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Abstract. A spatial signal is defined by its evaluations on the whole domain. In this paper,
we consider stable reconstruction of real-valued signals with finite rate of innovation (FRI), up
to a sign, from their magnitude measurements on the whole domain or their phaseless samples
on a discrete subset. FRI signals appear in many engineering applications such as magnetic res-
onance spectrum, ultra wide-band communication and electrocardiogram. For an FRI signal,
we introduce an undirected graph to describe its topological structure, establish the equivalence
between its graph connectivity and its phase retrievability by point evaluation measurements
on the whole domain, apply the graph connected component decomposition to find its unique
landscape decomposition, and to find all FRI signals that have the same magnitude measure-
ments. We construct discrete sets with finite density so that magnitude measurements of an
FRI signal on the whole domain are determined by its phaseless samples taken on those discrete
subsets, and we show that the corresponding phaseless sampling procedure has bi-Lipschitz
property with respect to a new induced metric on the signal space and the standard `p-metric
on the sampling data set. In this paper, we also propose an algorithm with linear complexity
to reconstruct an FRI signal from its (un)corrupted phaseless samples on the above sampling
set without restriction on the noise level and apriori information whether the original FRI sig-
nal is phase retrieval. The algorithm is theoretically guaranteed to be stable, and numerically
demonstrated to approximate the original FRI signal in magnitude measurements.

1. Introduction

A spatial signal f on a domain D is defined by its evaluations f(x), x ∈ D. One of fundamental
problems in real/complex phase retrieval is how to determine all signals g that have the same
magnitude information as f has on the domain D (i.e., |g(x)| = |f(x)|, x ∈ D), or on a discrete
sampling set Γ ⊂ D (i.e., |g(γ)| = |f(γ)|, γ ∈ Γ). The above problem is a highly nonlinear
ill-posed problem which can be solved only if we have some extra information about the signal
f , and it has been discussed for bandlimited signals [56] and wavelet signals residing in a shift-
invariant space [19, 20, 55]. In this paper, we consider the phaseless sampling and reconstruction
(i.e., phase retrieval by point evaluation measurements on the whole domain or on a discrete
set) of real-valued signals residing in the linear space

(1.1) V (Φ) :=
{∑
λ∈Λ

cλφλ : cλ ∈ R for all λ ∈ Λ
}
,

where Λ ⊂ D is a discrete set with finite density, and the generator Φ = (φλ)λ∈Λ is a vector
of nonzero basis signals φλ, λ ∈ Λ, essentially supported in a neighborhood of the innovative
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position λ ∈ Λ [23, 52, 59], i.e., any signal f in the space V (Φ) has a parametric representation

(1.2) f(x) =
∑
λ∈Λ

cλφλ(x), x ∈ D,

where c = (cλ)λ∈Λ is an unknown real-valued parameter vector. Signals with the above paramet-
ric representation appear in many engineering applications such as magnetic resonance spectrum,
ultra wide-band communication and electrocardiogram [23, 24, 53, 59]. The linear space V (Φ)
was introduced in [53, 54] to model signals with finite rate of innovation (FRI), which was in-
troduced by Vetterli, Marziliano and Blu in [59]. Sampling and reconstruction of various FRI
signals have been well studied [23, 24, 25, 40, 53, 54, 59], while there are limited literatures on
phase retrievability of FRI signals [5].

Given a signal f ∈ V (Φ), let

(1.3) Mf := {g ∈ V (Φ) : |g(x)| = |f(x)|, x ∈ D}
contain all signals g ∈ V (Φ) with the same magnitude measurements as f on D. As −f and f
have the same magnitude measurements on the whole domain, we have that

Mf ⊃ {±f}.
A natural question is whether the above inclusion is an equality.

Question 1.1. Can we characterize all signals f ∈ V (Φ) so that Mf = {±f}?

An equivalent statement to the above question is whether a signal f is determined, up to a sign,
from the magnitude information |f(x)|, x ∈ D. The above question is an infinite-dimensional
phase retrieval problem with point evaluation measurements, which has been discussed for ban-
dlimited signals [56], wavelet signals in a shift-invariant space [19, 20, 55]. The reader may refer
to [1, 2, 12, 32, 42, 45, 50] for historical remarks and additional references on phase retrieval in
an infinite-dimensional linear space. In Section 3, we introduce an undirected graph Gf for an
FRI signal f ∈ V (Φ), and we provide an answer to Question 1.1 by showing that Mf = {±f}
if and only if Gf is connected, see Theorem 3.2.

For a signal f ∈ V (Φ), the corresponding graph Gf is not always connected. This leads to
our next question.

Question 1.2. Can we find the set Mf for any signal f ∈ V (Φ)?

For a signal f ∈ V (Φ), we can decompose its graph Gf uniquely as a union of connected
components Gi, i ∈ I,

(1.4) Gf = ∪i∈IGi.
Then we can construct signals fi ∈ V (Φ), i ∈ I, with Gfi = Gi, i ∈ I, such that

(1.5) fifi′ = 0 for all distinct i, i′ ∈ I,

(1.6) Mfi = {±fi}, i ∈ I,
and

(1.7) f =
∑
i∈I

fi,
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see Theorem 4.4. Due to the mutually disjoint support property (1.5) for signals fi, i ∈ I, and
the connectivity of the graphs Gfi , i ∈ I, we can interpret the above adaptive decomposition
visually that the landscape of original signal f is composed by islands of signals fi, i ∈ I, see
the top left plot in Figure 1 and the left plot in Figure 2. Therefore the conclusion in Theorem
4.4 shows that landscapes of signals g ∈Mf are combinations of islands of the original signal f
and their reflections. We remark that landscape decomposition for signals in a linear space has
been used in Gabor phase retrieval [1, 32]. By (1.5) and (1.7), we have

Mf ⊃
{∑
i∈I

δifi : δi ∈ {−1, 1}, i ∈ I
}
.

In Section 4, we provide an answer to Question 1.2 by showing in Theorem 4.1 that the above
inclusion is in fact an equality for any signal f ∈ V (Φ), and hence there are 2#I elements in the
set Mf .

Now we consider phaseless sampling and reconstruction on a discrete set Γ ⊂ D. For a signal
f ∈ V (Φ), let Mf,Γ contain all signals g ∈ V (Φ) such that

(1.8) |g(γ)| = |f(γ)|, γ ∈ Γ,

and NΓ contain all signals h ∈ V (Φ) such that

(1.9) h(γ) = 0, γ ∈ Γ.

By (1.3), (1.8) and (1.9), we have

(1.10) Mf =Mf,D, ND = {0},
and

(1.11) Mf +NΓ ⊂Mf,Γ for all Γ ⊂ D.
This leads to the third question.

Question 1.3. Can we find all discrete sets Γ such that Mf,Γ =Mf for all signals f ∈ V (Φ)?

An equivalent statement to the equality Mf,Γ = Mf is that magnitude measurements
|f(x)|, x ∈ D, on the whole domain D are determined by their samples |f(γ)|, γ ∈ Γ, taken
on a discrete set Γ. By (1.11), a necessary condition such that the equality Mf,Γ =Mf holds
for some signal f ∈ V (Φ) is that NΓ = {0}, which means that all signals in the linear space
V (Φ) are determined from their samples taken on Γ. The reader may refer to [24, 51, 54, 59]
and references therein for sampling and reconstruction of FRI signals. In Section 5, we show the
existence of a discrete set Γ with finite density such that Mf,Γ =Mf for all signals f ∈ V (Φ).
In Theorem 5.3, we construct such a discrete set Γ explicitly under the assumption that the
linear space V (Φ) has local complement property on a family of open sets. The local comple-
ment property, see Definition 3.1, is introduced in [20] and it is closely related to the comple-
ment property for ideal sampling functionals in [19] and the complement property for frames
in Hilbert/Banach spaces [2, 7, 10, 12]. The local complement property on a bounded open
set can be characterized by phase retrievable frames associated with the generator Φ and the
sampling set Γ on a finite-dimensional space, see Proposition 5.2. The reader may refer to
[6, 7, 13, 16, 17, 27, 34, 36, 48, 61] and references therein for historical remarks and recent
advances on finite-dimensional phase retrievable frames.
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In many real world applications, phaseless samples are usually corrupted by some bounded
deterministic/random noises η(γ), γ ∈ Γ, and the available noisy phaseless samples are

zη(γ) = |f(γ)|+ η(γ), γ ∈ Γ.

Set η = (η(γ))γ∈Γ and zη = (zη(γ))γ∈Γ. This leads to the fourth question to be discussed in this
paper.

Question 1.4. Can we find an algorithm ∆ such that the reconstructed signal gη = ∆(zη) is an
“approximation” to the original signal f?

For a finite-dimensional phase retrieval problem, there are various algorithms available, such
as the alternating minimization, semidefinite programming, and Wirtinger flow method [14, 15,
16, 26, 28, 29, 44, 48, 63], however applicability of the algorithms, to our knowledge, requires
that the original signal f is phase retrieval, i.e., Mf = {±f}. In [19, 20], an MAPS algorithm
is proposed to reconstruct a signal f in a shift-invariant space, up to a sign, from its phaseless
samples taken on a shift-invariant set, where the original signal f is phase retrieval.

Given a Borel measure µ on the domain D, let Lp := Lp(D,µ), 1 ≤ p ≤ ∞, be the linear space
of all p-integrable signals with standard norm ‖ · ‖Lp := ‖ · ‖Lp(D,µ) and `p := `p(Γ) be the space
of all p-summable sequences η on Γ with its standard p-norm denoted by ‖η‖lp := ‖η‖`p(Γ). Let
1 ≤ p ≤ ∞ and define

(1.12) Vp(Φ) =
{∑
λ∈Λ

cλφλ : (cλ)λ∈Λ ∈ `p
}
⊂ V (Φ) ∩ Lp, 1 ≤ p ≤ ∞.

In Section 6, we propose a robust algorithm with linear complexity so that the reconstructed
signal gη is a good approximation to the original signal in the linear space Vp(Φ), see Theorem
6.5 and Remarks 6.1–6.4 and 6.6. This provides an affirmative answer to Question 1.5 for the
original signals in Vp(Φ).

Stability of a sampling scheme is an important concept for the robustness and uniqueness
for sampling and reconstruction of signals in a linear space, see [3, 43, 54, 57]. Due to the
nonlinearity, stability of the phaseless sampling scheme

(1.13) SΓ : V (Φ) 3 f 7−→ (|f(γ)|)γ∈Γ

on a sampling set Γ should be described by its bi-Lipschitz property in some metrics on the
signal space and the sampling data set. This leads to the fifth question to be discussed in this
paper.

Question 1.5. Let Γ be a sampling set such that Mf,Γ =Mf for all f ∈ V (Φ). Can we define
appropriate metrics on the signal space and on the sampling data set such that the phaseless
sampling operator SΓ in (1.13) has the bi-Lipschitz property?

For 1 ≤ p ≤ ∞, we define the natural metric for phase retrievability on the signal space Vp(Φ)
by

(1.14) mp(f, g) = min(‖f + g‖Lp , ‖f − g‖Lp) for all f, g ∈ Vp(Φ),

and the `p-metric on the phaseless sampling data set by

(1.15) Dp(SΓf, SΓg) = ‖SΓf − SΓg‖lp for all f, g ∈ Vp(Φ),
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cf. [1, 9, 10, 27]. The nonlinear sampling operator SΓ in (1.13) does not have the bi-Lipschitz
property with respect to the natural metric mp on the signal space Vp(Φ) and the `p-metric Dp

in the phaseless sampling data set, i.e., there does not exist positive constants C1 and C2 such
that

C1mp(f, g) ≤ Dp(SΓf, SΓg) ≤ C2mp(f, g) for all f, g ∈ Vp(Φ).

