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ABSTRACT. A spatial signal is defined by its evaluations on the whole domain. In this paper,
we consider stable reconstruction of real-valued signals with finite rate of innovation (FRI), up
to a sign, from their magnitude measurements on the whole domain or their phaseless samples
on a discrete subset. FRI signals appear in many engineering applications such as magnetic res-
onance spectrum, ultra wide-band communication and electrocardiogram. For an FRI signal,
we introduce an undirected graph to describe its topological structure, establish the equivalence
between its graph connectivity and its phase retrievability by point evaluation measurements
on the whole domain, apply the graph connected component decomposition to find its unique
landscape decomposition, and to find all FRI signals that have the same magnitude measure-
ments. We construct discrete sets with finite density so that magnitude measurements of an
FRI signal on the whole domain are determined by its phaseless samples taken on those discrete
subsets, and we show that the corresponding phaseless sampling procedure has bi-Lipschitz
property with respect to a new induced metric on the signal space and the standard ¢’-metric
on the sampling data set. In this paper, we also propose an algorithm with linear complexity
to reconstruct an FRI signal from its (un)corrupted phaseless samples on the above sampling
set without restriction on the noise level and apriori information whether the original FRI sig-
nal is phase retrieval. The algorithm is theoretically guaranteed to be stable, and numerically
demonstrated to approximate the original FRI signal in magnitude measurements.

1. INTRODUCTION

A spatial signal f on a domain D is defined by its evaluations f(x),x € D. One of fundamental
problems in real/complex phase retrieval is how to determine all signals g that have the same
magnitude information as f has on the domain D (i.e., |g(z)| = |f(z)|,x € D), or on a discrete
sampling set I' € D (i.e., |g(v)] = |f(7)|,7 € T'). The above problem is a highly nonlinear
ill-posed problem which can be solved only if we have some extra information about the signal
f, and it has been discussed for bandlimited signals [56] and wavelet signals residing in a shift-
invariant space [19, 20} 55]. In this paper, we consider the phaseless sampling and reconstruction
(i.e., phase retrieval by point evaluation measurements on the whole domain or on a discrete
set) of real-valued signals residing in the linear space

(1.1) V(D) = { Y eadr: cxeRforall e A},
AEA
where A C D is a discrete set with finite density, and the generator ® = (¢y)rea is a vector

of nonzero basis signals ¢y, A € A, essentially supported in a neighborhood of the innovative
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position A € A [23], 52, [59], i.e., any signal f in the space V(®) has a parametric representation

(1.2) fl@)=> cxpalz), = € D,
AEA

where ¢ = (c))aea is an unknown real-valued parameter vector. Signals with the above paramet-
ric representation appear in many engineering applications such as magnetic resonance spectrum,
ultra wide-band communication and electrocardiogram [23] 24], 53] 59]. The linear space V (®)
was introduced in [53}, [54] to model signals with finite rate of innovation (FRI), which was in-
troduced by Vetterli, Marziliano and Blu in [59]. Sampling and reconstruction of various FRI
signals have been well studied [23] 24}, 25| 40, 53], [54], 59], while there are limited literatures on
phase retrievability of FRI signals [5].

Given a signal f € V(®), let
(1.3) My :={geVI(®): |g(x)] = |f(x)],z € D}

contain all signals g € V(®) with the same magnitude measurements as f on D. As —f and f
have the same magnitude measurements on the whole domain, we have that

Mg D {£f}.
A natural question is whether the above inclusion is an equality.

Question 1.1. Can we characterize all signals f € V(®) so that My = {£f}?

An equivalent statement to the above question is whether a signal f is determined, up to a sign,
from the magnitude information |f(z)|,x € D. The above question is an infinite-dimensional
phase retrieval problem with point evaluation measurements, which has been discussed for ban-
dlimited signals [56], wavelet signals in a shift-invariant space [19, 20, 55]. The reader may refer
to 1L 2 12], B2 [42, [45] [50] for historical remarks and additional references on phase retrieval in
an infinite-dimensional linear space. In Section (3, we introduce an undirected graph Gy for an
FRI signal f € V(®), and we provide an answer to Question by showing that M; = {f}
if and only if G is connected, see Theorem

For a signal f € V(®), the corresponding graph Gy is not always connected. This leads to
our next question.

Question 1.2. Can we find the set My for any signal f € V(®)?

For a signal f € V(®), we can decompose its graph G; uniquely as a union of connected
components G;,i € I,

(1.4) Gy = Uie1Gi.
Then we can construct signals f; € V(®),i € I, with Gy, = G;,i € I, such that
(1.5) fify =0 for all distinct 4,7’ € I,
(1.6) My, ={xfi}, i €1,
and
(1.7) F=>Y_r
el



see Theorem Due to the mutually disjoint support property for signals f;,7 € I, and
the connectivity of the graphs Gy,,7 € I, we can interpret the above adaptive decomposition
visually that the landscape of original signal f is composed by islands of signals f;,i € I, see
the top left plot in Figure [I| and the left plot in Figure [2| Therefore the conclusion in Theorem
shows that landscapes of signals g € M are combinations of islands of the original signal f
and their reflections. We remark that landscape decomposition for signals in a linear space has
been used in Gabor phase retrieval [I], 32]. By and , we have

My > {Z(Sifi LS e {—1,1),ic 1}.
i€l
In Section [4 we provide an answer to Question by showing in Theorem that the above
inclusion is in fact an equality for any signal f € V(®), and hence there are 2! elements in the

set Mf.

Now we consider phaseless sampling and reconstruction on a discrete set I' C D. For a signal
feV(®),let Msr contain all signals g € V(®) such that

(1.8) g =1, v €T,

and N contain all signals h € V(®) such that

(1.9) h(y) =0, yeT.

By , and , we have

(1.10) My = My p, Np={0},
and

(1.11) Mg+ Nr C Myp forall T C D.

This leads to the third question.
Question 1.3. Can we find all discrete sets I' such that My = My for all signals f € V(®)?

An equivalent statement to the equality M;r = M/ is that magnitude measurements
|f(z)],z € D, on the whole domain D are determined by their samples |f(y)],y € T, taken
on a discrete set I'. By , a necessary condition such that the equality M = M holds
for some signal f € V(®) is that Np = {0}, which means that all signals in the linear space
V(@) are determined from their samples taken on I'. The reader may refer to [24, 51} 54} [59]
and references therein for sampling and reconstruction of FRI signals. In Section [5, we show the
existence of a discrete set I' with finite density such that M;r = M for all signals f € V(®).
In Theorem we construct such a discrete set I' explicitly under the assumption that the
linear space V(®) has local complement property on a family of open sets. The local comple-
ment property, see Definition is introduced in [20] and it is closely related to the comple-
ment property for ideal sampling functionals in [19] and the complement property for frames
in Hilbert/Banach spaces [2, [7, 10, 12]. The local complement property on a bounded open
set can be characterized by phase retrievable frames associated with the generator ® and the
sampling set I' on a finite-dimensional space, see Proposition [5.2 The reader may refer to
[6, 7, 13, 16, 17, 27, 34, 36, 48] 61] and references therein for historical remarks and recent
advances on finite-dimensional phase retrievable frames.



In many real world applications, phaseless samples are usually corrupted by some bounded
deterministic/random noises 1(7),vy € T, and the available noisy phaseless samples are

z(y) = [f(M+n(y), yel.
Set n = (n(7))yer and z; = (2,(7))~yer. This leads to the fourth question to be discussed in this
paper.

Question 1.4. Can we find an algorithm A such that the reconstructed signal g, = A(zy) is an
“approrimation” to the original signal f?

For a finite-dimensional phase retrieval problem, there are various algorithms available, such
as the alternating minimization, semidefinite programming, and Wirtinger flow method [14} 15,
16, 26, 28] 29, 44], [48], [63], however applicability of the algorithms, to our knowledge, requires
that the original signal f is phase retrieval, i.e., My = {£f}. In [19, 20], an MAPS algorithm
is proposed to reconstruct a signal f in a shift-invariant space, up to a sign, from its phaseless
samples taken on a shift-invariant set, where the original signal f is phase retrieval.

Given a Borel measure p on the domain D, let LP := LP(D, u),1 < p < 0o, be the linear space

of all p-integrable signals with standard norm || - ||r» := || || zr(p,u) and €F := (P(I) be the space
of all p-summable sequences 1 on T with its standard p-norm denoted by |||/ := |[nll¢»(r)- Let
1 < p < oo and define
(1.12) V(@) = {3 cxon: (eher el cv@nLr 1<p<o,

A€A

In Section [6 we propose a robust algorithm with linear complexity so that the reconstructed
signal g, is a good approximation to the original signal in the linear space V,,(®), see Theorem

and Remarks 6.4 and This provides an affirmative answer to Question for the
original signals in V,,(®).
Stability of a sampling scheme is an important concept for the robustness and uniqueness

for sampling and reconstruction of signals in a linear space, see [3, 43| 54, 57]. Due to the
nonlinearity, stability of the phaseless sampling scheme

(1.13) S V(@) 3 f — (If(M))yer

on a sampling set I should be described by its bi-Lipschitz property in some metrics on the
signal space and the sampling data set. This leads to the fifth question to be discussed in this
paper.

