1.698/0.128
(except DAMRA)
DAMRA 0.636,/0.052 1.105/0.074 1.678/0.122
AIS
DGTVR 4617 4713 4785
QNM 141 147 148
NNM 23 23 24
DLSRA 4 3 3
DAMRA 61 70 7
ACT
CGTVR 0.0053 0.0050 0.0049
DGTVR 0.0352 0.0357 0.0360
QNM 0.9082 0.9475 0.9444
NNM 0.0014 0.0009 0.0009
DLSRA 2.8 x 1074 1.3 x 1074 1.0 x 1074
DAMRA 0.0396 0.0712 0.0644

l Sampling rate l 90% l 80% l 70% ‘
RMSE
Corrupted signal 6.553 9.324 11.43
Recovered signal 0.061 0.097 0.135
(all methods)
AIS
Method in [28] 28 46 61
DLSRA 3 2 3
ACT
Method in [28] 9x10~4 15x107% | 20x 1074
DLSRA 29x107% | 32x107°% | 42x107°

E. Comparison with the recovery methods in [28]

In [28], the modeling of the time-varying nature of the
signals is achieved by assuming that the temporal difference
signal Ay = x; —x;_1 is smooth. The penalty measure used in
[28] is based on the quadratic form of A; with the Laplacian
matrix as the coefficients in the quadratic form. We however
use some form of linear prediction to estimate the signal at
the current time instant x; = Zle C;x;_;. The predicted
signal is assumed to be close to the actual observed signal
x;. Only the /5-norm is considered in [28], but in our work
both the /5- and ¢;-norms, which can promote sparsity, are
considered. The most important difference however is with
respect to the distributed implementation. The approach in [28]
employs the classical gradient descent method that only exploit
the first order information, while our proposed algorithms
exploit the second order derivative information that leads to
fast convergence. The algorithm in [28] also does not have the
light/heavy property discussed in Section IV.

We next compare the performance of the distributed algo-
rithm in [28] with our DLSRA in the reconstruction of the
sea surface temperature, using the dataset published by the
Earth System Research Laboratory [55]. We adopt the dataset
in [28], acquired from 100 stations across the Pacific ocean
from 170° west to 90° west and from 60° south to 10° north
with a dynamic range from —1.32°C to 30.72°C. Each station
records, over a period of 1733 months, the monthly mean
sea surface temperature from January 1870 to May 2014. The
underlying graph G has 100 vertices, each of which represents
an observation station, and is constructed by connecting the
S-nearest neighboring stations, in terms of physical distance
[55], as shown in Fig.1 (bottom).

Three sampling rates, 90%, 80% and 70% (the correspond-
ing corruption percentages are 10%, 20% and 30%), are used
in the simulations. Table VIII compares the performance of the
different methods. It is seen that all methods give the same
performance, indicating convergence to the optimal solution
(which is obtained by the centralized method). However the
DLSRA has significantly faster convergence than the method
in [28]. The computational time is also substantially lower in
the former.



F. Recovery of piecewise smooth signals

The underlying signals we have considered so far are
smooth over the entire graph vertex domain. However there
could be situations where the underlying signal is discontinu-
ous over limited number of locations but is smooth otherwise,
i.e. piecewise smooth. These discontinuities manifest them-
selves in the highpass components of the signal. This is similar
to edges with images. We would like to compare between
the performance of the recovery algorithms using the /5-norm
(DLSRA) with the l;-norm (DAMRA). Consider the time-
invariant signal on Minnesota traffic graph signal shown in Fig.
2 which is piecewise smooth. A 10% corruption is applied to
this signal and the difference between the corrupted signal and
original signal is also shown in the figure. Using the 2 penalty
norm, the recovered signal has RMSE = 0.0625. Using the [;
penalty norm the recovered signal has RMSE = 0.0044 which
is substantially lower. Fig. 2 also show the error signals using
the two norms. The error near the discontinuities is smaller
with the [;-norm. This result is consistent with what is well
known in images, the [;-norm is better than the [;-norm for
preserving edge features in images.
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Fig. 2: Minnesota traffic graph with 2642 vertices and 3303
edges. Top left: underlying original piecewise smooth signal.
Top right: difference between the corrupted signal and original
signal. Bottom left: error (original - recovered) using the (o-
norm. Bottom right: error using the ¢;-norm.

VII. CONCLUSIONS

The work here has addressed the recovery of time-varying
graph signals. New notions of smoothness over time and graph
topology have been proposed. These notions, via the use of
non-smoothness penalty terms, were then exploited in the
optimization problem formulations. In the first formulation,
only the /5-norm appeared in the objective function. In the
second formulation, both the ¢;- and ¢3-norms appeared in
the objective function. Two distributed algorithms, abbreviated
as DLSRA and DARMA, were proposed to solve the two
problems. Extensive numerical simulations demonstrate that

these algorithms give excellent quality solutions. However, the
main advantage with the DLSRA algorithm is that it has fast
convergence.

VIII. APPENDIX

A. Proof of (IV.14)

Write Mj, (M7 D oM7) MZ'D oy (M7 27 — M7") =
(9%(4,7))i,jev, k € M. Applying the formula (A.3) from [13],
we obtain

0
19006, )] < D1(9)(20 + 1) rexp (= 5-r+0) (VIILD)
for i € B(k,r) and j € B(k,2r + 20)\B(k, 2r), and
gk(i,5) =0 (VIIL2)

when either i ¢ B(k,r) or j & B(k,2r+20)\B(k, 2r). Write
I-JD g = (G(4, §))ijev. By (IV.10) and the observation that
D has geodesic-width at most 20, we have

I-JDuy = ( 3 MT,)_l 3 M (MPD M)

k'eM keM
<MD (M7~ M),
which implies that
> kemnB(i,r) Ik(E:7)
ZkGMﬂB(i,r) 1

g(i,j) = L i,jeV. (VIIL3)

This together with (VIIL.1) and (VIIL.2) implies that
1306, 7)] < D1(G)(20 + 1)k exp ( . %r + 0) (VIIL4)

when p(i,7) < 3r + 20, and
9(i,5j) =0

when p(i, j) > 3r+20. Therefore the estimate (IV.14) follows
from (II.2), (VIIL.4) and (VIIL5).

(VIIL5)

B. Proof of Theorem IV.2

Set (™ = % — x(™)_ From formula (IV.17), we have

el™ = (I-JD)e™ Y. (VIIL6)
From (IV.9) and (IV.11), we have
(I = IDp)x|p < 6)I%]p (VIIL7)

Since there is no restriction on the signal vector X, we can
conclude that (VIII.7) holds true for any arbitrary signal vector.
Therefore, we have

1™l < &llet™ ], (VIL3)

where 0 < 1 implies that the convergence rate is exponential.
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