The reason is that some signals in Vp(Φ) may not be determined, up to a sign, from their
phaseless samples on Γ, and hence we can find f, g ∈ Vp(Φ) such that

mp(f, g) 6= 0 and Dp(SΓf, SΓg) = 0.

In this paper, we induce a new metric on the signal space Vp(Φ), 1 ≤ p ≤ ∞,

(1.16) Mp(f, g) = inf
f̃ ,g̃∈Vp(Φ) satisfying Mf̃=Mg̃

max
(
‖f − f̃‖Lp , ‖g − g̃‖Lp

)
.

Clearly we have that

(1.17) ‖|f | − |g|‖Lp/2 ≤Mp(f, g) ≤ mp(f, g) for all f, g ∈ Vp(Φ), 1 ≤ p ≤ ∞.
In Theorem 6.7, we show that the phaseless sampling operator SΓ has the bi-Lipschitz property
with respect to the above new metric Mp on the infinite-dimensional signal space Vp(Φ) and the
`p-metric on the phaseless sampling data set.

1.1. Contributions and Comparisons. This paper is the continuation of [19, 20]. In [19, 20],
we discuss the phaseless sampling and reconstruction of wavelet signals in a shift-invariant space

(1.18) V (φ) :=
{ ∑
k∈Zd

c(k)φ(· − k) : c(k) ∈ R for all k ∈ Zd
}

generated by a compactly supported function φ, while spatial signals considered in this paper
belong to the linear space V (Φ) in (1.1). Our representative examples of the linear space
V (Φ), different from the shift-invariant space V (φ), are the linear space of all graph signals to
describe structured data in applications such as social networks, smart power grids, wireless
sensor networks, and drone/UAV fleets [21], and the linear space of superpositions

(1.19) f(x) =
∑
λ∈Λ

cλφ(x− λ), x ∈ Rd,

of non-uniform translations φλ = φ(·−λ), λ ∈ Λ 6= Zd of a basis signal φ, which has been used in
some sampling and approximation problems [4, 33, 53, 54]. Similarity between the shift-invariant
space V (φ) considered in [19, 20] and the linear space V (Φ) used in this paper is that we both
assume that any signal in those two linear spaces has a unique parametric representation, see
(2.6), while the main difference is that the linear space V (Φ) does not have a shift-invariant
structure. Our first challenge is how to define the local complementary property of the linear
space V (Φ) appropriately, and our first main contribution is to characterize all phase retrieval
signals f in the linear space V (Φ), i.e.,Mf = {±f}, see Theorem 3.2, which has been discussed
in [19, 20] for signals in the shift-invariant spaces V (φ).

Spatial signals f ∈ V (Φ) are not always determined, up to a sign, from the magnitude
information |f(x)|, x ∈ D on the domain D, i.e., Mf 6= {±f}. In such a scenario, we aim
at finding all FRI signals in the set Mf which have the same magnitude information on their
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domain D as the original FRI signal f has. In [19, Lemma 6.9], it has been shown that any
signal in some shift-invariant space V (φ) on the real line has a unique landscape decomposition
and the set Mf is fully described. For signals in the shift-invariant space V (φ) on Rd, d ≥ 2,
we can apply connected component decomposition to the associated graphs in [20], and to find
their landscape decompositions, however the uniqueness of landscape decompositions is not
established and the set Mf is not discussed. The second challenge is the uniqueness of such a
landscape decomposition, and the second main contribution is that we provide a full description
to the set Mf and we discover a unique landscape decomposition for any signal f in the linear
space V (Φ) using connected component decomposition of the associated graph Gf , see Theorems
4.1 and 4.4.

In [19], an MAPS algorithm is proposed to reconstruct a signal f in the shift-invariant space
on the real line, up to a sign, from its phaseless samples |f(xn + k)|, xn ∈ X ⊂ [0, 1], when
the original signal f is phase retrieval. The algorithm has linear complexity and it consists
of three steps: 1) minimization to find local approximations; 2) phase adjustment for local
approximations; and 3) sewing local approximation together to reconstruct the original signal,
up to a sign. In [19, Theorem 4.1], it is shown that the MAPS algorithm is robust against small
noises. A high-dimensional version of the MAPS algorithm is introduced in [20] to reconstruct a
signal f in the shift-invariant space on the d-dimensional Euclidean space, up to a sign, from its
phaseless samples |f(xn + k)|, xn ∈ X ⊂ [0, 1]d, when the original signal f is phase retrieval. In
this paper, we introduce a new strategy in the phase adjustment step and propose a new MAPS
algorithm to reconstruct signals in the linear space Vp(Φ), 1 ≤ p ≤ ∞ from their (un)corrupted
phaseless samples. The third main contribution is that the reconstructed signal obtained from
the proposed MAPS algorithm is an “approximation” to the original signal in the linear space
Vp(Φ) without restriction on noise level and apriori information on the original signal f , see
Theorem 6.5 and Remark 6.6. Moreover the proposed algorithm is robust and non-iterative,
and it has linear complexity, see Remarks 6.2–6.4.

In [19, 20], we consider the local stability of a phaseless sampling operator SΓ in natural metric
m∞ in the shift-invariant space V∞(φ), where

(1.20) Vp(φ) :=
{ ∑
k∈Zd

c(k)φ(· − k) : (c(k))k∈Zd ∈ `p
}
, 1 ≤ p ≤ ∞.

It is shown in [19, Theorem 4.1] that for any phase retrieval signal f ∈ V∞(φ) on the real line,
there exist positive constants A and εf (depending on f) such that

Am∞(g, f) ≤ D∞(SΓg, SΓf)

hold for all signals g ∈ V∞(φ) satisfying D∞(SΓg, SΓf) ≤ εf . The fourth main contribution is
that we construct sampling sets Γ with finite density so that the nonlinear sampling operator SΓ

in (1.13) has bi-Lipschitz property with respect to the metric Mp in (1.16) on a linear subspace
Vp(Φ), 1 ≤ p ≤ ∞, i.e., there exists positive constants A1 and A2 such that

A1Mp(g, f) ≤ Dp(SΓg, SΓf) ≤ A2Mp(g, f) for all g, f ∈ Vp(Φ),

see Theorem 6.7. To the best of our knowledge, the above stability inequality is the first global
estimation for certain phase retrieval signals in an infinite-dimensional linear space.
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1.2. Organization. In Section 2, we present some preliminaries on the linear space V (Φ). In
Section 3, we introduce a graph structure for any signal in V (Φ) and use its connectivity to
provide an answer to Question 1.1. In Section 4, we introduce a landscape decomposition for a
signal f ∈ V (Φ) and use it to find all signals inMf . In Section 5, we construct a discrete set Γ
with finite density such that Mf,Γ =Mf for all f ∈ V (Φ). In Section 6, we introduce a stable
algorithm ∆ with linear complexity to reconstruct signals in V (Φ) from their noisy phaseless
samples taken on a discrete set Γ and show that the phaseless sampling operator SΓ in (1.13)
has bi-Lipschitz property with respect to the metric Mp in (1.16). In Section 7, we demonstrate
the stable reconstruction of our proposed algorithm ∆ by reconstructing one-dimensional non-
uniform spline signals and two-dimensional piecewise affine signals on triangulations from their
noisy phaseless samples. In Appendix A, we show that the density of a discrete set Γ with
Mf,Γ =Mf , f ∈ V (Φ), must be no less than the innovative rate of signals in V (Φ).

2. Preliminaries

Spatial signals considered in the paper are defined on a domain D. Our representing models
of the domain D are the d-dimensional Euclidean space Rd, the d-dimensional torus Td and the
vertex set V of a undirected graph G = (V,E) containing no graph loops or multiple edges that
is widely used to describe a spatially distributed network [21]. Let

B(x, r) = {y ∈ D : ρ(x, y) ≤ r}

be the closed ball with center x ∈ D and radius r ≥ 0. In this paper, we always assume the
following for the domain D [21, 41, 62].

Assumption 2.1. The domain D is equipped with a distance ρ and a Borel measure µ so that

(2.1) B(r) := sup
x∈D

µ
(
B(x, r)

)
<∞

and

(2.2) lim inf
s→∞

inf
x∈D

µ(B(x, s− r))
µ(B(x, s))

= 1

hold for all r ≥ 0.

Spatial signals considered in this paper belong to the linear space V (Φ) in (1.1). Denote the
cardinality of a set E by #E. In this paper, we always assume the following three conditions to
basis signals φλ, λ ∈ Λ, of the linear space V (Φ) in (1.1).

Assumption 2.2. (i) The discrete set Λ has finite density

(2.3) D+(Λ) := lim sup
r→∞

sup
x∈D

]
(
Λ ∩B(x, r)

)
µ
(
B(x, r)

) <∞;

(ii) the basis signals φλ, λ ∈ Λ, in the generator Φ are nonzero continuous functions being
uniformly bounded,

(2.4) ‖Φ‖∞ := sup
λ∈Λ
‖φλ‖L∞ <∞,
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and they are supported in balls with center λ and a fixed radius r0 > 0 independent of λ, i.e.,

(2.5) φλ(x) = 0 for all x 6∈ B(λ, r0) and λ ∈ Λ;

and (iii) any signal in V (Φ) has a unique parametric representation (1.2).

The prototypical forms of the linear space V (Φ) in (1.1) are Paley-Wiener space of bandlimited
signals [56, 57], the shift-invariant space V (φ) generated by the shifts of a compactly supported
function φ [3, 19, 20], twisted shift-invariant spaces generated by (non-)uniform Gabor frame
system (or Wilson basis) in the time-frequency analysis [8, 18, 31, 37, 47], and nonuniform spline
signals [11, 35, 49]. The linear space V (Φ) was introduced in [53, 54] to model FRI signals.
Following the terminology in [59], signals in the linear space V (Φ) have rate of innovations
D+(Λ) and innovative positions λ ∈ Λ.

An equivalent statement to the unique parametric representation (1.2) of FRI signals in V (Φ)
in Assumption 2.2 is that the generator Φ has global linear independence, i.e., the map

(2.6) c := (cλ)λ∈Λ 7−→ cTΦ :=
∑
λ∈Λ

cλφλ

is one-to-one from the space `(Λ) of all sequences on Λ to the linear space V (Φ) [39, 46]. For
an open set A, define

(2.7) KA = {λ ∈ Λ : φλ 6≡ 0 on A}.
A local version of the global linear independence (2.6) is local linear independence on a bounded
open set A ⊂ D, i.e.,

(2.8) dimV (Φ)|A = #KA,

where dimV is the dimension for a linear space V and V |A represents its restriction on a set
A. Observe that the restriction of the linear space V (Φ) on a bounded open set A is generated
by φλ, λ ∈ KA (and hence it is finite-dimensional). Then an equivalent formulation of the local
linear independence on a bounded open set A is that

(2.9)
∑
λ∈Λ

cλφλ(x) = 0 for all x ∈ A

implies that cλ = 0 for all λ ∈ KA [39, 52].
Set

(2.10) SΦ(λ, λ′) := {x ∈ D : φλ(x)φλ′(x) 6= 0}, λ, λ′ ∈ Λ,

and use the abbreviation

SΦ(λ) := SΦ(λ, λ)

when λ′ = λ ∈ Λ. One may verify that the generator Φ has global linear independence (2.6) if
it has local linear independence on a family of open sets Tθ, θ ∈ Θ, such that

(2.11) SΦ(λ, λ′) ∩
(
∪θ∈Θ Tθ

)
6= ∅

for all pairs (λ, λ′) ∈ Λ×Λ with SΦ(λ, λ′) 6= ∅. We remark that a family of open sets Tθ, θ ∈ Θ,
satisfying (2.11) is not necessarily a covering of the domain D, however, the converse is true, cf.
Corollary 4.3.
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3. Phase retrievability and graph connectivity

In this section, we characterize all signals f ∈ V (Φ) that can be determined, up to a sign,
from their magnitude measurements on the whole domain D, i.e., Mf = {±f}, see Theorem
3.2.