Question 1.5. Let I' be a sampling set such that Myr = My for all f € V(®). Can we define

appropriate metrics on the signal space and on the sampling data set such that the phaseless
sampling operator Sr in (1.13|) has the bi-Lipschitz property?

For 1 < p < oo, we define the natural metric for phase retrievability on the signal space V,,(®)
by

(1.14) myp(f,g9) =min(|lf + gllze, [|f — gl[Le) for all f,g € V,(®),
and the P-metric on the phaseless sampling data set by
(1.15) Dp(Srf, Srg) = HSFf — Srngp for all f,g S V})((I)),



cf. [1, 9, 10, 27]. The nonlinear sampling operator Sp in ([1.13)) does not have the bi-Lipschitz
property with respect to the natural metric m,, on the signal space V,,(®) and the ¢’-metric D,
in the phaseless sampling data set, i.e., there does not exist positive constants C'; and Cy such
that

Cimp(f,9) < Dp(Srf, Srg) < Comy(f, g) for all f,g € V(®).

The reason is that some signals in V,(®) may not be determined, up to a sign, from their
phaseless samples on I', and hence we can find f, g € V,,(®) such that

my(f,9) # 0 and D,(Srf, Srg) = 0.

In this paper, we induce a new metric on the signal space V,,(®),1 < p < oo,

(1.16) My(f,9) = inf max (||f = fllze lg — §llze)-
f,G€Vp(®) satisfying M ;=M

Clearly we have that

(1.17) 1f1 = lglllzr/2 < Mp(f, g) < mp(f,g) for all f,g € Vp(P), 1 <p < oo.

In Theorem we show that the phaseless sampling operator Sr has the bi-Lipschitz property
with respect to the above new metric M), on the infinite-dimensional signal space V,(®) and the
fP-metric on the phaseless sampling data set.

1.1. Contributions and Comparisons. This paper is the continuation of [19, 20]. In [19] 20],
we discuss the phaseless sampling and reconstruction of wavelet signals in a shift-invariant space

(1.18) V(g) = { Y elk)p(- —k): c(k) €Rforall k € Zd}
kezd

generated by a compactly supported function ¢, while spatial signals considered in this paper
belong to the linear space V(®) in . Our representative examples of the linear space
V(®), different from the shift-invariant space V(¢), are the linear space of all graph signals to
describe structured data in applications such as social networks, smart power grids, wireless
sensor networks, and drone/UAV fleets [21], and the linear space of superpositions

(1.19) flx) = Z exd(z —N), z € RY,

AEA

of non-uniform translations ¢y = ¢(- — ), A € A # Z? of a basis signal ¢, which has been used in
some sampling and approximation problems [4], 33, 53], 54]. Similarity between the shift-invariant
space V(¢) considered in [19 20] and the linear space V(®) used in this paper is that we both
assume that any signal in those two linear spaces has a unique parametric representation, see
(2.6)), while the main difference is that the linear space V(®) does not have a shift-invariant
structure. Our first challenge is how to define the local complementary property of the linear
space V(®) appropriately, and our first main contribution is to characterize all phase retrieval
signals f in the linear space V(®), i.e., My = {£f}, see Theorem which has been discussed
in [19, 20] for signals in the shift-invariant spaces V().

Spatial signals f € V(®) are not always determined, up to a sign, from the magnitude
information |f(x)|,x € D on the domain D, i.e., My # {£f}. In such a scenario, we aim
at finding all FRI signals in the set My which have the same magnitude information on their



domain D as the original FRI signal f has. In [I9, Lemma 6.9], it has been shown that any
signal in some shift-invariant space V(¢) on the real line has a unique landscape decomposition
and the set My is fully described. For signals in the shift-invariant space V(¢) on R d > 2,
we can apply connected component decomposition to the associated graphs in [20], and to find
their landscape decompositions, however the uniqueness of landscape decompositions is not
established and the set M is not discussed. The second challenge is the uniqueness of such a
landscape decomposition, and the second main contribution is that we provide a full description
to the set My and we discover a unique landscape decomposition for any signal f in the linear
space V' (®) using connected component decomposition of the associated graph Gy, see Theorems
41 and (4.4

In [I9], an MAPS algorithm is proposed to reconstruct a signal f in the shift-invariant space
on the real line, up to a sign, from its phaseless samples |f(z, + k)|, z, € X C [0, 1], when
the original signal f is phase retrieval. The algorithm has linear complexity and it consists
of three steps: 1) minimization to find local approximations; 2) phase adjustment for local
approximations; and 3) sewing local approximation together to reconstruct the original signal,
up to a sign. In [I9, Theorem 4.1], it is shown that the MAPS algorithm is robust against small
noises. A high-dimensional version of the MAPS algorithm is introduced in [20] to reconstruct a
signal f in the shift-invariant space on the d-dimensional Euclidean space, up to a sign, from its
phaseless samples | f(z, + k)|, 2, € X C [0,1]%, when the original signal f is phase retrieval. In
this paper, we introduce a new strategy in the phase adjustment step and propose a new MAPS
algorithm to reconstruct signals in the linear space V,(®),1 < p < oo from their (un)corrupted
phaseless samples. The third main contribution is that the reconstructed signal obtained from
the proposed MAPS algorithm is an “approximation” to the original signal in the linear space
Vp(®) without restriction on noise level and apriori information on the original signal f, see
Theorem and Remark Moreover the proposed algorithm is robust and non-iterative,
and it has linear complexity, see Remarks [6.2H6.4]

In [19, 20], we consider the local stability of a phaseless sampling operator St in natural metric
Moo in the shift-invariant space Vo (¢), where

(1:20) Vo(9) = { D clh)o(- = k) : (cl(k)yeza €}, 1< p < 0.
keZd

It is shown in [I9] Theorem 4.1] that for any phase retrieval signal f € V(¢) on the real line,
there exist positive constants A and e (depending on f) such that

Amoo(ga f) < DOO(SFga Sl“f)

hold for all signals g € Vo(¢) satisfying Do (Srg, Srf) < €. The fourth main contribution is
that we construct sampling sets I' with finite density so that the nonlinear sampling operator Sr
in has bi-Lipschitz property with respect to the metric M, in on a linear subspace
Vp(@),1 < p < o0, i.e., there exists positive constants A; and Ay such that

A1 Mp(g, f) < Dp(Srg, Srf) < AaMy(g, f) for all g, f € V3 (@),

see Theorem To the best of our knowledge, the above stability inequality is the first global
estimation for certain phase retrieval signals in an infinite-dimensional linear space.



1.2. Organization. In Section [2| we present some preliminaries on the linear space V(®). In
Section [3] we introduce a graph structure for any signal in V(®) and use its connectivity to
provide an answer to Question In Section (4] we introduce a landscape decomposition for a
signal f € V(®) and use it to find all signals in M. In Section |5, we construct a discrete set T’
with finite density such that My = My for all f € V(®). In Section [6] we introduce a stable
algorithm A with linear complexity to reconstruct signals in V(®) from their noisy phaseless
samples taken on a discrete set I' and show that the phaseless sampling operator St in
has bi-Lipschitz property with respect to the metric M, in . In Section (7, we demonstrate
the stable reconstruction of our proposed algorithm A by reconstructing one-dimensional non-
uniform spline signals and two-dimensional piecewise affine signals on triangulations from their
noisy phaseless samples. In Appendix [A] we show that the density of a discrete set I' with
My = My, f € V(®), must be no less than the innovative rate of signals in V().

2. PRELIMINARIES

Spatial signals considered in the paper are defined on a domain D. Our representing models
of the domain D are the d-dimensional Euclidean space RY, the d-dimensional torus T¢ and the
vertex set V' of a undirected graph G = (V, E') containing no graph loops or multiple edges that
is widely used to describe a spatially distributed network [2I]. Let

B(x,r)={y € D: p(x,y) <r}

be the closed ball with center x € D and radius r > 0. In this paper, we always assume the
following for the domain D [211, [41], [62].

Assumption 2.1. The domain D is equipped with a distance p and a Borel measure p so that

(2.1) B(r) := iggp(B(:L‘,r)) < 00
and
(2.2) lim inf inf MBES=T)

§—00 zeD /,L(B(%‘,S))
hold for all r > 0.
Spatial signals considered in this paper belong to the linear space V(®) in (|1.1)). Denote the

cardinality of a set ' by #FE. In this paper, we always assume the following three conditions to
basis signals ¢y, A € A, of the linear space V(®) in (|1.1)).

Assumption 2.2. (i) The discrete set A has finite density

(2'3) D+(A) := limsup sup w

< O9;
r—oo  zeD ,u(B(l’,T)) >

(ii) the basis signals ¢x, A € A, in the generator ® are nonzero continuous functions being
uniformly bounded,

(2.4) [@floo := sup [|pa| e < o0,
AEA



and they are supported in balls with center A and a fized radius ro > 0 independent of A, i.e.,
(2.5) oa(x) =0 for all x & B(\, 1) and X € A;
and (i) any signal in V(®) has a unique parametric representation (|1.2)).