Given a signal f =
∑

λ∈Λ cλφλ ∈ V (Φ), we define an undirected graph

(3.1) Gf := (Vf , Ef ),

where

(3.2) Vf := {λ ∈ Λ : cλ 6= 0}
and

Ef :=
{

(λ, λ′) ∈ Vf × Vf : λ 6= λ′ and φλφλ′ 6≡ 0
}
.

For a signal f ∈ V (Φ), the graph Gf in (3.1) is well-defined by (2.6), and it was introduced in
[20] when the generator Φ = (φ(· − k))k∈Zd is obtained from shifts of a compactly supported
function φ. Its vertex set Vf contains all innovative positions λ ∈ Λ with nonzero amplitude cλ,
and its edge set Ef contains all innovative position pairs (λ, λ′) in Vf × Vf with basis signals φλ
and φλ′ having overlapped supports, i.e.,

(3.3) (λ, λ′) ∈ Ef if and only if λ, λ′ ∈ Vf and (λ, λ′) ∈ EΦ,

where SΦ(λ, λ′), (λ, λ′) ∈ Λ× Λ, are given in (2.10) and

(3.4) EΦ := {(λ, λ′) ∈ Λ× Λ : SΦ(λ, λ′) 6= ∅}.
To study the phase retrievability of signals in V (Φ), we recall the local complement property

for a linear space of real-valued signals [20].

Definition 3.1. Let A be an open subset of the domain D. We say that a linear space V of
real-valued signals on the domain D has local complement property on A if for any A′ ⊂ A, there
does not exist f, g ∈ V such that f, g 6≡ 0 on A, but f(x) = 0 for all x ∈ A′ and g(y) = 0 for all
y ∈ A\A′.

The local complement property is the complement property in [19] for ideal sampling func-
tionals on a set, cf. the complement property for frames in Hilbert/Banach spaces ([2, 7, 10, 12]).
Local complement property is closely related to local phase retrievability. In fact, following the
argument in [19], the linear space V has the local complement property on A if and only if all
signals in V are local phase retrieval on A, i.e., for any f, g ∈ V satisfying |g(x)| = |f(x)|, x ∈ A,
there exists δ ∈ {−1, 1} such that g(x) = δf(x) for all x ∈ A.

In this section, we establish the equivalence between phase retrievability of a nonzero signal
f ∈ V (Φ) and connectivity of its graph Gf . A similar result is established in [20] for signals
residing in a shift-invariant space.

Theorem 3.2. Let Φ be a family of basis functions satisfying Assumption 2.2, V (Φ) be the
linear space (1.1) generated by Φ, and let T = {Tθ, θ ∈ Θ} be a family of bounded open sets
satisfying (2.11). Assume that for any Tθ ∈ T , Φ has local linear independence on Tθ and V (Φ)
has local complement property on Tθ. Then for a nonzero signal f ∈ V (Φ), Mf = {±f} if and
only if the graph Gf in (3.1) is connected.
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As shown in the next proposition, the local complement property assumption in Theorem 3.2
is satisfied when Φ has local linear independence on all bounded open sets. However, we do
not use the above strong assumption in our main theorems, as there are very few families of
basis signals available (including those generated by integer shifts of B-splines, scaling/wavelet
functions, and box splines), which have local linear independence on all bounded open sets
[22, 30, 38, 52].

Proposition 3.3. Let Φ = (φλ)λ∈Λ satisfy Assumption 2.2. If Φ has local linear independence
on all bounded open sets, then there exist T = {Tθ, θ ∈ Θ} satisfying (2.11) such that V (Φ) has
local complement property on every Tθ ∈ T .

Proof. Define TΦ(θ) = ∩λ∈θSΦ(λ) for a set θ ⊂ Λ. We say that θ ⊂ Λ is maximal if TΦ(θ) 6= ∅
and TΦ(θ′) = ∅ for all θ′ ) θ. By (2.3) and (2.5), any maximal set contains finitely many
elements. Denote the family of all maximal sets by Θ and define Tθ = TΦ(θ), θ ∈ Θ. Clearly
T := {Tθ, θ ∈ Θ} satisfies (2.11), because any θ ⊂ Λ with TΦ(θ) 6= ∅ is a subset of some maximal
set in Θ.

Now it remains to prove that V (Φ) has local complement property on Tθ, θ ∈ Θ. Take an
arbitrary θ ∈ Θ and two signals f, g ∈ V (Φ) satisfying |f(x)| = |g(x)| for all x ∈ Tθ. Then

(3.5) (f + g)(x)(f − g)(x) = 0 for all x ∈ Tθ.

Write f + g =
∑

λ∈Λ cλφλ and f − g =
∑

λ∈Λ dλφλ, and set B1 = {x ∈ Tθ : (f + g)(x) 6= 0} and
B2 = {x ∈ Tθ : (f − g)(x) 6= 0}. Then

(3.6)
(∑
λ∈θ

cλφλ(x)
)(∑

λ∈θ
dλφλ(x)

)
= 0 for all x ∈ Tθ,

and

(3.7) φλ(x) 6= 0 for all x ∈ Tθ and λ ∈ θ

by assumption (2.11), (3.5) and the construction of maximal sets. By (3.6), we have that
f − g = 0 on B1 if B1 6= ∅, f + g = 0 on B2 if B2 6= ∅, and f − g = f + g = 0 on Tθ if
B1 = B2 = ∅. This together with (3.7) and the local linear independence on B1, B2 and Tθ
implies that either dλ = 0 for all λ ∈ θ, or cλ = 0 for all λ ∈ θ, or cλ = dλ = 0 for all λ ∈ θ.
Therefore either f = g on Tθ, or f = −g on Tθ, or f = g = 0 on Tθ. This completes the
proof. �

Applying Theorem 3.2 and Proposition 3.3, we have the following corollary, which is estab-
lished in [20] when the generator Φ is obtained from uniform shifts of a compactly supported
function.

Corollary 3.4. Let Φ be a family of basis functions satisfying Assumption 2.2, and V (Φ) be
the linear space (1.1) generated by Φ. If Φ has local linear independence on any bounded open
set, then a nonzero signal f ∈ V (Φ) satisfies Mf = {±f} if and only if the graph Gf in (3.1) is
connected.
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3.1. Proof of Theorem 3.2. The necessity in Theorem 3.2 holds under a weak assumption on
the generator Φ.

Proposition 3.5. Let Φ := (φλ)λ∈Λ be a family of basis functions satisfying Assumption 2.2,
V (Φ) be the linear space (1.1) generated by Φ, and let f be a nonzero signal in V (Φ). If
Mf = {±f}, then the graph Gf in (3.1) is connected.

To prove Proposition 3.5, we recall a characterization in [19] on phase retrievability.

Lemma 3.6. For a nonzero signal f in a real-valued linear space V , Mf = {±f} if and only
if it is nonseparable, i.e., there does not exist nonzero signals f0 and f1 ∈ V such that

(3.8) f = f0 + f1 and f0f1 = 0.

Proof of Proposition 3.5. Let f ∈ V (Φ) be a nonzero signal satisfying Mf = {±f}, and write
f =

∑
λ∈Λ cλφλ, where cλ ∈ R, λ ∈ Λ. Suppose, on the contrary, that the graph Gf is discon-

nected. Then there exists a nontrivial connected component W such that both W and Vf\W
are nontrivial, and no edges exist between vertices in W and in Vf\W . Write

(3.9) f =
∑
k∈Vf

cλφλ =
∑
λ∈W

cλφλ +
∑

λ∈Vf\W

cλφλ =: f0 + f1.

From the global linear independence (2.6) and nontriviality of the sets W and Vf\W , we obtain

(3.10) f0 6≡ 0 and f1 6≡ 0.

Applying (3.9) and (3.10), and using the characterization in Lemma 3.6, we obtain that

f0(x0)f1(x0) 6= 0

for some x0 ∈ D. This implies the existence of λ ∈ W and λ′ ∈ Vf\W such that cλφλ(x0) 6= 0
and cλ′φλ′(x0) 6= 0. Hence (λ, λ′) is an edge between λ ∈ W and λ′ ∈ Vf\W , which contradicts
to the construction of the set W . �

Now we prove the sufficiency in Theorem 3.2. Let f =
∑

λ∈Λ cλφλ ∈ V (Φ) have its graph Gf
being connected, and take g =

∑
λ∈Λ dλφλ ∈Mf . Then for any θ ∈ Θ,

(3.11) |g(x)| = |f(x)|, x ∈ Tθ.
For any θ ∈ Θ, there exists δθ ∈ {−1, 1} by (3.11) and the local complement property on Tθ
such that

g(x) = δθf(x), x ∈ Tθ.
This together with the local linear independence on Tθ implies that

(3.12) dλ = δθcλ

for all λ ∈ Λ with SΦ(λ)∩Tθ 6= ∅. Using (2.11) and applying (3.12), there exist δλ ∈ {−1, 1}, λ ∈
Λ such that

(3.13) dλ = δλcλ

for all λ ∈ Λ, and

(3.14) δλ = δλ′
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for any edge (λ, λ′) in the graph Gf . Combining (3.13) and (3.14), and applying connectivity of
the graph Gf , we can find δ ∈ {−1, 1} such that

(3.15) dλ = cλ = 0 for all λ 6∈ Vf and dλ = δcλ for all λ ∈ Vf .
Thus g(x) = δf(x) for all x ∈ D. This completes the proof of the sufficiency.

4. Phase retrievability and landscape decomposition

For a signal f ∈ V (Φ), the graph Gf in (3.1) is not necessarily connected and hence there may
exist many signals g ∈ V (Φ), other than ±f , belonging to Mf . In this section, we characterize
the setMf of all signals g ∈ V (Φ) that have the same magnitude measurements on the domain
D as f has, and then we provide the answer to Question 1.2.

Take f =
∑

λ∈Λ cλφλ ∈ V (Φ), let Gi = (Vi, Ei), i ∈ I, be connected components of the graph
Gf , and define

(4.1) fi =
∑
λ∈Vi

cλφλ, i ∈ I.

Then (1.4) holds by the definition of Gi, i ∈ I, and the signal f has the decomposition (1.5), (1.6)
and (1.7) by Theorem 3.2. By (1.5) and (1.7), signals g =

∑
i∈I δifi with δi ∈ {−1, 1}, i ∈ I,

have the same magnitude measurements on the domain D as f has. In the following theorem,
we show that the converse is also true.

Theorem 4.1. Let the generator Φ := (φλ)λ∈Λ, the family T = {Tθ, θ ∈ Θ} of bounded open
sets, and the linear space V (Φ) be as in Theorem 3.2. Take f ∈ V (Φ) and let fi ∈ V (Φ), i ∈ I,
be as in (4.1). Then g ∈ V (Φ) belongs to Mf if and only if

(4.2) g =
∑
i∈I

δifi for some δi ∈ {−1, 1}, i ∈ I.

Proof. The sufficiency is obvious. Now the necessity. Let f, g ∈ V (Φ) have the same magnitude
measurements on the domain D, i.e., Mf = Mg. Write f =

∑
λ∈Λ cλφλ and g =

∑
λ∈Λ dλφλ.