The prototypical forms of the linear space V(®) in are Paley-Wiener space of bandlimited
signals [56, [57], the shift-invariant space V (¢) generated by the shifts of a compactly supported
function ¢ [3, 19, 20], twisted shift-invariant spaces generated by (non-)uniform Gabor frame
system (or Wilson basis) in the time-frequency analysis [8, 18] [31] 37, 47], and nonuniform spline
signals [11}, 35, [49]. The linear space V(®) was introduced in [53, [54] to model FRI signals.
Following the terminology in [59], signals in the linear space V(®) have rate of innovations
D, (A) and innovative positions A € A.

An equivalent statement to the unique parametric representation of FRI signals in V (®)
in Assumption is that the generator ® has global linear independence, i.e., the map

(2.6) c:= (ca)aep — 1D = Z Y3
AEA
is one-to-one from the space ¢(A) of all sequences on A to the linear space V(@) [39, 46]. For
an open set A, define
(2.7) Kai={ e A: ¢y #0on A}.
A local version of the global linear independence ([2.6)) is local linear independence on a bounded
openset A C D, ie.,
(2.8) dim V(®)|4 = #K 4,

where dim V' is the dimension for a linear space V' and V|4 represents its restriction on a set
A. Observe that the restriction of the linear space V(®) on a bounded open set A is generated
by ¢x, A € K4 (and hence it is finite-dimensional). Then an equivalent formulation of the local
linear independence on a bounded open set A is that

(2.9) Z exgr(x)=0forallz € A
AEA
implies that ¢y = 0 for all A € K4 [39, 52].
Set
(2.10) Se(MXN) i ={x e D: or(x)pn(x) #0}, M, N €A,

and use the abbreviation
Sa(N) := Sa(A, N)
when M = X\ € A. One may verify that the generator ® has global linear independence ([2.6]) if
it has local linear independence on a family of open sets Ty, 0 € O, such that
(2.11) So (X, X) N (Ugeo Ty) # 0

for all pairs (A, \') € A x A with Sg(X, ) # 0. We remark that a family of open sets Ty, 0 € ©,
satisfying (2.11)) is not necessarily a covering of the domain D, however, the converse is true, cf.
Corollary 4.3




3. PHASE RETRIEVABILITY AND GRAPH CONNECTIVITY

In this section, we characterize all signals f € V(®) that can be determined, up to a sign,
from their magnitude measurements on the whole domain D, i.e., My = {£f}, see Theorem

Given a signal f =), cxdx € V(®), we define an undirected graph
(3.1) Gy = (Vy, Ey),
where
(3.2) Vi={AeA: ¢y #0}
and

Ef = {()\,)\/) € Vf X Vf P AFE )\ and OO\ F 0}
For a signal f € V(®), the graph G in is well-defined by , and it was introduced in
[20] when the generator ® = (¢(- — k)),eza is obtained from shifts of a compactly supported
function ¢. Its vertex set V; contains all innovative positions A € A with nonzero amplitude cj,
and its edge set E¢ contains all innovative position pairs (A, \) in V x V} with basis signals ¢y
and ¢y having overlapped supports, i.e.,

(3.3) (A, X') € Ey if and only if A\, X € V; and (\,X) € Eg,
where Sg (A, X)), (\,\) € A x A, are given in (2.10) and
(3.4) Eo :={(MXN)€eAxA: Se(\ ) #0}.

To study the phase retrievability of signals in V(®), we recall the local complement property
for a linear space of real-valued signals [20].

Definition 3.1. Let A be an open subset of the domain D. We say that a linear space V of
real-valued signals on the domain D has local complement property on A if for any A’ C A, there
does not exist f,g € V such that f,g #Z 0 on A, but f(z) =0 for all z € A" and g(y) = 0 for all
ye A\A'.

The local complement property is the complement property in [19] for ideal sampling func-
tionals on a set, cf. the complement property for frames in Hilbert/Banach spaces ([2, [7, 10, [12]).
Local complement property is closely related to local phase retrievability. In fact, following the
argument in [19], the linear space V has the local complement property on A if and only if all
signals in V' are local phase retrieval on A, i.e., for any f,g € V satisfying |g(z)| = |f(z)|,z € A,
there exists 0 € {—1,1} such that g(x) = §f(z) for all x € A.

In this section, we establish the equivalence between phase retrievability of a nonzero signal

f € V(®) and connectivity of its graph Gy. A similar result is established in [20] for signals
residing in a shift-invariant space.

Theorem 3.2. Let © be a family of basis functions satisfying Assumption V(®) be the
linear space (L.1) generated by ®, and let T = {Tp,0 € O} be a family of bounded open sets
satisfying Assume that for any Ty € T, ® has local linear independence on Ty and V (P)
has local complement property on Ty. Then for a nonzero signal f € V(®), My = {£f} if and
only if the graph G in s connected.



As shown in the next proposition, the local complement property assumption in Theorem
is satisfied when ® has local linear independence on all bounded open sets. However, we do
not use the above strong assumption in our main theorems, as there are very few families of
basis signals available (including those generated by integer shifts of B-splines, scaling/wavelet
functions, and box splines), which have local linear independence on all bounded open sets
[22, 130, 38, 52].

Proposition 3.3. Let ® = (¢))rea satisfy Assumption . If ® has local linear independence
on all bounded open sets, then there exist T = {Tp,0 € O} satisfying (2.11) such that V(®) has
local complement property on every Ty € T.

Proof. Define Te(0) = NxcgSa(A) for a set § C A. We say that  C A is maximal if Tg(0) # ()
and Tg(0') = 0 for all 8 2 0. By and , any maximal set contains finitely many
elements. Denote the family of all maximal sets by © and define Ty = T3 (6),0 € ©. Clearly
T :={Ty, 0 € O} satisfies (2.11]), because any § C A with Ty (6) # 0 is a subset of some maximal
set in ©.

Now it remains to prove that V(®) has local complement property on Ty, 0 € ©. Take an
arbitrary 6 € © and two signals f, g € V(®) satisfying |f(z)| = |g(z)| for all € Ty. Then

(3.5) (f+9)(z)(f —g)(z) =0 for all z € Ty.

Write f4+g = ycacn®r and f—g =3 crdady, andset By ={zx € Tp: (f+g)(x) # 0} and
By={zxeTp: (f—g)(xz)#0}. Then

(3.6) (chﬁ(ac)) (Zd,\qb,\(x)> =0 for all x € Ty,

A€l e

and
(3.7) oa(x) #0 for all x € Ty and X € 0

by assumption , and the construction of maximal sets. By , we have that
f—9g=0on By if B #0, f+g=0o0on Byif Bo # 0, and f —g = f+¢g = 0 on Ty if
By = By = (0. This together with and the local linear independence on By, By and Ty
implies that either dy = 0 for all A € 6, or ¢y, = 0 for all A € 6, or ¢y, = dy = 0 for all X € 4.
Therefore either f = g on Ty, or f = —g on Ty, or f = g = 0 on Ty. This completes the
proof. O

Applying Theorem and Proposition we have the following corollary, which is estab-
lished in [20] when the generator ® is obtained from uniform shifts of a compactly supported
function.

Corollary 3.4. Let ® be a family of basis functions satisfying Assumption and V(®) be
the linear space (1.1)) generated by ®. If ® has local linear independence on any bounded open
set, then a nonzero signal f € V(®) satisfies My = {xf} if and only if the graph Gy in (3.1) is
connected.

10



3.1. Proof of Theorem [3.2l The necessity in Theorem |3.2 holds under a weak assumption on
the generator ®.

Proposition 3.5. Let ® := (¢))aea be a family of basis functions satisfying Assumption
V(®) be the linear space (1.1) generated by ®, and let f be a nonzero signal in V(®). If
My = {=£f}, then the graph G in (3.1)) is connected.

To prove Proposition we recall a characterization in [19] on phase retrievability.

Lemma 3.6. For a nonzero signal f in a real-valued linear space V., My = {Ef} if and only
if it is nonseparable, i.e., there does not exist nonzero signals fo and f1 € V such that

(3-8) f=fo+ fi and fof1 =0.

Proof of Proposition[3.5 Let f € V(®) be a nonzero signal satisfying My = {£f}, and write
=D sen &r®x, where ¢y € R, A € A. Suppose, on the contrary, that the graph G is discon-
nected. Then there exists a nontrivial connected component W such that both W and Vy\W
are nontrivial, and no edges exist between vertices in W and in Vy\W. Write

(3.9) F=> adr=Y_ oo+ >, o= fot+fi.
kEV} AEW AEV\W
From the global linear independence and nontriviality of the sets W and Vy\W, we obtain
(3.10) foZ0 and f; Z0.
Applying and , and using the characterization in Lemma we obtain that
Jo(zo) f1(zo) # 0

for some xp € D. This implies the existence of A € W and X € Vy\W such that cx¢x(xo) # 0
and cy @y (zo) # 0. Hence (A, \') is an edge between A € W and X € Vy\W, which contradicts
to the construction of the set W. ]

Now we prove the sufficiency in Theorem Let f =) ycacrdr € V(®) have its graph Gy
being connected, and take g = Y, da¢x € M. Then for any 6 € O,

(3.11) lg(@)| = |f(2)], = €Tp.

For any 6 € O, there exists 09 € {—1,1} by (3.11) and the local complement property on Tp
such that

g(x) =dof(x), v € Tp.
This together with the local linear independence on Ty implies that

(3.12) dy = dyey,

for all A € A with S¢(A\)NTy # 0. Using (2.11)) and applying (3.12), there exist d) € {—1,1}, X €
A such that

(3.13) dx = dxcx
for all A € A, and
(3.14) Sy = Oy

11



for any edge (A, \’) in the graph G¢. Combining (3.13)) and (3.14]), and applying connectivity of
the graph G, we can find § € {—1,1} such that

(3.15) dy =c)=0forall A € Vy and dy\ = écy for all A € V.
Thus g(xz) = df(x) for all z € D. This completes the proof of the sufficiency.

4. PHASE RETRIEVABILITY AND LANDSCAPE DECOMPOSITION

For a signal f € V(®), the graph Gy in is not necessarily connected and hence there may
exist many signals g € V(®), other than & f, belonging to M. In this section, we characterize
the set M of all signals g € V(®) that have the same magnitude measurements on the domain
D as f has, and then we provide the answer to Question [1.2

Take f =) \cpcr0x € V(®), let G; = (V;, E;),i € I, be connected components of the graph
Gy, and define

(4.1) fi= Z cadn, 1 € 1.

AEV;

Then (|1.4)) holds by the definition of G;,7 € I, and the signal f has the decomposition , (11.6)
and by Theorem By and , signals g = > ;.76 f; with 6; € {-1,1},i € I,
have the same magnitude measurements on the domain D as f has. In the following theorem,
we show that the converse is also true.

Theorem 4.1. Let the generator ® := (px)ren, the family T = {Tp,0 € O} of bounded open
sets, and the linear space V(®) be as in Theorem[3.4 Take f € V(®) and let f; € V(®),1 € I,
be as in .1)). Then g € V(P) belongs to My if and only if

(4.2) g= Zéifi for some 6; € {—1,1},7 € I.

el
Proof. The sufficiency is obvious. Now the necessity. Let f,g € V(®) have the same magnitude
measurements on the domain D, i.e., My = M, Write f = >,y cxéx and g = >y cp dada.
Then following the argument used in the sufficiency of Theorem @ we can find 0y v € {—1,1}
for any pair (A, ') with Sg(X\, X') # (0 such that

(4.3) (dx,dx) = 6xx(cx, en)-

Applying with A = X and recalling that Sg(\) # (), we obtain

(4.4) dy = dxen, AEA,

for some ) € {—1,1}. This concludes that

(4.5) Oy =0\ x =0y

for any edge (A, X') of the graph G¢. Therefore signs ¢ are the same in any connected component
of the graph Gy. This together with , and completes the proof. O

The conclusion in Theorem can be understood as that the landscape of any signal g € M
is a combination of islands of the original signal f or their reflections. As an application to
Theorem we have the following result about the cardinality of the set M.

12



Corollary 4.2. Let the generator ®, the family T of bounded open sets, and the linear space
V(®) be as in Theorem[3.2 Then for f € V(®),

#M; =271
where I is given in (1.4)).

The union of Ty, 8 € O, is not necessarily the whole domain D. Following the argument used
in the proof of Theorems [3.2] and we have the following corollary.

Corollary 4.3. Let the generator ®, the family T = {Ty,0 € ©} of bounded open sets and the
linear space V(®) be as in Theorem[{.1 Then

(4.6) My =My p, forall feV(D),
where D1 = UgcaTy.

Proof. Let f,g € V(®) satisty |f(z)| = |g(z)],z € Ty for all § € ©. Write f = >

ser fi as in
(1.5), (1.6)) and ([1.7). From the argument used in the proof of Theorems and we have
that g = ), d; f; for some 6; € {—1,1}. Therefore |g(x)| = |f(z)| for all z € D. O

Take f = Y cpcrdr € V(®), and define f;,i € I, by (£.1)). As discussed in the paragraph
just before the statement of Theorem [4.1] the above functions f;,i € I form a landscape de-
composition of the signal f satisfying , and (1.7). In the next theorem we show the
uniqueness of the landscape decomposition satisfying (|1.5]), and .

Theorem 4.4. Let the generator ® and the space V(®) be as in Theorem |4.1. Then for any
f € V(®) there exists a unique decomposition satisfying (1.5)), (1.6) and (1.7]).

Proof. Write f =3 \ca ca¢x and define f;,i € I, by (4.1). Suppose that {g;,j € J} is another
decomposition of the signal f satisfying (L.5)), (1.6) and (1.7). Then g; = Y cp djrdr.J € J,

are nonzero signals in V(®) such that satisfy

(4.7) F=> 9

jeJ
(4.8) My, ={+xg;}, j € J,
and
(4.9) g;9;5» = 0 for all distinct j,j" € J.
Then it suffices to find I}, j € J, such that
(4.10) I; only contains exactly one element for any j € J,
(4.11) 9 =>_fi
i€l
and
(4.12) Ujes Ij = I and I; N I = for all distinct j, j € J,

as in this case there is an bijective map P from J and I such that g; = fp(;),J € J.
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First we prove (4.11]) and (4.12)). For any distinct 7,5’ € J and (A, X)) € Ax A with Sg(\, \') #
(), following the argument used in the sufficiency of Theoremwwith f and g replaced by g; g,/
we obtain from (4.9)) that

either (dj’)\, dj)\’) = (0,0) or (dj/)\, dj/7/\/) = (0,0).

This together with (4.7) implies that for any (A, X)) € A x A with Sg(\, \') # 0 there exists
j € J such that

(4.13) djx=cx, djx =cx
and
(414) dj’,)\ = djl7)\/ =0 for all j/ 7& ]

Observe that Sg(N\) # 0,A € A. Applying (4.13) and (4.14) with N = X\ € A, we can find
W;,j € J such that

(4.15) 9= > caba,
)\EW]'
and
(4.16) Ujeg Wj = Vy and W; N W, = 0 for all distinct j, j' € J.

Let V; C Vy,i € I be as in (4.1). Applying ({.13) and (4.14) with (X, \’) being an edge in Gy,
we obtain that for any ¢ € I there exists j € J such that V; C W;. This together with (4.16]
implies the existence of a subset I; of I for every j € J such that

(4.17) Wj = Ujer,; V; for all j € J.

Then the conclusion (4.11)) follows from (4.1)) and (4.17]), and the partition property (4.12)) holds
by (4.16]), (4.17) and the observation that U;e;V; = V5.

Now we prove (4.10). By (1.5) and (4.11)) we have that
./Vlgj D {Z&lfl,él € {—1, 1}},

iEIj

which implies that #M,, > 271 This together with (4.8 proves (#.10)). O

5. PHASELESS SAMPLING AND RECONSTRUCTION

In this section, we consider phaseless sampling and reconstruction of signals in V' (®), and we
construct a discrete set I' such that

(5.1) Mg = My for all f e V(P),
and its density D4 (T") is dominated by a multiple of the innovative rate D, (A) of signals in
V(D).

First, we recall the concept of a (minimal) phase retrievable frame [7], 20, 27, 34 61].

Definition 5.1. We say that F = {f,,, € R",1 < m < M} is a phase retrievable frame for R™ if
any vector v € R" is determined, up to a sign, by its measurements |(v, f,)|, fm € F, and that
F is a minimal phase retrievable frame for R™ if any true subset of F is not a phase retrievable
frame.
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The concept of minimal phase retrievable frame is crucial for us to prove the existence of the
phaseless sampling set on which the linear space V(®) has local complement property, cf. [20,
Theorem A .4].

Proposition 5.2. Let the generator ® := (dx)ren, the family T = {Tp,0 € O} of bounded
open sets, and the linear space V(®) be as in Theorem . Assume that ® has local linear
independence on open sets Ty,0 € ©. Then for any 0 € O, the linear space V(®) generated by
D has local complement property on Ty if and only if there exists a finite set I'y C Ty such that
{®(7),y € Ty} is a minimal phase retrievable frame for R*5o  where

(5.2) ®p = (¢x)rek, and Ko ={X € A: Sp(N) NTy # 0}.
Set
(5.3) RA(r) :==sup # (AN B(z,r)), > 0.
xzeD

We remark that Ky,0 € © in are finite subsets of A and their cardinalities are bounded
by R (2rg), see . In the next theorem, we explicitly construct the phaseless sampling set
such that holds, and its density is dominated by a multiple of the innovative rate of the
signal in V().

Theorem 5.3. Let the domain D satisfy Assumption D = (da)aen be a family of basis
functions satisfying Assumption V(®) be the linear space generated by ®©, and T =
{Ty,0 € O} be a family of bounded open sets so that holds and for every 8 € ©, ® has
local linear independence on Ty and V(®) has local complement property on Ty. Take discrete
sets Ty C Tp,0 € O, so that for any 0 € O, {DPy(v),y € Ty} forms a minimal phase retrievable
frame for R#%e and define

(5.4) T :=Ugecoly,
where ®g and Ky C A is given in (5.2)). Then (5.1)) holds for the above discrete set T'. Moreover
if
(5.5) Nr:=sup#{0: TN Se(\) # 0} < oo,
AEA

then the set I' has finite upper density

RA(279)(RA(219) + 1)
(5.6) D, ()< 5

where T is given in (2.5)).