Then following the argument used in the sufficiency of Theorem 3.2, we can find δλ,λ′ ∈ {−1, 1}
for any pair (λ, λ′) with SΦ(λ, λ′) 6= ∅ such that

(4.3) (dλ, dλ′) = δλ,λ′(cλ, cλ′).

Applying (4.3) with λ′ = λ and recalling that SΦ(λ) 6= ∅, we obtain

(4.4) dλ = δλcλ, λ ∈ Λ,

for some δλ ∈ {−1, 1}. This concludes that

(4.5) δλ = δλ,λ′ = δλ′

for any edge (λ, λ′) of the graph Gf . Therefore signs δλ are the same in any connected component
of the graph Gf . This together with (1.4), (4.1) and (4.4) completes the proof. �

The conclusion in Theorem 4.1 can be understood as that the landscape of any signal g ∈Mf

is a combination of islands of the original signal f or their reflections. As an application to
Theorem 4.1, we have the following result about the cardinality of the set Mf .
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Corollary 4.2. Let the generator Φ, the family T of bounded open sets, and the linear space
V (Φ) be as in Theorem 3.2. Then for f ∈ V (Φ),

#Mf = 2#I ,

where I is given in (1.4).

The union of Tθ, θ ∈ Θ, is not necessarily the whole domain D. Following the argument used
in the proof of Theorems 3.2 and 4.1, we have the following corollary.

Corollary 4.3. Let the generator Φ, the family T = {Tθ, θ ∈ Θ} of bounded open sets and the
linear space V (Φ) be as in Theorem 4.1. Then

(4.6) Mf =Mf,DT for all f ∈ V (Φ),

where DT = ∪θ∈ΘTθ.

Proof. Let f, g ∈ V (Φ) satisfy |f(x)| = |g(x)|, x ∈ Tθ for all θ ∈ Θ. Write f =
∑

i∈I fi as in
(1.5), (1.6) and (1.7). From the argument used in the proof of Theorems 3.2 and 4.1, we have
that g =

∑
i∈I δifi for some δi ∈ {−1, 1}. Therefore |g(x)| = |f(x)| for all x ∈ D. �

Take f =
∑

λ∈Λ cλφλ ∈ V (Φ), and define fi, i ∈ I, by (4.1). As discussed in the paragraph
just before the statement of Theorem 4.1, the above functions fi, i ∈ I form a landscape de-
composition of the signal f satisfying (1.5), (1.6) and (1.7). In the next theorem we show the
uniqueness of the landscape decomposition satisfying (1.5), (1.6) and (1.7).

Theorem 4.4. Let the generator Φ and the space V (Φ) be as in Theorem 4.1. Then for any
f ∈ V (Φ) there exists a unique decomposition satisfying (1.5), (1.6) and (1.7).

Proof. Write f =
∑

λ∈Λ cλφλ and define fi, i ∈ I, by (4.1). Suppose that {gj , j ∈ J} is another
decomposition of the signal f satisfying (1.5), (1.6) and (1.7). Then gj =

∑
λ∈Λ dj,λφλ, j ∈ J,

are nonzero signals in V (Φ) such that satisfy

(4.7) f =
∑
j∈J

gj ,

(4.8) Mgj = {±gj}, j ∈ J,
and

(4.9) gjgj′ = 0 for all distinct j, j′ ∈ J.
Then it suffices to find Ij , j ∈ J , such that

(4.10) Ij only contains exactly one element for any j ∈ J,

(4.11) gj =
∑
i∈Ij

fi,

and

(4.12) ∪j∈J Ij = I and Ij ∩ Ij′ = ∅ for all distinct j, j′ ∈ J,
as in this case there is an bijective map P from J and I such that gj = fP(j), j ∈ J .
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First we prove (4.11) and (4.12). For any distinct j, j′ ∈ J and (λ, λ′) ∈ Λ×Λ with SΦ(λ, λ′) 6=
∅, following the argument used in the sufficiency of Theorem 3.2 with f and g replaced by gj±gj′
we obtain from (4.9) that

either (dj,λ, dj,λ′) = (0, 0) or (dj′,λ, dj′,λ′) = (0, 0).

This together with (4.7) implies that for any (λ, λ′) ∈ Λ × Λ with SΦ(λ, λ′) 6= ∅ there exists
j ∈ J such that

(4.13) dj,λ = cλ, dj,λ′ = cλ′

and

(4.14) dj′,λ = dj′,λ′ = 0 for all j′ 6= j.

Observe that SΦ(λ) 6= ∅, λ ∈ Λ. Applying (4.13) and (4.14) with λ′ = λ ∈ Λ, we can find
Wj , j ∈ J such that

(4.15) gj =
∑
λ∈Wj

cλφλ,

and

(4.16) ∪j∈J Wj = Vf and Wj ∩Wj′ = ∅ for all distinct j, j′ ∈ J.
Let Vi ⊂ Vf , i ∈ I be as in (4.1). Applying (4.13) and (4.14) with (λ, λ′) being an edge in Gf ,
we obtain that for any i ∈ I there exists j ∈ J such that Vi ⊂ Wj . This together with (4.16)
implies the existence of a subset Ij of I for every j ∈ J such that

(4.17) Wj = ∪i∈IjVi for all j ∈ J.
Then the conclusion (4.11) follows from (4.1) and (4.17), and the partition property (4.12) holds
by (4.16), (4.17) and the observation that ∪i∈IVi = Vf .

Now we prove (4.10). By (1.5) and (4.11) we have that

Mgj ⊃
{∑
i∈Ij

δifi, δi ∈ {−1, 1}
}
,

which implies that #Mgj ≥ 2#Ij . This together with (4.8) proves (4.10). �

5. Phaseless sampling and reconstruction

In this section, we consider phaseless sampling and reconstruction of signals in V (Φ), and we
construct a discrete set Γ such that

(5.1) Mf,Γ =Mf for all f ∈ V (Φ),

and its density D+(Γ) is dominated by a multiple of the innovative rate D+(Λ) of signals in
V (Φ).

First, we recall the concept of a (minimal) phase retrievable frame [7, 20, 27, 34, 61].

Definition 5.1. We say that F = {fm ∈ Rn, 1 ≤ m ≤M} is a phase retrievable frame for Rn if
any vector v ∈ Rn is determined, up to a sign, by its measurements |〈v, fm〉|, fm ∈ F , and that
F is a minimal phase retrievable frame for Rn if any true subset of F is not a phase retrievable
frame.
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The concept of minimal phase retrievable frame is crucial for us to prove the existence of the
phaseless sampling set on which the linear space V (Φ) has local complement property, cf. [20,
Theorem A.4].

Proposition 5.2. Let the generator Φ := (φλ)λ∈Λ, the family T = {Tθ, θ ∈ Θ} of bounded
open sets, and the linear space V (Φ) be as in Theorem 3.2. Assume that Φ has local linear
independence on open sets Tθ, θ ∈ Θ. Then for any θ ∈ Θ, the linear space V (Φ) generated by
Φ has local complement property on Tθ if and only if there exists a finite set Γθ ⊂ Tθ such that
{Φθ(γ), γ ∈ Γθ} is a minimal phase retrievable frame for R#Kθ , where

(5.2) Φθ = (φλ)λ∈Kθ and Kθ = {λ ∈ Λ : SΦ(λ) ∩ Tθ 6= ∅}.
Set

(5.3) RΛ(r) := sup
x∈D

#
(
Λ ∩B(x, r)

)
, r ≥ 0.

We remark that Kθ, θ ∈ Θ in (5.2) are finite subsets of Λ and their cardinalities are bounded
by RΛ(2r0), see (5.12). In the next theorem, we explicitly construct the phaseless sampling set
such that (5.1) holds, and its density is dominated by a multiple of the innovative rate of the
signal in V (Φ).

Theorem 5.3. Let the domain D satisfy Assumption 2.1, Φ := (φλ)λ∈Λ be a family of basis
functions satisfying Assumption 2.2, V (Φ) be the linear space (1.1) generated by Φ, and T =
{Tθ, θ ∈ Θ} be a family of bounded open sets so that (2.11) holds and for every θ ∈ Θ, Φ has
local linear independence on Tθ and V (Φ) has local complement property on Tθ. Take discrete
sets Γθ ⊂ Tθ, θ ∈ Θ, so that for any θ ∈ Θ, {Φθ(γ), γ ∈ Γθ} forms a minimal phase retrievable
frame for R#Kθ , and define

(5.4) Γ := ∪θ∈ΘΓθ,

where Φθ and Kθ ⊂ Λ is given in (5.2). Then (5.1) holds for the above discrete set Γ. Moreover
if

(5.5) NT := sup
λ∈Λ

#{θ : Tθ ∩ SΦ(λ) 6= ∅} <∞,

then the set Γ has finite upper density

(5.6) D+(Γ) ≤ RΛ(2r0)(RΛ(2r0) + 1)

2
NTD+(Λ),

where r0 is given in (2.5).

We remark that the existence of discrete sets Γθ, θ ∈ Θ in Theorem 5.3 follows from the local
complement property on Tθ, θ ∈ Θ, for the linear space V (Φ), by applying the argument in [20,
Theorem A.4].

As an application of Theorem 5.3, we have the following phaseless sampling corollary, which
is established in [19, 20] for signals residing in a shift-invariant space generated by a compactly
supported function.

Corollary 5.4. Let D,Λ, T ,Φ, V (Φ) and Γ be as in Theorem 5.3. Then any signal f ∈ V (Φ)
with Mf = {±f} is determined, up to a sign, from its phaseless samples on the discrete set Γ
with finite density.
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In practical applications, the set {Φθ(γ), γ ∈ Γθ}, θ ∈ Θ is not necessarily required to form
a minimal phase retrievable frame for R#Kθ . In particular, the set Γθ can be chosen such that
the density is still dominated by the rate of innovations of signals in V (Φ) and the set of outer
products Φθ(γ)ΦT

θ (γ), γ ∈ Γθ forms a frame/basis for the linear space of symmetric matrices

spanned by outer products Φθ(x)(Φθ(x))T , x ∈ Tθ.
We finish this section with the proof of Theorem 5.3.

Proof of Theorem 5.3. First we prove (5.1). By (1.11), it suffices to prove

(5.7) Mf,Γ ⊂Mf .

Take g =
∑

λ∈Λ dλφλ ∈Mf,Γ, and write f =
∑

λ∈Λ cλφλ. Then for any θ ∈ Θ,∣∣∣ ∑
λ∈Kθ

cλφλ(γ)
∣∣∣ = |f(γ)| = |g(γ)| =

∣∣∣ ∑
λ∈Kθ

dλφλ(γ)
∣∣∣ for all γ ∈ Γθ.

This together with the phase retrievable frame property of Φθ(γ), γ ∈ Γθ, implies that

(5.8) dλ = δθcλ, λ ∈ Kθ

for some δθ ∈ {−1, 1}. Hence for any θ ∈ Θ,

(5.9) |g(x)| = |f(x)|, x ∈ Tθ.
This together with Corollary 4.3 implies that g ∈Mf . This proves (5.7).

To prove (5.6), we claim that for any θ ∈ Θ,

(5.10) SΦ(λ, λ′) 6= ∅ for all λ, λ′ ∈ Kθ.

Suppose on the contrary that the above claim does not hold, then there exist λ0, λ
′
0 ∈ Kθ with

SΦ(λ0, λ
′
0) = ∅. Thus φλ0 ± φλ′0 ∈ V (Φ) have the same magnitude measurements on Tθ, which

contradicts to the local complement property of the space V (Φ) on Tθ, θ ∈ Θ.
Applying Claim (5.10) and Assumption 2.2, we obtain

(5.11) B(λ, r0) ∩B(λ′, r0) 6= ∅ for all λ, λ′ ∈ Kθ.

This implies that

(5.12) #Kθ ≤ RΛ(2r0), θ ∈ Θ.

Observe that for any f ∈ V (Φ), there exists a unique vector cθ = (cλ)λ∈Kθ such that

|f(x)|2 = cTθ Φθ(x)(Φθ(x))T cθ, x ∈ Tθ.
This together with the minimality of the phase retrievable frame {Φθ(γ), γ ∈ Γθ} for R#Kθ

implies that matrices Φθ(γ)(Φθ(γ))T , γ ∈ Γθ are linearly independent in the linear space of
symmetric matrices, which has dimension #Kθ(#Kθ + 1)/2. Hence

(5.13) #Γθ ≤
#Kθ(#Kθ + 1)

2
≤ RΛ(2r0)(RΛ(2r0) + 1)

2
for all θ ∈ Θ,

where the last inequality follows from (5.12).
By the minimality of the phase retrievable frame {Φθ(γ), γ ∈ Γθ}, we have Φθ(γ) 6= 0 for all

γ ∈ Γθ, which implies that

(5.14) Γθ ⊂
(
∪λ∈Kθ SΦ(λ)

)
∩ Tθ.
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Then for any x ∈ D and r ≥ 0, we obtain from (5.5), (5.13), (5.14) and Assumption 2.2 that

#(Γ ∩B(x, r)) ≤
(

max
θ∈Θ

#Γθ

)
×#

{
θ ∈ Θ :

(
∪λ∈Kθ SΦ(λ)

)
∩ Tθ ∩B(x, r) 6= ∅

}
≤ RΛ(2r0)(RΛ(2r0) + 1))

2

(
max
λ∈Λ

#{θ ∈ Θ : SΦ(λ) ∩ Tθ 6= ∅}
)

×#
{
λ ∈ Λ : SΦ(λ) ∩B(x, r) 6= ∅

}
≤ RΛ(2r0)(RΛ(2r0) + 1))

2
NT#

(
Λ ∩B(x, r + r0)

)
.(5.15)

This together with (2.2) in Assumption 2.1 and definition of the density (2.3) of a discrete set
proves (5.6). �

6. Stable Reconstruction from Phaseless Samples

In this section, we introduce the MAPS algorithm to reconstruct FRI signals in Vp(Φ), 1 ≤
p ≤ ∞, approximately from their noisy phaseless samples taken on a discrete set Γ, we show
that the MAPS algorithm is theoretically guaranteed to provide a stable reconstruction to the
original FRI signal in the magnitude measurements, and we prove that the phaseless sampling
operator SΓ has the bi-Lipschitz property with respect the metric Mp in (1.16).

Let T = {Tθ : θ ∈ Θ} satisfy (2.11) and Γ = ∪θ∈ΘΓθ with Γθ ⊂ Tθ, θ ∈ Θ be as in Theorem
5.3. Let f ∈ Vp(Φ), 1 ≤ p ≤ ∞, and

(6.1) zη(γ) = |f(γ)|+ η(γ), γ ∈ Γ,

be its samples on a discrete set Γ corrupted by a p-summable noise η = (η(γ))γ∈Γ. A conventional
approach to reconstruct the signal f approximately from its noisy phaseless samples (6.1) is to
solve the minimization problem

(6.2) fη = arg min
g∈Vp(Φ)

∥∥(|g(γ)| − zη(γ))γ∈Γ

∥∥
`p
,

which is infinite-dimensional and infeasible. In this section, we propose the following three-step
algorithm, MAPS for abbreviation, to construct a signal

(6.3) gη =
∑
λ∈Λ

dη;λφλ

in Vp(Φ) from the noisy phaseless samples zη(γ), γ ∈ Γ, which is a good approximation to the
original signal f in magnitude measurements, see Theorem 6.5 and Remark 6.6.
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MAPS algorithm for phaseless reconstruction

0. Select a phase adjustment threshold value M0 ≥ 0 and set Kθ = {λ ∈ Λ :
SΦ(λ) ∩ Tθ 6= ∅} for θ ∈ Θ.

1. For θ ∈ Θ, let

(6.4) cη,θ = (cη,θ;λ)λ∈Λ

take zero components except that (cη,θ;λ)λ∈Kθ is a solution of the local
minimization problem

min
(dλ)λ∈Kθ

∑
γ∈Γθ

∣∣∣∣∣∣ ∑
λ∈Kθ

dλφλ(γ)
∣∣∣− zη(γ)

∣∣∣2.(6.5)

2. Adjust phases of vectors cη,θ, θ ∈ Θ, so that the resulting vectors δη,θcη,θ with
δη,θ ∈ {−1, 1} have their inner product satisfying

〈δη,θcη,θ, δη,θ′cη,θ′〉 = δη,θδη,θ′
∑

λ∈Kθ∩Kθ′

cη,θ;λcη,θ′;λ

≥ −M0 ×
(

sup
γ∈Γθ∪Γθ′

|η(γ)|
)2

(6.6)

for all θ, θ′ ∈ Θ, where we set supγ∈Γθ∪Γθ′
|η(γ)| = +∞ if Γθ ∪ Γθ′ = ∅.

3. Sew vectors δη,θcη,θ, θ ∈ Θ, together to obtain

(6.7) dη;λ =

∑
θ∈Θ δη,θcη,θ;λχKθ(λ)∑

θ∈Θ χKθ(λ)
, λ ∈ Λ,

where χE is the indicator function on a set E.

Remark 6.1. The earliest version of the above MAPS algorithm is proposed in [19] to re-
construct phase retrieval signals in a shift-invariant space on the real line from their phaseless
samples, where Θ = Z, Γθ = Γ0 + θ, θ ∈ Θ for some Γ0 ⊂ [0, 1], and the phase adjustment signs
δη,θ ∈ {−1, 1} in the second step are selected to satisfy

(6.8) 〈δη,θcη,θ, δη,θ′cη,θ′〉 ≥ 0 for all θ, θ′ ∈ Z with θ′ − θ = 1.

The MAPS algorithm is modified in [20] to reconstruct phase retrieval signals in a shift-invariant
space on high-dimensional Euclidean space Rd from their phaseless samples, where Θ = Zd ×
{1, . . . ,M}, Γk,m = Γm + k, (k,m) ∈ Θ for some bounded sets Γm, 1 ≤ m ≤ M , and the phase
adjustment signs δη,θ ∈ {−1, 1} in the second step are selected to satisfy

(6.9) 〈δη,θcη,θ, δη,θ′cη,θ′〉 ≥ −M0

(
sup
γ∈Γ
|η(γ)|

)2
for all θ, θ′ ∈ Θ,

where Γ = ∪θ∈ΘΓθ and M0 is a phase adjustment threshold constant. Comparing with the phase
adjustment requirement (6.9) in the shift-invariant setting, we need a stricter phase adjustment
requirement (6.6) in the MAPS algorithm proposed in this paper. The benefit is that as shown
in Theorem 6.5, the reconstructed signal gη obtained from the current MAPS algorithm is an
“approximation” to the original signal f without restriction on the noise level and the apriori
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information on the original signal f , while the reconstructed signal in previous versions of the
MAPS algorithm in [19, 20] are shown to be an “approximation” to the original signal f when
the original signal f is phase retrieval and noise level η is small.

Remark 6.2. For every θ ∈ Θ, the local minimizers cη,θ;λ, λ ∈ KΘ, in the first step of the above
MAPS algorithm are determined, up to a sign, from noisy phaseless samples zη(γ), γ ∈ Γθ, by
the selection of the sampling set Γθ, and they can be found by solving a family of least squares
problems,

min
(dλ)λ∈Kθ

∑
γ∈Γθ

∣∣∣∣∣∣ ∑
λ∈Kθ

dλφλ(γ)
∣∣∣− zη(γ)

∣∣∣2
= min

δγ∈{−1,1},γ∈Γθ
min

(dλ)λ∈Kθ

∑
γ∈Γθ

∣∣∣ ∑
λ∈Kθ

dλφλ(γ)− δγzη(γ)
∣∣∣2.(6.10)

The local minimization in the first step is a phase retrieval problem in a finite-dimensional
setting with its dimension #Kθ ≤ RΛ(2r0) by (5.12). The reader may refer to [14, 15, 16, 26,
28, 29, 44, 48, 63] for various algorithms to solve a finite-dimensional phase retrieval problem.

Remark 6.3. For the phase adjustment in the second step, the threshold constant M0 in
(6.6) should be chosen appropriately to guarantee the existence of phase adjustments δη,θ ∈
{−1, 1}, θ ∈ Θ. In Theorem 6.5, we show that such a threshold constant M0 can be selected to
depend only on the stability constant (6.16) to solve the local minimization problem in the first
step, see (6.17). For a finite set Θ, define a symmetric symbol matrix B = (b(θ, θ′))θ,θ′∈Θ with
zero diagonal entries and non-diagonal entries b(θ, θ′), θ 6= θ′ given by

(6.11) b(θ, θ′) =


1 if 〈cη,θ, cη,θ′〉 > M0

(
supγ∈Γθ∪Γθ′

|η(γ)|
)2

and Γθ ∪ Γθ′ 6= ∅,
−1 if 〈cη,θ, cη,θ′〉 < −M0

(
supγ∈Γθ∪Γθ′

|η(γ)|
)2

and Γθ ∪ Γθ′ 6= ∅,
0 otherwise.

Then phase adjustments δη,θ ∈ {−1, 1}, θ ∈ Θ in the second step can be reformulated as finding
a diagonal matrix D with diagonal entries δη,θ ∈ {1,−1}, θ ∈ Θ so that DBD has nonnegative
entries, cf. [20]. The selection of the above diagonal matrix is not unique. By (6.5), we have

(6.12) 〈cη,θ, cη,θ′〉 = 0 if Kθ ∩Kθ′ = ∅.

So we may use the following algorithm to find such a diagonal matrix D.
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Phase Adjustment Algorithm

Initial S1 = ∅, S2 = ∅, S3 = Θ.
Step 1 Stop if S3 = ∅; otherwise take θ ∈ S3, update S1 = S1 ∪ {θ}, S2 = ∅ S3 = S3\{θ},

and select δη,θ ∈ {−1, 1} and b(θ, θ′) = 2δη,θb(θ, θ
′) and b(θ′, θ) = 2δη,θb(θ

′, θ) for
all θ′ with Kθ ∩Kθ′ 6= ∅.

Step 2 If b(θ, θ′) = 0 for all θ′ with Kθ ∩ Kθ′ 6= ∅, return to Step 1; otherwise update
S2 = {θ′ ∈ Θ satisfying b(θ, θ′) 6= 0 and Kθ′ ∩ Kθ 6= ∅}, S1 = S1 ∪ S2 and
S3 = S3\S2.

Step 3 For θ′ ∈ S2, let δη,θ′ = 1 if b(θ′, θ′′) = 2 for some θ′′ satisfying Kθ′′ ∩Kθ′ 6= ∅ and
δη,θ′ = −1 otherwise.

Step 4 Set K = ∪θ′∈S2{θ′′ ∈ Θ satisfying b(θ′, θ′′) = ±1 and Kθ′′ ∩ Kθ′ 6= ∅}. Return
to Step 1 if K = ∅; otherwise, redefine b(θ′, θ′′) = 2δη,θ′b(θ

′, θ′′) and b(θ′′, θ′) =
2δη,θ′b(θ

′′, θ′) if θ′ ∈ S2 and θ′′ ∈ K satisfying Kθ′′ ∩Kθ′ 6= ∅, update S2 = K,S1 =
S1 ∪ S2, S3 = S3\S2, and then return to Step 3.