We remark that the existence of discrete sets I'g, 0 € © in Theorem follows from the local
complement property on Ty, € ©, for the linear space V(®), by applying the argument in [20,
Theorem A .4].

As an application of Theorem [5.3], we have the following phaseless sampling corollary, which
is established in [19] 20] for signals residing in a shift-invariant space generated by a compactly
supported function.

Corollary 5.4. Let D, A, T,®,V(®) and I" be as in Theorem . Then any signal f € V(P)
with My = {£f} is determined, up to a sign, from its phaseless samples on the discrete set I’
with finite density.

NTD+(A),
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In practical applications, the set {®y(7y),v € I'p},0 € © is not necessarily required to form
a minimal phase retrievable frame for R#5¢. In particular, the set Ty can be chosen such that
the density is still dominated by the rate of innovations of signals in V(®) and the set of outer
products ®y(y)®7 (v),7 € Ty forms a frame/basis for the linear space of symmetric matrices
spanned by outer products ®g(z)(®g(x))T, 2z € Tp.

We finish this section with the proof of Theorem
Proof of Theorem[5.3, First we prove . By , it suffices to prove
(5.7) Myr C My.
Take g = > ycp dadr € My, and write f = > ) eaxdr. Then for any 0 € O,
| ad| =170 =gl = | D daga(3)| for all v € T.
AeKy AEKy

This together with the phase retrievable frame property of ®y(~),~y € Iy, implies that

(5.8) dy = dgcy, A € Ky
for some dg € {—1,1}. Hence for any 0 € O,
(5.9) 9(@)| = [f(2)], = € Tp.

This together with Corollary implies that g € M. This proves (5.7).
To prove (5.6), we claim that for any 6 € O,

(5.10) Soe(M\, X)) # 0 for all A\, \ € K.

Suppose on the contrary that the above claim does not hold, then there exist A, A\ € Ky with
So(Xo, Ag) = 0. Thus ¢y, £ ¢), € V(®) have the same magnitude measurements on Tp, which
contradicts to the local complement property of the space V(®) on Ty, 0 € ©.

Applying Claim and Assumption we obtain

(5.11) B(\,m9) N B(XN,ro) # 0 for all A\, N € Kj.
This implies that
(5.12) #Ky < Rx(2rp), 0 € O.

Observe that for any f € V(®), there exists a unique vector ¢y = (c))rek, such that
| (2)? = cf Po(x)(Pg(w)) o, = € Tp.

This together with the minimality of the phase retrievable frame {®y(y),y € Ty} for R#%e
implies that matrices ®g(7)(®o(7))?,7 € 'y are linearly independent in the linear space of
symmetric matrices, which has dimension #Ky(#Ky + 1)/2. Hence

< #Kg(#K@ + 1) < RA(QT())(RA(QT()) + 1)
- 2 - 2
where the last inequality follows from ({5.12)).

By the minimality of the phase retrievable frame {®y(),v € 'y}, we have ®y(~y) # 0 for all
~v € T'g, which implies that

(5.14) Ty C (U)\GKg Sq;()\)) NTy.

(5.13) #T

for all 0 € O,

16



Then for any x € D and r > 0, we obtain from (5.5)), (5.13)), (5.14)) and Assumption that

#(0 N B(z,r)) < (%?éc#rg)
x#{& €0: (U)\EKQ Sq)()\)) NTynN B(.CC,T) =+ (/)}

RA(Q’I“O)(R/;(QTO) + 1)) (1}\13/{(#{9 cO: Scp()\) NTy 75 @})
x#{NeN: Se(\)NB(z,r) £ 0}

< RA(2r9)(RA(2r0) + 1))

- 2

(5.15)

NT#(A N B(x,r + To)).

This together with (2.2]) in Assumption and definition of the density ([2.3) of a discrete set
proves (5.6)). O

6. STABLE RECONSTRUCTION FROM PHASELESS SAMPLES

In this section, we introduce the MAPS algorithm to reconstruct FRI signals in V,(®),1 <
p < oo, approximately from their noisy phaseless samples taken on a discrete set I', we show
that the MAPS algorithm is theoretically guaranteed to provide a stable reconstruction to the
original FRI signal in the magnitude measurements, and we prove that the phaseless sampling
operator St has the bi-Lipschitz property with respect the metric M), in (1.16).

Let T = {Ty: 0 € O} satisfy and I' = Upeel'y with Ty C Ty, 0 € © be as in Theorem
Let f € V(®?),1 < p < o0, and

(6.1) zp(y) = [f(M+n(v), v€T,

be its samples on a discrete set I' corrupted by a p-summable noise 7 = (7(y)) er. A conventional
approach to reconstruct the signal f approximately from its noisy phaseless samples (6.1]) is to
solve the minimization problem

(6.2) fo=arg min 19| = 2(M)ver |l s

which is infinite-dimensional and infeasible. In this section, we propose the following three-step
algorithm, MAPS for abbreviation, to construct a signal

(6.3) gn = dyrox

AEA

in V,(®) from the noisy phaseless samples z,(7),vy € I', which is a good approximation to the
original signal f in magnitude measurements, see Theorem [6.5] and Remark [6.6]
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MAPS algorithm for phaseless reconstruction
0. Select a phase adjustment threshold value My > 0 and set Ky = {A € A :
Se(A)NTy # 0} for 6 € O.
1. For 6 € ©, let
(6.4) cno = (Cno.n)reA
take zero components except that (c,g.a)rck, is a solution of the local
minimization problem

(6.5) (dfglin > H > d)\¢>\(7)‘ —zn(v)r-
MAEKY 1eTy  AEKy

2. Adjust phases of vectors ¢, 9,0 € O, so that the resulting vectors 9, gc;, ¢ with
0y € {—1,1} have their inner product satisfying

(0n,0Cn,0,0n.0:Cror) = 0000 Z Cn,0;0Cn,0"
AEKgNKy

2
(6.6) > —Mp x ( sup \n(v)!)
yEl UL g/
for all 6,0" € ©, where we set sup,cp,ur,, [7(7)] = +o0 if g UTy = 0.
3. Sew vectors d, 9cy 0,0 € O, together to obtain
(67) d o= ZGE@ 67779677799>\XK9 ()\)
" ZGE@ XK (M)

where x g is the indicator function on a set E.

, AEA,

Remark 6.1. The earliest version of the above MAPS algorithm is proposed in [19] to re-
construct phase retrieval signals in a shift-invariant space on the real line from their phaseless
samples, where © = Z, 'y =Ty + 0,60 € O for some I'y C [0, 1], and the phase adjustment signs
dpe € {—1,1} in the second step are selected to satisfy

(6.8) (60,0Cn.0,0n0Cner) >0 forall 0,0 € Z with 6 — 6 = 1.

The MAPS algorithm is modified in [20] to reconstruct phase retrieval signals in a shift-invariant
space on high-dimensional Euclidean space R? from their phaseless samples, where © = Z¢ x
{1,...,M}, Ty =T + k, (k,m) € O for some bounded sets I'y,, 1 < m < M, and the phase
adjustment signs 6,9 € {—1,1} in the second step are selected to satisfy

2
(69) <5177QC,779, (57779167779/) > —Mo(sup \n(’y)]) for all 9,9/ € 0,
vyel
where I' = Ugecel'y and My is a phase adjustment threshold constant. Comparing with the phase
adjustment requirement in the shift-invariant setting, we need a stricter phase adjustment
requirement in the MAPS algorithm proposed in this paper. The benefit is that as shown
in Theorem the reconstructed signal g, obtained from the current MAPS algorithm is an
“approximation” to the original signal f without restriction on the noise level and the apriori
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information on the original signal f, while the reconstructed signal in previous versions of the
MAPS algorithm in [19] 20] are shown to be an “approximation” to the original signal f when
the original signal f is phase retrieval and noise level 7 is small.

Remark 6.2. For every ¢ € ©, the local minimizers ¢, g.x, A € Kg, in the first step of the above
MAPS algorithm are determined, up to a sign, from noisy phaseless samples z,(),y € I'g, by
the selection of the sampling set 'y, and they can be found by solving a family of least squares
problems,
2
min 37 || 37 dair()] - z()

d
(@)xes 1eTy ' AeKy

6.10 = min min ‘ dxé Y
( ) 6y E{—1,1},7€lg (dr)rek, V;g )\;9 AOA(Y) = 0y 25(7)

2

The local minimization in the first step is a phase retrieval problem in a finite-dimensional
setting with its dimension #Ky < Rx(2r9) by (5.12). The reader may refer to [14} 15} [16 206,
28, 29, 144, [48), 63] for various algorithms to solve a finite-dimensional phase retrieval problem.

Remark 6.3. For the phase adjustment in the second step, the threshold constant M, in
should be chosen appropriately to guarantee the existence of phase adjustments 6,9 €
{-1,1},0 € ©. In Theorem we show that such a threshold constant My can be selected to
depend only on the stability constant to solve the local minimization problem in the first
step, see . For a finite set O, define a symmetric symbol matrix B = (b(0,6'))g.gco with
zero diagonal entries and non-diagonal entries b(6,6’),0 # 6" given by

. 2
/ Loif {epo, cpo) > MO(Sup’yel_‘gUI‘g/ !n(v)l) z;nd LoUTy #0,
(6.11) b(0,0") =< _—1 if (Cn0,Cner) < _MO(SUPWGFQUFQI In(v)])” and Ty UTy # 0,
0  otherwise.

Then phase adjustments d, 9 € {—1,1},60 € O in the second step can be reformulated as finding
a diagonal matrix D with diagonal entries d,9 € {1,—1},0 € © so that DBD has nonnegative
entries, cf. [20]. The selection of the above diagonal matrix is not unique. By (6.5)), we have

(6.12) (CpsCer) =0 if KN Ko = 0.

So we may use the following algorithm to find such a diagonal matrix D.
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Phase Adjustment Algorithm

Initial S1 =0,5, =0,53 = ©.

Step 1 Stop if S3 = 0); otherwise take 6 € S3, update S; = S1 U {0}, S2 =0 S5 = S3\ {0},
and select 0,9 € {—1,1} and b(0,0") = 25, 9b(6,0") and b(¢',0) = 20, 4b(¢’, 0) for
all 0" with Ky N Ky # 0.

Step 2 If (6,0") = 0 for all ' with Ky N Ky # (), return to Step 1; otherwise update
Sy = {0 € O satisfying b(0,6') # 0 and Ko N Ky # 0}, S1 = S1 U S2 and
Sy = S5\ 5.

Step 3 For ¢’ € Sy, let 0,9 = 1 if b(¢',6"”) = 2 for some 0" satisfying Kyp» N Ko # () and
dp,0r = —1 otherwise.

Step 4 Set K = Ugeg,{0" € © satisfying b(0',0") = +1 and Ky N K¢ # (}. Return
to Step 1 if K = (; otherwise, redefine b(¢',6") = 20, ¢:b(#',6") and b(§",6") =
20,00(0",0") if 0' € Sy and 0" € K satisfying Kgv N Ky # (), update Sy = K, Sy =
S U Sy, S3 = S3\S2, and then return to Step 3.

Output 6,0,0 € O.

Remark 6.4. We remark that complexity of the proposed MAPS algorithm depends almost
linearly on the size N = #A( of the set of innovative positions Ay for the original signal
f = 2eardr = Dyen, 0r € V(®), where component vector (cx)iea is supported on
Ao C A. Define ©g={#€0: KynAy#0}. Then

(6.13) #0600 = #(Uxea, {0 €O : A€ Ky}) < Ny#Ao = NpN

by (5.5). By (6.7)), in the first step of the proposed MAPS algorithm, it suffices to solve local
minimization problems (6.5) with § € ©(. Observe that for each § € ©¢ the number of additions
and multiplications required to find the local minimizer ¢, ¢ in the first step is O(1) by (5.12) and
(5.13). This together with (6.13) implies that the total number of additions and multiplications
required in the first step is O(N). Let B = (b(6,6'))p0'co, be the symmetric symbol matrix
in Remark For each 6,0' € ©p, the number of additions and multiplications required to
evaluate the inner product (cy, ¢;¢) and the supremum sup,cp,ur,, [7(7)] are O(1) by (5.12)
(5.13), and so is O(1) for evaluating every entry b(f,6’) of the matrix B. By (6.7) and (6.12),
we have that
b(0,0") =0 if KN Ky =10,

and for any 6 € ©, we obtain from (5.5 and (5.12)) that

#{0€c0: KgNKy #0} < #(Uxek, {0 €0: A€ Kp'})
(6.14) < Np#Ky < NyRp(2ro).
Hence the number of nonzero entries in each row of the symmetric matrix B is at most
N7RA(2rp), and the total number of additions and multiplications required to define the sym-
metric matrix B is O(#0g) = O(N), where the last equality follows from ([6.13). By Remark|[6.3]
the phase adjustment in the second step of the MAPS algorithm reduces to finding a diagonal

matrix D with diagonal entries 6,9 € {1, —1},6 € © so that DBD has nonnegative entries. We
observe that the total number of additions and multiplications to find such a diagonal matrix
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D by applying the Phase Adjustment Algorithm in Remark to the above symmetric matrix
B with © replaced by Oq is O(N). From the above argument about the computational cost to
evaluate the symmetric matrix B and to find the diagonal matrix D, we see that the total num-
ber of additions and multiplications required in the second step is O(NN). For any A € Ag, the
number of additions and multiplications required to evaluate d,;\ is O(1) by , and hence
the total number of additions and multiplications required in the third step of the proposed
MAPS algorithm is O(N). Combining the above arguments, we conclude that the total number
of additions and multiplications required in the proposed MAPS algorithm to reconstruct an
“approximation” g, to the original signal f is about O(N).

For a phase retrievable frame F = {f,, € R",1 < m < M}, we use

B ) ) 2\ 1/2
[Flle =, _min | max <||J|Ef 1 (%I@,fmﬂ )

_ o\ 1/2
(6.15) ||U1||I§f:1 (T%:Tl(v,fm>| ) >

to describe the stability of reconstructing a vector v from its phaseless frame measurements
(v, fm)], 1 < m < M, cf. [2,[10] for the o-strong complement property. In the next theorem,
we show that the reconstructed signal g, approximates the original signal f in the new induced

metric M, in (1.16).

Theorem 6.5. Let the domain D, the generator ® := (¢x)aea and the family T = {Ty,0 € O}
of bounded open sets be as in Theorem and let V,(®),1 < p < oo be as in . Assume
that the sampling set I' = Upcel'y is chosen so that 'y C Tp,0 € ©, and Pgr, = {Po(7),7 €
Ty}, 0 € O, are phase retrievable frames, and

(6.16) sup #L(|| o, [ P) 72 < 00
0cO
Select My in by
-2
(6.17) My = 24 sup #FG(H(I)H,FeHP) )
0cO
and denote the reconstructed signal via the MAPS algorithm (6.3)-(6.7) by g,, where noisy

phaseless samples z,(y),y € I in (6.1) are generated from a signal f € V,(®) and a p-summable
noise ) = (N(7y))yer € #,1 <p < oo. Then

1
(6.18) My(gy £) < 6v/6C0 (max v/#To (| @0.0,l1p) ™)1 @lloclinlln,
where the metric My(gy, f) is defined in (1.16), Co = (ro))l 1/p(N7—)1/p( (470))%/?, and
r0, RA(10), N7, B(4710) and ||®|« are constants given in , (-3), (.5), @-1) and @.4) re-
spectively.

We postpone the proof of Theorem to the end of this section.
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By (1.17) and Theorem the reconstructed signal g, from the proposed MAPS algorithm
provides an approximation to the original signal in magnitude measurements,

(6.19) l1gal = 1711l < 12V6C0  mma VAo (1B, 7)) 1@l s

In the next remark, we show that the estimation (6.19)) in magnitude measurements is subop-

timal in the sense that the quantity Co(maxgco v#Lo(||Po,r, ||p)_1) |®]|oo in (6.19) cannot be
replaced by a sufficiently small constant.

Remark 6.6. Take \g € A so that ||¢y,|zr > 00||®||c for some 6y > 0. Then for any signal
feV,®),1 <p<ooande>0, we have

1/
1176 % ebre@ = O sepller S el >0 1)
v€lNSs (o)
(6.20) < (M) L DY g
by and , and
max (|[1f + el = 1£1]l s 17 = edrol = 1£1ll )

1
> iHmax (Hf+6¢/\0| = £}, |If — edro| — |f|’)‘
1 8
(6.21) > Slebrollze > 3 1@

By (6.19), (6.20) and (6.21), we conclude that the reconstructed signal g, from the proposed
MAPS algorithm is a suboptimal approximation to the original signal f in magnitude measure-
ments.

Take a signal g € V,(®),1 < p < oo. For the noise n = (9(7))er in (6.1) given by n(y) =
lg()| = |f(v)],7 € T, one may verify that the signal g could be reconstructed from the MAPS

algorithm. Therefore it follows from Theorem that

(6:22) My(f,9) < 6v/6Co (max /Ao (|arllp) ) @ Dy(St s, Stg) for all f.g € V(@)

In the following theorem, we show that metric D, on the sampling data set is dominated by the
metric M, in the signal space V,(®), provided that the family ® of basis signals forms a Riesz
basis for the signal space Vj,(®), i.e., there exist positive constants A,(®) and B,(P) such that
in the sense that

623)  A@lererlls < || D erdr| < B(@lenrealle for all (exren € 2.
AEA

Lr

Therefore the phaseless sampling operator St has the bi-Lipschitz property on the signal space
V,(®).