Output δη,θ, θ ∈ Θ.

Remark 6.4. We remark that complexity of the proposed MAPS algorithm depends almost
linearly on the size N = #Λ0 of the set of innovative positions Λ0 for the original signal
f =

∑
λ∈Λ cλφλ =

∑
λ∈Λ0

cλφλ ∈ V (Φ), where component vector (cλ)λ∈Λ is supported on
Λ0 ⊂ Λ. Define Θ0 = {θ ∈ Θ : Kθ ∩ Λ0 6= ∅}. Then

(6.13) #Θ0 = #
(
∪λ∈Λ0 {θ ∈ Θ : λ ∈ Kθ}

)
≤ NT#Λ0 = NTN

by (5.5). By (6.7), in the first step of the proposed MAPS algorithm, it suffices to solve local
minimization problems (6.5) with θ ∈ Θ0. Observe that for each θ ∈ Θ0 the number of additions
and multiplications required to find the local minimizer cη,θ in the first step is O(1) by (5.12) and
(5.13). This together with (6.13) implies that the total number of additions and multiplications
required in the first step is O(N). Let B = (b(θ, θ′))θ,θ′∈Θ0 be the symmetric symbol matrix
in Remark 6.3. For each θ, θ′ ∈ Θ0, the number of additions and multiplications required to
evaluate the inner product 〈cη,θ, cη,θ′〉 and the supremum supγ∈Γθ∪Γθ′

|η(γ)| are O(1) by (5.12)

(5.13), and so is O(1) for evaluating every entry b(θ, θ′) of the matrix B. By (6.7) and (6.12),
we have that

b(θ, θ′) = 0 if Kθ ∩Kθ′ = ∅,
and for any θ ∈ Θ, we obtain from (5.5) and (5.12) that

#{θ′ ∈ Θ : Kθ ∩Kθ′ 6= ∅} ≤ #
(
∪λ∈Kθ {θ

′ ∈ Θ : λ ∈ Kθ′}
)

≤ NT#Kθ ≤ NT RΛ(2r0).(6.14)

Hence the number of nonzero entries in each row of the symmetric matrix B is at most
NT RΛ(2r0), and the total number of additions and multiplications required to define the sym-
metric matrix B is O(#Θ0) = O(N), where the last equality follows from (6.13). By Remark 6.3,
the phase adjustment in the second step of the MAPS algorithm reduces to finding a diagonal
matrix D with diagonal entries δη,θ ∈ {1,−1}, θ ∈ Θ so that DBD has nonnegative entries. We
observe that the total number of additions and multiplications to find such a diagonal matrix
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D by applying the Phase Adjustment Algorithm in Remark 6.3 to the above symmetric matrix
B with Θ replaced by Θ0 is O(N). From the above argument about the computational cost to
evaluate the symmetric matrix B and to find the diagonal matrix D, we see that the total num-
ber of additions and multiplications required in the second step is O(N). For any λ ∈ Λ0, the
number of additions and multiplications required to evaluate dη;λ is O(1) by (5.5), and hence
the total number of additions and multiplications required in the third step of the proposed
MAPS algorithm is O(N). Combining the above arguments, we conclude that the total number
of additions and multiplications required in the proposed MAPS algorithm to reconstruct an
“approximation” gη to the original signal f is about O(N).

For a phase retrievable frame F = {fm ∈ Rn, 1 ≤ m ≤M}, we use

∥∥F‖P = min
T⊂{1,··· ,M}

max

(
inf
‖v‖2=1

( ∑
m∈T
|〈v, fm〉|2

)1/2
,

inf
‖v‖2=1

( ∑
m 6∈T
|〈v, fm〉|2

)1/2
)

(6.15)

to describe the stability of reconstructing a vector v from its phaseless frame measurements
|〈v, fm〉|, 1 ≤ m ≤ M , cf. [2, 10] for the σ-strong complement property. In the next theorem,
we show that the reconstructed signal gη approximates the original signal f in the new induced
metric Mp in (1.16).

Theorem 6.5. Let the domain D, the generator Φ := (φλ)λ∈Λ and the family T = {Tθ, θ ∈ Θ}
of bounded open sets be as in Theorem 5.3, and let Vp(Φ), 1 ≤ p ≤ ∞ be as in (1.12). Assume
that the sampling set Γ = ∪θ∈ΘΓθ is chosen so that Γθ ⊂ Tθ, θ ∈ Θ, and Φθ,Γθ = {Φθ(γ), γ ∈
Γθ}, θ ∈ Θ, are phase retrievable frames, and

(6.16) sup
θ∈Θ

#Γθ(‖Φθ,Γθ‖P )−2 <∞.

Select M0 in (6.6) by

(6.17) M0 = 24 sup
θ∈Θ

#Γθ
(
‖Φθ,Γθ‖P

)−2
,

and denote the reconstructed signal via the MAPS algorithm (6.3)–(6.7) by gη, where noisy
phaseless samples zη(γ), γ ∈ Γ in (6.1) are generated from a signal f ∈ Vp(Φ) and a p-summable
noise η = (η(γ))γ∈Γ ∈ `p, 1 ≤ p ≤ ∞. Then

(6.18) Mp(gη, f) ≤ 6
√

6C0

(
max
θ∈Θ

√
#Γθ

(
‖Φθ,Γθ‖P

)−1
)
‖Φ‖∞‖η‖`p ,

where the metric Mp(gη, f) is defined in (1.16), C0 = (RΛ(r0))1−1/p(NT )1/p(B(4r0))2/p, and
r0, RΛ(r0), NT , B(4r0) and ‖Φ‖∞ are constants given in (2.5), (5.3), (5.5), (2.1) and (2.4) re-
spectively.

We postpone the proof of Theorem 6.5 to the end of this section.
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By (1.17) and Theorem 6.5, the reconstructed signal gη from the proposed MAPS algorithm
provides an approximation to the original signal in magnitude measurements,∥∥|gη| − |f |∥∥Lp ≤ 12

√
6C0

(
max
θ∈Θ

√
#Γθ

(
‖Φθ,Γθ‖P

)−1
)
‖Φ‖∞‖η‖`p .(6.19)

In the next remark, we show that the estimation (6.19) in magnitude measurements is subop-

timal in the sense that the quantity C0

(
maxθ∈Θ

√
#Γθ

(
‖Φθ,Γθ‖P

)−1)‖Φ‖∞ in (6.19) cannot be
replaced by a sufficiently small constant.

Remark 6.6. Take λ0 ∈ Λ so that ‖φλ0‖Lp ≥ δ0‖Φ‖∞ for some δ0 > 0. Then for any signal
f ∈ VpΦ), 1 ≤ p <∞ and ε ≥ 0, we have∥∥(|f(γ)± εφλ0(γ)| − |f(γ)|

)
γ∈Γ

∥∥
`p
≤ ε‖Φ‖∞

( ∑
γ∈Γ∩SΦ(λ0)

1
)1/p

≤
(NT RΛ(2r0)(RΛ(2r0) + 1)

2

)1/p
‖Φ‖∞ε(6.20)

by (5.5) and (5.13), and

max
(∥∥|f + εφλ0 | − |f |

∥∥
Lp
,
∥∥|f − εφλ0 | − |f |

∥∥
Lp

)
≥ 1

2

∥∥∥max
(∣∣|f + εφλ0 | − |f |

∣∣, ∣∣|f − εφλ0 | − |f |
∣∣)∥∥∥

Lp

≥ 1

2
‖εφλ0‖Lp ≥

δ0

2
‖Φ‖∞ε.(6.21)

By (6.19), (6.20) and (6.21), we conclude that the reconstructed signal gη from the proposed
MAPS algorithm is a suboptimal approximation to the original signal f in magnitude measure-
ments.

Take a signal g ∈ Vp(Φ), 1 ≤ p ≤ ∞. For the noise η = (η(γ))γ∈Γ in (6.1) given by η(γ) =
|g(γ)| − |f(γ)|, γ ∈ Γ, one may verify that the signal g could be reconstructed from the MAPS
algorithm. Therefore it follows from Theorem 6.5 that

(6.22) Mp(f, g) ≤ 6
√

6C0

(
max
θ∈Θ

√
#Γθ

(
‖Φθ,Γθ‖P

)−1
)
‖Φ‖∞Dp(SΓf, SΓg) for all f, g ∈ Vp(Φ).

In the following theorem, we show that metric Dp on the sampling data set is dominated by the
metric Mp in the signal space Vp(Φ), provided that the family Φ of basis signals forms a Riesz
basis for the signal space Vp(Φ), i.e., there exist positive constants Ap(Φ) and Bp(Φ) such that
in the sense that

(6.23) Ap(Φ)‖(cλ)λ∈Λ‖`p ≤
∥∥∥∑
λ∈Λ

cλφλ

∥∥∥
Lp
≤ Bp(Φ)‖(cλ)λ∈Λ‖`p for all (cλ)λ∈Λ ∈ `p.

Therefore the phaseless sampling operator SΓ has the bi-Lipschitz property on the signal space
Vp(Φ).

Theorem 6.7. Let the domain D, the generator Φ, the family T of bounded open sets, the
phaseless sampling set Γ, and the linear space Vp(Φ), 1 ≤ p ≤ ∞ be as in Theorem 6.5. Assume
that Φ forms a Riesz basis for the signal space Vp(Φ) with lower and upper Riesz bounds denoted
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by Ap(Φ) and Bp(Φ) respectively. Then the nonlinear sampling operator SΓ in (1.13) has the
following bi-Lipschitz property, i.e., there exist positive constants A1 and A2 such that

(6.24) A1Mp(f, g) ≤ Dp(SΓf, SΓg) ≤ A2Mp(f, g) for all f, g ∈ Vp(Φ),

where metrics Mp and Dp are given in (1.16) and (1.15) respectively.

Proof. The first inequality in (6.24) follows from (6.22). Then it suffices to prove the second

inequality in (6.24). For any f, g ∈ Vp(Φ) and f̃ , g̃ ∈ Vp(Φ) withMf̃ =Mg̃, one may verify that

||f(γ)| − |g(γ)|| ≤ |f(γ)− f̃(γ)|+ |g(γ)− g̃(γ)| for all γ ∈ Γ.

Hence

‖SΓf − SΓg‖`p ≤ 2 inf
f̃ ,g̃∈Vp(Φ) with Mf̃=Mg̃

max
(∥∥((f − f̃)(γ))γ∈Γ

∥∥
`p
,
∥∥((g − g̃)(γ))γ∈Γ

∥∥
`p

)
.

By (1.16) it suffices to prove that

(6.25) ‖h‖`p ≤
‖Φ‖∞RΛ(r0)

Ap(Φ)

(NT RΛ(2r0)(RΛ(2r0) + 1)

2RΛ(r0)

)1/p
‖h‖Lp for all h ∈ Vp(Φ).

For p =∞, we immediately have

(6.26) ‖h‖`∞ ≤ ‖h‖L∞ for all h ∈ V∞(Φ).