Theorem 6.7. Let the domain D, the generator ®, the family T of bounded open sets, the
phaseless sampling set I', and the linear space V,(®),1 < p < oo be as in Theorem . Assume
that ® forms a Riesz basis for the signal space V,(®) with lower and upper Riesz bounds denoted
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by A, (®) and B,(P) respectively. Then the nonlinear sampling operator St in (1.13) has the
following bi-Lipschitz property, i.e., there exist positive constants A1 and As such that

(624) AlMp(f7 g) < DP(SFf7 Sl“g) < AQMP(f7 g) for all f?g S V})(q))v

where metrics My, and D,, are given in (1.16)) and (L.15)) respectively.

Proof. The first inequality in (6.24) follows from (6.22)). Then it suffices to prove the second
inequality in (6.24). For any f,g € V,,(®) and f, g € V,(®) with M = Mg, one may verify that

1F) =g < 1) = F(NI +19(v) = §(3)] for all y € T

Hence

IS0/ ~Sealor 2 it ([ = DDl
f.9€Vp(®) with M =My

By (1.16]) it suffices to prove that

[l R (r0) ( N7Ra(2ro)(Ra(2r0) +1)
©25) e < =2 )

((9 = 9 M)ver]l)-

1/p
) Rl e for all h € V,(®).

For p = 0o, we immediately have
(6.26) lh|lge < ||R||Loe for all h € Voo (P).

For 1 < p < oo, we write h = ), 5 cx¢x. Then

1l = (Z ‘ ZCWA(V)‘}))UP = \Iéllm(z ‘ ZCAqu)(A)(v)‘p)l/p
veEl AeA

yel AeA

< el (X (T leaPrssin) < (Exsaon)” )"
AEA

yel'  AeA

/ -1/
< J@loe (1ol 3 xsan@) % sup (3 v )
AEA

AEA ~eD Vel

< ||<I>||OO(RA(TO))1_1/p(supZ > XS¢(A)('Y)>Up”(C)\)/\eAHZP

AEA hco ~ely
1/
< 18]oc(Ra(ro))' 7 (sup #T) " (sup#16: Ty 1 5a(3) # 0

o) < IRt lro) (BTG LUy,

where the third inequality follows from Assumption the fourth one is true by and the
last one holds by (5.5, (5.13) and (6.23]). Combing (6.26]) and (6.27)) proves (6.25)), and hence
completes the proof. O

1/p
l(ex)aealler

We finish this section with the proof of Theorem
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Proof of Theorem[6.5 By (1.16]), it suffices to find f, hy € V(®) N LP with the same magnitude
measurements on the whole domain,

(6.28) My, = My, ,

such that

(6.29) I = Fller < 4V6Co (max v/#To (%0, 1) )@ s
and

(6:30) g0 = allz < 63/5Co (mas v/ FTo(1Bar, 1) ™) 1@ loclinler

Take 6 € © and define

(631) 9no = Z CU,B;A¢A7

AEA

where ¢, g.1, A € A, are given in (6.4). By (6.4) and the definitions of the sets Ky and I'p,0 € O,

we have

(6.32) Gns(NEF() =D (erente)da(r), 7 € To.

AeKy

Then there exists a subset Fg C I'p such that

(515 o) + (S |5 oo s’

vely, AeKp Y€\ AEKy
— (S o)~ SO+ (X Jamol) + £’
ey YELH\I
:(ZHQHG N =1f(y ”)% ( Z ”9170 )N =1fy ”);
ey v€Te\I
< ( Z gne(M] = 1F(v )
7€l
< V2( Y llanol = =) +v2( X 1F)1 = 20)]*)?
v€ly v€ly
633) < 2v2( Y [IF0) = =()[F)" <2v2V/FTa( sup In()]).

~€Ty v€ly
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where the third inequality follows from (6.5) and the last inequality holds by (6.1]). By (6.15])
and the phase retrievable frame assumption for ®4 r,, we have

2
(Zvng Z)\GKQ (cnon — CA)¢>\<7)‘ )
@5, llp < max i
2
(Z,\GKQ \Cn,e;A - CAP)

N

2
<Ewere\rg ZAng (cpon + C/\)¢)\<7)‘ ) )
(ZAeKe |enon + exl?

2
2 nery (Cnox — C)\)¢)\(7)‘ ) +

N

=

2
2 oner, (Cnon + CA)@(’Y)’ >

(6.34) < (Zoer,

NI PN

ol

Z’YGFQ\F/Q
(

)

E)\EKg |Cn,0 — C/\|2>

min ((ZAEKQ [en o +exl? )

Combining ((6.33]) and ( - yields
~ 1/2 —
(6.35) ( > lenan = noerl?) < 2V2V/ET(Igr,lle) " (sup n()])

AeKy v€ls

for some 6,9 € {—1,1}.
Let 0, 9,6 € O, be as in (6.35). Then for any 0,0’ € ©, we have

<5n,90n,9v(§n,9’cn,0’> = Z Snﬁgnﬁ’cm@;)\cnﬁ’;/\
AEKgNK
> > alP= Y lelldecnen — o
AEKgNK gy AEKgNK gy
— D pecnen —allenl
/\EKQQKB/

o Z |Snﬁcn79;>\ - CAHSn,G’Cn,e';/\ - C>\|

)\EK@ﬂKG/
1 3 < <
(6.36) = 92 Z jexl” - 92 Z (’577,9017799\ — ol + 0,67 Cnorix — CAP)-
AEKgNKy AEKgNKy
This together with (6.17) and (6.35]) implies
. - 3 - -
<5n79cn,9v 577,0’Cn,0’> > 5 Z (|57779C7749;A - C/\|2 + [0, 0/ Cn 60X — CAP)
AEK9NKy
2
(6.37) > —M0< sup In(v)l)

yelgUL g/

for all 6,6’ € ©. This proves that phases of ¢, 9,0 € ©, in (6.4) can be adjusted so that
holds.
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Let 0,9 € {—1,1},0 € ©, be signs in used for the phase adjustment of vectors ¢, 9,60 € O,
in (6.4). We remark that the above signs are not necessarily the ones in ([6.35)), however as shown
in (6.48) below they are related. Define

(6.38) fo= > &,
)\EAfm
where Ay, contains all A € A such that

(6.39) lea| > 2\/%( sup sup !n(v)l).

AeKg €Ty
Then for z € D, we obtain from (2.5) and ([5.3]) that

@) = fa(@)] < 2V/Mo S (sup sup [n(3)]) 6a()

NeA AeKg~ely

20/ MoR(ro)l|@]loc ( sup  sup sup ()] ).

AEB(z,m0) \eKg 7€y
By and the phase retrievability of frame on ®yr,,0 € ©, we have that
(6.41) v € B(x,4ro)
for all v € Ty, 0 € © with ¢/ (y) # 0 for some X € Ky. Therefore it follows from and
that

sup [f () — fn(2)]

zeD

(6.40)

IA

IN

2/ MoRalro)|@le( s n)l)

AEB(z,r0),ANeKp,7ELy
(6.42)

IN

2/ MoRa(r0)||®]lc  sup  [n(v)]

v€Ty,0€0

for p = 00, and

([, 1@ = raraua) ™

1/p
< 2/ ( J (3 (s sup rnw)r)rm(x)\)pdu(x))

NeA AeKg v€eTy

IN

1/p
2v/Mo ( L (s swp noP)latel) = (3 |¢u<x>|)p‘1du<x>>

AeA  AEKovELy AEA

IN

1/p
2JM||<I>HOO<RA<TO>>1—”P< [ (swsw In(v)l”>du(~’v)>

€eb AEB(z,r0) AEKg v€Ty

IN

2V Mo (R o) 2 (B2 (3 30 Y o)

AEA NEKyv€eTy
(6.43) < 2/ Mo|®|oo(Ra(r0)) /P (NT) /2 (B(470))*/ ]| v
for 1 < p < oo. This proves (6.29).
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By (6.17)), (6.35)), (6.36]), (6.38) and (6.39]), we obtain that
Vi, = Ara

and

~ ~ 2
(6.44) (On.0¢n.6,0n6rCnor) > MO( SUD |77(7)|>
yelgUL g/

for all 6,0’ € © with Ky N K¢ N Vy, # 0. This together with implies that

67770877’0 — 67770/57]’9/
hold for all pairs (0,6') satisfying KoM Ko NV}, # 0. Hence for A € Vy, there exists 6 € {—1,1}
such that
(645) 577,0877,9 =0\

for all § € © satisfying A € Ky. Decompose the graph Gy, into the union of connected compo-
nents (V;,;, Ey), i € I, and the signal f, as in (1.5)), (1.6 and (1.7]),
(6.46) =YY aén

i€ly AeVy ;

Observe that for any edge (A, X') of Vy,, there exists 6y € © such that \,\" € Ky, by (2.11]).
Hence

(6.47) O\ = 61,000n,60 = O
Combining (6.45]) and (§6.47)), there exists é;,7 € I;), such that
(6.48) (5,7,987779 =9;

for all 0 € © satisfying Ky N V,; # 0. Set
h’? = Z 51 Z C)\gb)\.
i€l, AEV,,

Then f, and h, have the same magnitude measurements on the whole domain by ((1.5), which
proves ((6.28]).
For all A € Vy , we obtain from (6.35)) that

(6.49) |dyn| <

ZKga,\(wnﬁcnﬁ;/\ — 0,00 el + leal) < 3\/%(

S sup sup [n(y)]).
VCED

AeKg v€eTy
For any A € V,,;,7 € I, we get

ZKga,\ |0y,6Cn,0.0 — dica| B ZK93)\ leno:0 — dn0eal

’d > W (S'C)\’ S =
! ' ZKQB/\ 1 ZKQB)\ 1
(6.50) < /Mo sup sup [n()])-
AeKg veTy
Combining (6.49) and (6.50), and applying similar argument used in the proof of (6.42)) and
(6.43)), we can prove ((6.30)). O
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7. NUMERICAL SIMULATIONS

In this section, we present some numerical results to demonstrate the performance of the
MAPS algorithm proposed in the last section, where signals are one-dimensional non-uniform
cubic splines and two-dimensional piecewise affine functions on a triangulation.