For 1 ≤ p <∞, we write h =
∑

λ∈Λ cλφλ. Then

‖h‖`p =
(∑
γ∈Γ

∣∣∣∑
λ∈Λ

cλφλ(γ)
∣∣∣p)1/p

≤ ‖Φ‖∞
(∑
γ∈Γ

∣∣∣∑
λ∈Λ

cλχSΦ(λ)(γ)
∣∣∣p)1/p

≤ ‖Φ‖∞
(∑
γ∈Γ

(∑
λ∈Λ

|cλ|pχSΦ(λ)(γ)
)
×
(∑
λ∈Λ

χSΦ(λ)(γ)
)p−1)1/p

≤ ‖Φ‖∞
(∑
λ∈Λ

|cλ|p
∑
γ∈Γ

χSΦ(λ)(γ)
)1/p

× sup
γ∈Γ

(∑
λ∈Λ

χB(γ,r0)(λ)
)1−1/p

≤ ‖Φ‖∞(RΛ(r0))1−1/p
(

sup
λ∈Λ

∑
θ∈Θ

∑
γ∈Γθ

χSΦ(λ)(γ)
)1/p
‖(cλ)λ∈Λ‖`p

≤ ‖Φ‖∞(RΛ(r0))1−1/p
(

sup
θ∈Θ

#Γθ

)1/p(
sup
λ∈Λ

#{θ : Tθ ∩ SΦ(λ) 6= ∅}
)1/p
‖(cλ)λ∈Λ‖`p

≤ ‖Φ‖∞RΛ(r0)

Ap(Φ)

(NT RΛ(2r0)(RΛ(2r0) + 1)

2RΛ(r0)

)1/p
‖h‖Lp ,(6.27)

where the third inequality follows from Assumption 2.2, the fourth one is true by (5.3) and the
last one holds by (5.5), (5.13) and (6.23). Combing (6.26) and (6.27) proves (6.25), and hence
completes the proof. �

We finish this section with the proof of Theorem 6.5.
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Proof of Theorem 6.5. By (1.16), it suffices to find fη, hη ∈ V (Φ)∩Lp with the same magnitude
measurements on the whole domain,

(6.28) Mhη =Mfη ,

such that

(6.29) ‖fη − f‖Lp ≤ 4
√

6C0

(
max
θ∈Θ

√
#Γθ

(
‖Φθ,Γθ‖P

)−1
)
‖Φ‖∞‖η‖`p

and

(6.30) ‖gη − hη‖Lp ≤ 6
√

6C0

(
max
θ∈Θ

√
#Γθ

(
‖Φθ,Γθ‖P

)−1
)
‖Φ‖∞‖η‖`p .

Take θ ∈ Θ and define

(6.31) gη,θ =
∑
λ∈Λ

cη,θ;λφλ,

where cη,θ;λ, λ ∈ Λ, are given in (6.4). By (6.4) and the definitions of the sets Kθ and Γθ, θ ∈ Θ,
we have

(6.32) gη,θ(γ)± f(γ) =
∑
λ∈Kθ

(cη,θ;λ ± cλ)φλ(γ), γ ∈ Γθ.

Then there exists a subset Γ′θ ⊂ Γθ such that

( ∑
γ∈Γ′

θ

∣∣∣ ∑
λ∈Kθ

(cη,θ;λ − cλ)φλ(γ)
∣∣∣2) 1

2
+
( ∑
γ∈Γθ\Γ′

θ

∣∣∣ ∑
λ∈Kθ

(cη,θ;λ + cλ)φλ(γ)
∣∣∣2) 1

2

=
( ∑
γ∈Γ′

θ

∣∣gη,θ(γ)− f(γ)
∣∣2) 1

2
+
( ∑
γ∈Γθ\Γ′

θ

∣∣gη,θ(γ) + f(γ)
∣∣2) 1

2

=
( ∑
γ∈Γ′

θ

∣∣|gη,θ(γ)| − |f(γ)|
∣∣2) 1

2
+
( ∑
γ∈Γθ\Γ′

θ

∣∣|gη,θ(γ)| − |f(γ)|
∣∣2) 1

2

≤
√

2
( ∑
γ∈Γθ

∣∣|gη,θ(γ)| − |f(γ)|
∣∣2) 1

2

≤
√

2
( ∑
γ∈Γθ

∣∣|gη,θ(γ)| − zη(γ)
∣∣2) 1

2
+
√

2
( ∑
γ∈Γθ

∣∣|f(γ)| − zη(γ)
∣∣2) 1

2

≤ 2
√

2
( ∑
γ∈Γθ

∣∣|f(γ)| − zη(γ)
∣∣2) 1

2 ≤ 2
√

2
√

#Γθ

(
sup
γ∈Γθ

|η(γ)|
)
,(6.33)
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where the third inequality follows from (6.5) and the last inequality holds by (6.1). By (6.15)
and the phase retrievable frame assumption for Φθ,Γθ , we have

‖Φθ,Γθ‖P ≤ max

((∑
γ∈Γ′

θ

∣∣∣∑λ∈Kθ(cη,θ;λ − cλ)φλ(γ)
∣∣∣2) 1

2

(∑
λ∈Kθ |cη,θ;λ − cλ|

2
) 1

2

,

(∑
γ∈Γθ\Γ′

θ

∣∣∣∑λ∈Kθ(cη,θ;λ + cλ)φλ(γ)
∣∣∣2) 1

2

(∑
λ∈Kθ |cη,θ;λ + cλ|2

) 1
2

)

≤

(∑
γ∈Γ′

θ

∣∣∣∑λ∈Kθ(cη,θ;λ − cλ)φλ(γ)
∣∣∣2) 1

2
+
(∑

γ∈Γθ\Γ′
θ

∣∣∣∑λ∈Kθ(cη,θ;λ + cλ)φλ(γ)
∣∣∣2) 1

2

min

((∑
λ∈Kθ |cη,θ;λ + cλ|2

) 1
2
,
(∑

λ∈Kθ |cη,θ;λ − cλ|
2
) 1

2

) .(6.34)

Combining (6.33) and (6.34) yields

(6.35)
( ∑
λ∈Kθ

|cη,θ;λ − δ̃η,θcλ|2
)1/2

≤ 2
√

2
√

#Γθ
(
‖Φθ,Γθ‖P

)−1
(

sup
γ∈Γθ

|η(γ)|
)

for some δ̃η,θ ∈ {−1, 1}.
Let δ̃η,θ, θ ∈ Θ, be as in (6.35). Then for any θ, θ′ ∈ Θ, we have

〈δ̃η,θcη,θ, δ̃η,θ′cη,θ′〉 =
∑

λ∈Kθ∩Kθ′

δ̃η,θ δ̃η,θ′cη,θ;λcη,θ′;λ

≥
∑

λ∈Kθ∩Kθ′

|cλ|2 −
∑

λ∈Kθ∩Kθ′

|cλ||δ̃η,θcη,θ;λ − cλ|

−
∑

λ∈Kθ∩Kθ′

|δ̃η,θ′cη,θ′;λ − cλ||cλ|

−
∑

λ∈Kθ∩Kθ′

|δ̃η,θcη,θ;λ − cλ||δ̃η,θ′cη,θ′;λ − cλ|

≥ 1

2

∑
λ∈Kθ∩Kθ′

|cλ|2 −
3

2

∑
λ∈Kθ∩Kθ′

(
|δ̃η,θcη,θ;λ − cλ|2 + |δ̃η,θ′cη,θ′;λ − cλ|2

)
.(6.36)

This together with (6.17) and (6.35) implies

〈δ̃η,θcη,θ, δ̃η,θ′cη,θ′〉 ≥ −
3

2

∑
λ∈Kθ∩Kθ′

(
|δ̃η,θcη,θ;λ − cλ|2 + |δ̃η,θ′cη,θ′;λ − cλ|2

)
≥ −M0

(
sup

γ∈Γθ∪Γθ′
|η(γ)|

)2
(6.37)

for all θ, θ′ ∈ Θ. This proves that phases of cη,θ, θ ∈ Θ, in (6.4) can be adjusted so that (6.6)
holds.
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Let δη,θ ∈ {−1, 1}, θ ∈ Θ, be signs in (6.6) used for the phase adjustment of vectors cη,θ, θ ∈ Θ,
in (6.4). We remark that the above signs are not necessarily the ones in (6.35), however as shown
in (6.48) below they are related. Define

(6.38) fη =
∑

λ∈Λf,η

cλφλ,

where Λf,η contains all λ ∈ Λ such that

(6.39) |cλ| > 2
√
M0

(
sup
λ∈Kθ

sup
γ∈Γθ

|η(γ)|
)
.

Then for x ∈ D, we obtain from (2.5) and (5.3) that

|f(x)− fη(x)| ≤ 2
√
M0

∑
λ∈Λ

(
sup
λ∈Kθ

sup
γ∈Γθ

|η(γ)|
)
|φλ(x)|

≤ 2
√
M0RΛ(r0)‖Φ‖∞

(
sup

λ∈B(x,r0)
sup
λ∈Kθ

sup
γ∈Γθ

|η(γ)|
)
.(6.40)

By (5.11) and the phase retrievability of frame on Φθ,Γθ , θ ∈ Θ, we have that

(6.41) γ ∈ B(x, 4r0)

for all γ ∈ Γθ, θ ∈ Θ with φλ′(γ) 6= 0 for some λ′ ∈ Kθ. Therefore it follows from (6.40) and
(6.41) that

sup
x∈D
|f(x)− fη(x)| ≤ 2

√
M0RΛ(r0)‖Φ‖∞

(
sup

λ∈B(x,r0),λ∈Kθ,γ∈Γθ

|η(γ)|
)

≤ 2
√
M0RΛ(r0)‖Φ‖∞ sup

γ∈Γθ,θ∈Θ
|η(γ)|(6.42)

for p =∞, and(∫
x∈D
|f(x)− fη(x)|pdµ(x)

)1/p

≤ 2
√
M0

(∫
x∈D

(∑
λ∈Λ

(
sup
λ∈Kθ

sup
γ∈Γθ

|η(γ)|
)
|φλ(x)|

)p
dµ(x)

)1/p

≤ 2
√
M0

(∫
x∈D

(∑
λ∈Λ

(
sup
λ∈Kθ

sup
γ∈Γθ

|η(γ)|p
)
|φλ(x)|

)
×
(∑
λ∈Λ

|φλ(x)|
)p−1

dµ(x)

)1/p

≤ 2
√
M0‖Φ‖∞(RΛ(r0))1−1/p

(∫
x∈D

∑
λ∈B(x,r0)

(
sup
λ∈Kθ

sup
γ∈Γθ

|η(γ)|p
)
dµ(x)

)1/p

≤ 2
√
M0‖Φ‖∞(RΛ(r0))1−1/p(B(4r0))1/p

(∑
λ∈Λ

∑
λ∈Kθ

∑
γ∈Γθ

|η(γ)|p
)1/p

≤ 2
√
M0‖Φ‖∞(RΛ(r0))1−1/p(NT )1/p(B(4r0))2/p‖η‖`p(6.43)

for 1 ≤ p <∞. This proves (6.29).
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By (6.17), (6.35), (6.36), (6.38) and (6.39), we obtain that

Vfη = Λf,η

and

(6.44) 〈δ̃η,θcη,θ, δ̃η,θ′cη,θ′〉 > M0

(
sup

γ∈Γθ∪Γθ′
|η(γ)|

)2

for all θ, θ′ ∈ Θ with Kθ ∩Kθ′ ∩ Vfη 6= ∅. This together with (6.6) implies that

δη,θ δ̃η,θ = δη,θ′ δ̃η,θ′

hold for all pairs (θ, θ′) satisfying Kθ∩Kθ′ ∩Vfη 6= ∅. Hence for λ ∈ Vfη there exists δλ ∈ {−1, 1}
such that

(6.45) δη,θ δ̃η,θ = δλ

for all θ ∈ Θ satisfying λ ∈ Kθ. Decompose the graph Gfη into the union of connected compo-
nents (Vη,i, Eη,i), i ∈ Iη, and the signal fη as in (1.5), (1.6) and (1.7),

(6.46) fη =
∑
i∈Iη

∑
λ∈Vη,i

cλφλ.