Denote the positive part of a real number x by x4 = max(z,0). In the first simulation, we
consider phaseless sampling and reconstruction of cubic spline signals f on the interval [a, b]
with non-uniform knots a =ty < t1 < ... < ty = b, see the top left plot in Figure [1| where
a=0,b=100 and N = 100. Those signals have the following parametric representation

N—4
(7.1) f@) =" enBu(z), = € [a,b],
n=0

where
4

B(l’):(t +4_t)z ($—tn+l)3-
' ' " Tocjca gt — tnss)

0<n<N-—-4

are cubic B-splines with knots t,,1;,0 <1 <4 [58, [60]. In our simulations, we assume that
e[-1,1], 0<n< N —4,
are randomly selected, and

b_
tn:a+(n+en)Ta, 1<n<N-1

for some €,,1 <n < N — 1, being randomly selected in [—0.2,0.2]. Then cubic spline signals in
the first simulation have (b — a)/N as their rate of innovations.

Consider the scenario that phaseless samples of the signal f in on a discrete set I' are
corrupted by a bounded random noise,

(7.2) (V) = [f+n(), veT,
where 1(v),v € T, are randomly selected in the interval [—n, n] for some n > 0,

N-—1
tna1 —t
N-1 +1
(7.3) r:=uNIr, = nlol {tn R € (), 1S RS K}

and K > 7 is a positive integer. We remark that the proposed MAPS algorithm is not applicable
for 1 < K <6.

Denote by g, the reconstructed signal from the above noisy phaseless samples via the proposed
MAPS algorithm. Performance of the proposed MAPS algorithm depends on the noise level 7
and also the oversampling rate K, the ratio between the density K (b — a)/N of the sampling
set I in and the rate (b — a)/N of innovations of signals in V(®). Denote by

Epx = ||lgnl = If1]| oo

the maximal reconstruction error in magnitude measurements between the original signal f and
the reconstructed signal g, for different noise levels 1 and oversampling rates K. Plotted on the
bottom right of Figure || are averages of the maximal reconstruction error FE, r in 200 trials
against the noise level n and oversampling rate K. We observe that the maximal reconstruction
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FIGURE 1. Plotted on the top left is a non-uniform cubic spline signal f,, while
on the top right is the signal g, reconstructed via the proposed MAPS algo-
rithm, which provide good approximation to the original signal f, on the in-
tervals [0,24.1323), [44.0290,69.8080) and [82.0449,100], and reflection —f, of
the original signal on intervals [24.1323,44.0290) and [69.8080, 82.0449). On the
bottom left is the difference |g,| — |f,| between magnitude measurements of the
reconstructed signal g, on the top right and the original signal f, plotted on the
top left. On the bottom right is the average of maximal reconstruction error
E, i in 200 trials with respect to different noise levels n and oversampling rates

K.

error Ey g depends almost linearly on the noise level 7, and the stability constant in
and Theorem measured by supo<, <5 Ey x/1 decreases as the oversampling rate K < 7
increases. This demonstrates the approximation property in Theorem Presented on the top
left is a non-uniform cubic spline signal f, that has four “islands” in the decomposition ,
and , and on the right is the reconstructed signal g, via the proposed MAPS algorithm,
where 7 = 0.01, K = 9 and the maximal error |||gy| — |fo||/z in magnitude measurements is
0.2104.

Let D be a triangulation composed by the triangles Ty, 0 € ©, and denote the set of all inner
nodes of the triangulation by A. In the second simulation, we consider piecewise affine signals

(7.4) ) = 3 exoa@,y)

A€A
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on the triangulation D, where the basis signals ¢y, A € A are piecewise affine on triangles
Tp,0 € © with ¢x(A) =1 and ¢5(\) = 0 for all other nodes X' # \, see the left plot in Figure
From the definition of basis signals ¢, A € A, a signal f of the form has the following
interpolation property,

AEA

In the simulation, phaseless samples of a piecewise affine signal f on a discrete set I' = Ugcoly
are corrupted by the bounded random noise,

(7.5) zp(y) = [f(MI +n(v), v €T,

where 7(7),v € I', are randomly selected in the interval [—n, 7] for some 7 > 0 and for every
0 € O, the set I'y contains 7 points randomly selected inside Ty. Shown in the middle of Figure
is a signal g, reconstructed from the noisy phaseless samples via the proposed MAPS
algorithm, where n = 0.01, the original piecewise affine signal f is plotted on the left of Figure
and the maximal reconstruction error |||g,| —|f|||z>~ in magnitude measurements between the
original signal f and the reconstructed signal g, is 0.0360.

FIGURE 2. Plotted on the left is a piecewise affine signal f on a triangulation
which has four “islands” in the decomposition , and . Shown in the
middle is a reconstructed signal g, via the MAPS algorithm, while on the right is
the difference ||g,| — | f|| between magnitude measurements of the reconstructed
signal g, and the original signal f plotted on the left.

In the simulation, we consider the performance of the proposed MAPS algorithm to construct
piecewise affine approximation when the original signal f of the form has evaluations
f(A), X € A on their inner nodes being randomly selected in [—1,1]. Denote by g, the recon-
structed signal from the noisy phaseless samples via the proposed MAPS algorithm and let
E, = |[lgn| — |f|llze> be the maximal reconstruction error in magnitude measurements between
the original signal f and the reconstructed signal g, for different noise levels 1. Shown in Table
is the average of maximal reconstruction error F; in 200 trials. This confirms the conclusion
in Theorem that the maximal reconstruction error depends almost linearly on the noise level
n = 0.
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TABLE 1. Maximal reconstruction error via the MAPS algorithm

n | 0.04 0.03 0.02 0.01 | 0.008 | 0.004 | 0.002 | 0.001
E, | 0.1878 | 0.1366 | 0.0791 | 0.0305 | 0.0226 | 0.0101 | 0.0050 | 0.0025

APPENDIX A. DENSITY OF PHASELESS SAMPLING SETS

In the appendix, we introduce a necessary condition on a discrete set I' such that M yr = My
for all f € V(®). We show that the density of such a discrete set I" is no less than the innovative
rate of signals in V(®), see Theorem and Corollary

Theorem A.1l. Let the domain D, the generator ® := (¢x)aen, the family T = {Typ,0 € O} of
open sets and the linear space V(®) be as in Theorem and let ' C D. If Mypr = My for
all f € V(®) with My = {£f}, then

(A1) D) > Dy (A).
Proof. Take zg € D and r > rg. By (2.2)) and ([2.3)), it suffices to prove that
(A.2) #(I'N B(zo,r)) > #(AN Bz, —10)).

Assume, on the contrary, that (A.2)) does not hold. Then we can find a nonzero vector (dy)xean B(wo,r—r0)
such that

(A.3) > dxoa(v) =0, v € I'N B(zo, 7).
AEANB(zo,r—r0)
Recall that ¢y, A € A, are supported in B(\, ) by Assumption Hence
(A.4) > dxpa(v) =0, v € I\B(o, 7).
AEANB(zo,r—710)
Therefore the set
w={r= 3  an: f(r)=0er}cv@)
AEANB(zo,r—10)

contains nonzero signals. Take a nonzero signal f € W. By Theorem [ =2 ier fi for some
nonzero signals f; € V(®),i € I, such that My, = {xf;},i € I, and f;f/ = 0 for all distinct
i,i' € I. This together with f € W implies that fi(y) = 0 for all v € T and ¢ € I. Hence
0 € My, r,i € I, which contradicts with My, r = My, = {£f;},i € 1. O

From the above argument, we have the following result without the assumption on the family
T of open sets in Theorem

Corollary A.2. Let the domain D and the generator ® = (¢x)ren satisfy Assumptions and
respectively, and define the linear space V(®) by (L.1). IfT' is a discrete set with Myp = My
for all f € V(®), then D4 (I') > D, (A).

We finish this appendix with a remark that the lower bound in (A.1]) can be reached when
the generator ® = (¢))rca satisfies that

(A.5) Se(\,\') = 0 for all distinct A\, \' € A.
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As in this case, a signal f € V(@) is nonseparable if and only if f = c)¢y for some A € A. Thus
the set I' = {a(\),\ € A} is a phaseless sampling set whose upper density is the same as the
rate of innovation, where a(\), A € A, are chosen so that ¢y(a(\)) # 0.
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