Observe that for any edge (λ, λ′) of Vfη , there exists θ0 ∈ Θ such that λ, λ′ ∈ Kθ0 by (2.11).
Hence

(6.47) δλ = δη,θ0 δ̃η,θ0 = δλ′ .

Combining (6.45) and (6.47), there exists δi, i ∈ Iη, such that

(6.48) δη,θ δ̃η,θ = δi

for all θ ∈ Θ satisfying Kθ ∩ Vη,i 6= ∅. Set

hη =
∑
i∈Iη

δi
∑
λ∈Vη,i

cλφλ.

Then fη and hη have the same magnitude measurements on the whole domain by (1.5), which
proves (6.28).

For all λ 6∈ Vfη , we obtain from (6.35) that

(6.49) |dη;λ| ≤
∑

Kθ3λ(|δη,θcη,θ;λ − δη,θ δ̃η,θcλ|+ |cλ|)∑
Kθ3λ 1

≤ 3
√
M0

(
sup
λ∈Kθ

sup
γ∈Γθ

|η(γ)|
)
.

For any λ ∈ Vη,i, i ∈ Iη, we get

|dη;λ − δicλ| ≤
∑

Kθ3λ |δη,θcη,θ;λ − δicλ|∑
Kθ3λ 1

=

∑
Kθ3λ |cη,θ;λ − δ̃η,θcλ|∑

Kθ3λ 1

≤
√
M0

(
sup
λ∈Kθ

sup
γ∈Γθ

|η(γ)|
)
.(6.50)

Combining (6.49) and (6.50), and applying similar argument used in the proof of (6.42) and
(6.43), we can prove (6.30). �
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7. Numerical Simulations

In this section, we present some numerical results to demonstrate the performance of the
MAPS algorithm proposed in the last section, where signals are one-dimensional non-uniform
cubic splines and two-dimensional piecewise affine functions on a triangulation.

Denote the positive part of a real number x by x+ = max(x, 0). In the first simulation, we
consider phaseless sampling and reconstruction of cubic spline signals f on the interval [a, b]
with non-uniform knots a = t0 < t1 < . . . < tN = b, see the top left plot in Figure 1, where
a = 0, b = 100 and N = 100. Those signals have the following parametric representation

(7.1) f(x) =
N−4∑
n=0

cnBn(x), x ∈ [a, b],

where

Bn(x) = (tn+4 − tn)
4∑
l=0

(x− tn+l)
3
+∏

0≤j≤4,j 6=l(tn+l − tn+j)
, 0 ≤ n ≤ N − 4

are cubic B-splines with knots tn+l, 0 ≤ l ≤ 4 [58, 60]. In our simulations, we assume that

cn ∈ [−1, 1], 0 ≤ n ≤ N − 4,

are randomly selected, and

tn = a+ (n+ εn)
b− a
N

, 1 ≤ n ≤ N − 1

for some εn, 1 ≤ n ≤ N − 1, being randomly selected in [−0.2, 0.2]. Then cubic spline signals in
the first simulation have (b− a)/N as their rate of innovations.

Consider the scenario that phaseless samples of the signal f in (7.1) on a discrete set Γ are
corrupted by a bounded random noise,

(7.2) zη(γ) = |f(γ)|+ η(γ), γ ∈ Γ,

where η(γ), γ ∈ Γ, are randomly selected in the interval [−η, η] for some η ≥ 0,

(7.3) Γ := ∪N−1
n=0 Γn :=

N−1⋃
n=0

{
tn + k

tn+1 − tn
K + 1

∈ (tn, tn+1), 1 ≤ k ≤ K
}
,

and K ≥ 7 is a positive integer. We remark that the proposed MAPS algorithm is not applicable
for 1 ≤ K ≤ 6.

Denote by gη the reconstructed signal from the above noisy phaseless samples via the proposed
MAPS algorithm. Performance of the proposed MAPS algorithm depends on the noise level η
and also the oversampling rate K, the ratio between the density K(b − a)/N of the sampling
set Γ in (7.3) and the rate (b− a)/N of innovations of signals in V (Φ). Denote by

Eη,K :=
∥∥|gη| − |f |∥∥L∞

the maximal reconstruction error in magnitude measurements between the original signal f and
the reconstructed signal gη for different noise levels η and oversampling rates K. Plotted on the
bottom right of Figure 1 are averages of the maximal reconstruction error Eη,K in 200 trials
against the noise level η and oversampling rate K. We observe that the maximal reconstruction
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Figure 1. Plotted on the top left is a non-uniform cubic spline signal fo, while
on the top right is the signal gη reconstructed via the proposed MAPS algo-
rithm, which provide good approximation to the original signal fo on the in-
tervals [0, 24.1323), [44.0290, 69.8080) and [82.0449, 100], and reflection −fo of
the original signal on intervals [24.1323, 44.0290) and [69.8080, 82.0449). On the
bottom left is the difference |gη| − |fo| between magnitude measurements of the
reconstructed signal gη on the top right and the original signal fo plotted on the
top left. On the bottom right is the average of maximal reconstruction error
Eη,K in 200 trials with respect to different noise levels η and oversampling rates
K.

error Eη,K depends almost linearly on the noise level η, and the stability constant in (6.19)
and Theorem 6.5 measured by sup0≤η≤0.05Eη,K/η decreases as the oversampling rate K ≤ 7
increases. This demonstrates the approximation property in Theorem 6.5. Presented on the top
left is a non-uniform cubic spline signal fo that has four “islands” in the decomposition (1.5),
(1.6) and (1.7), and on the right is the reconstructed signal gη via the proposed MAPS algorithm,
where η = 0.01,K = 9 and the maximal error ‖|gη| − |fo|‖L∞ in magnitude measurements is
0.2104.

Let D be a triangulation composed by the triangles Tθ, θ ∈ Θ, and denote the set of all inner
nodes of the triangulation by Λ. In the second simulation, we consider piecewise affine signals

(7.4) f(x, y) =
∑
λ∈Λ

cλφλ(x, y)
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on the triangulation D, where the basis signals φλ, λ ∈ Λ are piecewise affine on triangles
Tθ, θ ∈ Θ with φλ(λ) = 1 and φλ(λ′) = 0 for all other nodes λ′ 6= λ, see the left plot in Figure
2. From the definition of basis signals φλ, λ ∈ Λ, a signal f of the form (7.4) has the following
interpolation property,

f(x, y) =
∑
λ∈Λ

f(λ)φλ(x, y).

In the simulation, phaseless samples of a piecewise affine signal f on a discrete set Γ = ∪θ∈ΘΓθ
are corrupted by the bounded random noise,

(7.5) zη(γ) = |f(γ)|+ η(γ), γ ∈ Γ,

where η(γ), γ ∈ Γ, are randomly selected in the interval [−η, η] for some η ≥ 0 and for every
θ ∈ Θ, the set Γθ contains 7 points randomly selected inside Tθ. Shown in the middle of Figure
2 is a signal gη reconstructed from the noisy phaseless samples (7.5) via the proposed MAPS
algorithm, where η = 0.01, the original piecewise affine signal f is plotted on the left of Figure
2, and the maximal reconstruction error ‖|gη|− |f |‖L∞ in magnitude measurements between the
original signal f and the reconstructed signal gη is 0.0360.

Figure 2. Plotted on the left is a piecewise affine signal f on a triangulation
which has four “islands” in the decomposition (1.5), (1.6) and (1.7). Shown in the
middle is a reconstructed signal gη via the MAPS algorithm, while on the right is
the difference ||gη| − |f || between magnitude measurements of the reconstructed
signal gη and the original signal f plotted on the left.

In the simulation, we consider the performance of the proposed MAPS algorithm to construct
piecewise affine approximation when the original signal f of the form (7.4) has evaluations
f(λ), λ ∈ Λ on their inner nodes being randomly selected in [−1, 1]. Denote by gη the recon-
structed signal from the noisy phaseless samples (7.5) via the proposed MAPS algorithm and let
Eη := ‖|gη| − |f |‖L∞ be the maximal reconstruction error in magnitude measurements between
the original signal f and the reconstructed signal gη for different noise levels η. Shown in Table
1 is the average of maximal reconstruction error Eη in 200 trials. This confirms the conclusion
in Theorem 6.5 that the maximal reconstruction error depends almost linearly on the noise level
η ≥ 0.
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Table 1. Maximal reconstruction error via the MAPS algorithm

η 0.04 0.03 0.02 0.01 0.008 0.004 0.002 0.001
Eη 0.1878 0.1366 0.0791 0.0305 0.0226 0.0101 0.0050 0.0025

Appendix A. Density of phaseless sampling sets

In the appendix, we introduce a necessary condition on a discrete set Γ such thatMf,Γ =Mf

for all f ∈ V (Φ). We show that the density of such a discrete set Γ is no less than the innovative
rate of signals in V (Φ), see Theorem A.1 and Corollary A.2.

Theorem A.1. Let the domain D, the generator Φ := (φλ)λ∈Λ, the family T = {Tθ, θ ∈ Θ} of
open sets and the linear space V (Φ) be as in Theorem 5.3, and let Γ ⊂ D. If Mf,Γ = Mf for
all f ∈ V (Φ) with Mf = {±f}, then

(A.1) D+(Γ) ≥ D+(Λ).

Proof. Take x0 ∈ D and r ≥ r0. By (2.2) and (2.3), it suffices to prove that

(A.2) #(Γ ∩B(x0, r)) ≥ #(Λ ∩B(x0, r − r0)).

Assume, on the contrary, that (A.2) does not hold. Then we can find a nonzero vector (dλ)λ∈Λ∩B(x0,r−r0)

such that

(A.3)
∑

λ∈Λ∩B(x0,r−r0)

dλφλ(γ) = 0, γ ∈ Γ ∩B(x0, r).

Recall that φλ, λ ∈ Λ, are supported in B(λ, r0) by Assumption 2.2. Hence

(A.4)
∑

λ∈Λ∩B(x0,r−r0)

dλφλ(γ) = 0, γ ∈ Γ\B(x0, r).

Therefore the set

W =
{
f :=

∑
λ∈Λ∩B(x0,r−r0)

cλφλ : f(γ) = 0, γ ∈ Γ
}
⊂ V (Φ)

contains nonzero signals. Take a nonzero signal f ∈W . By Theorem 4.4, f =
∑

i∈I fi for some
nonzero signals fi ∈ V (Φ), i ∈ I, such that Mfi = {±fi}, i ∈ I, and fif

′
i = 0 for all distinct

i, i′ ∈ I. This together with f ∈ W implies that fi(γ) = 0 for all γ ∈ Γ and i ∈ I. Hence
0 ∈Mfi,Γ, i ∈ I, which contradicts with Mfi,Γ =Mfi = {±fi}, i ∈ I. �

From the above argument, we have the following result without the assumption on the family
T of open sets in Theorem A.1.

Corollary A.2. Let the domain D and the generator Φ = (φλ)λ∈Λ satisfy Assumptions 2.1 and
2.2 respectively, and define the linear space V (Φ) by (1.1). If Γ is a discrete set withMf,Γ =Mf

for all f ∈ V (Φ), then D+(Γ) ≥ D+(Λ).

We finish this appendix with a remark that the lower bound in (A.1) can be reached when
the generator Φ = (φλ)λ∈Λ satisfies that

(A.5) SΦ(λ, λ′) = ∅ for all distinct λ, λ′ ∈ Λ.
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As in this case, a signal f ∈ V (Φ) is nonseparable if and only if f = cλφλ for some λ ∈ Λ. Thus
the set Γ = {a(λ), λ ∈ Λ} is a phaseless sampling set whose upper density is the same as the
rate of innovation, where a(λ), λ ∈ Λ, are chosen so that φλ(a(λ)) 6= 0.
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