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ABSTRACT. In this paper, we focus on localized conditions to verify exponen-
tial stability of spatially distributed linear systems whose interconnection struc-
tures are defined using a geodesic on proximity coupling graphs. We reformu-
late the exponential stability condition in the form of a feasibility condition that
is amenable to localized implementations. Using finite truncation techniques,
we obtain decentralized necessary and sufficient stability certificates. In order
to guarantee global stability, it suffices to certify localized conditions over a
graph covering, where the computational complexity of the verification of the
proposed localized certificate is independent of network size. Several robust-
ness conditions against local matrix perturbations are obtained that are useful
for tuning network parameters in a decentralized manner while ensuring global
exponential stability.

1. INTRODUCTION

Let us consider (in)finite-dimensional a linear dynamical system over an undi-
rected and unweighted graph G = (V, E) whose dynamics is governed by

d

dt
ψ(t) = Aψ(t)(1.1)

with initial condition ψ(0) ∈ `p for some 1 ≤ p ≤ ∞, where ψ(t) = [ψi(t)]i∈V ,
the state matrix A = [a(i, j)]i,j∈V is time independent and `p := `p(V), 1 ≤ p ≤
∞, are the linear spaces of all p-summable sequences on V with the norm denoted
by ‖ · ‖p. The exponential stability of linear system (1.1), where one needs to
guarantee existence of strictly positive constants E and α such that

‖ψ(t)‖2 ≤ E e−αt ‖ψ(0)‖2(1.2)

for all t ≥ 0, is one of the fundamental and widely studied subjects in control
system literatures, see [9, 11, 20, 24, 41] and references therein. There is rich lit-
erature on stability of linear systems over infinite chains. A common assumption
in this context is that the network topology enjoys some structural symmetries,
e.g., shift or translation invariance, that simplifies the stability analysis signifi-
cantly [8, 9, 13, 18, 19, 21, 26, 30]. The objective of this paper is to characterize
spatially localized certificates, in the form of necessary and sufficient conditions,
to verify the exponential stability conditions (1.2) for a general class of spatially-
varying linear dynamical networks. This is particularly relevant to the following
practical problem in analysis and design of networked systems: how do localized
modifications (e.g., adding new or eliminating existing links in the coupling graph
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G or adjusting components of the state matrix A) affect the global exponential sta-
bility? It is computationally advantageous to devise a method that allows us to
localize and inspect stability only in relevant parts of a network, instead of ver-
ifying stability conditions globally. Moreover, localized stability certificates are
suitable for decentralized/distributed implementations as they are only required to
utilize local information.

The interest in stability verification of distributed and networked control systems
dates back to a few decades ago. In the context of infinite-dimensional systems, the
existing results in the literature is limited to characterization of stability conditions
in the form of global (centralized) conditions [5, 11, 13, 19, 20, 26, 27, 46, 47]. The
ongoing research in the context of finite-dimensional systems is mainly focused
on developing decentralized stability conditions for some particular classes of dy-
namical systems [3,23,33,36,45]. The stability conditions for the class of spatially
invariant systems are studied in [9], where it is shown that stability conditions
in space can be equivalently verified in a proper Fourier domain using standard
tools. In [21], the authors use linear matrix inequalities to develop a framework to
check stability of a class of spatially invariant systems in a localized fashion. A
more general methodology to study stability properties of spatially interconnected
systems is proposed in [32] that does not require spatial invariance in the under-
lying dynamics of the system. In [37], a spatial truncation technique is offered to
check stability of a class of spatially decaying systems using covering Lyapunov
equations. In [3], the authors consider robust stability analysis of sparsely inter-
connected networks by modeling couplings among the subsystems with integral
quadratic constraints. They show that robust stability analysis of these networks
can be performed by solving a set of sparse linear matrix inequalities. The string
stability of a platoon of vehicles is studied in [48], where the authors extend the
well-known string stability conditions for linear cascaded networks to nonlinear
settings. In [45], the problem of designing decentralized control laws using local
subsystem models is addressed, where their approach allows decentralized con-
trol design in subsystem level using standard robust control techniques. As it is
discussed in [45], analysis based on their results may result in quite conservative
stability conditions. The authors of [49] propose an approach based on quadratic
invariance, where one needs to verify stability conditions in a centralized manner.
In [4, 57, 58], a localized and scalable algorithm to solve a class of constrained
optimal control problems for discrete-time linear systems is proposed that uses a
system level synthesis framework. The authors define some notions of separability
that allow parallel implementation of their algorithm. Almost all these previous
works deal with synthesizing a linear network using decentralized sufficient condi-
tions. The authors of [26] extend the notion of `2 stability to `∞ stability in order
to allow the displacements or velocity deviation of vehicles from their equilibria
in an infinite chain to remain bounded. In [5, 6], the authors consider a particular
family of infinite-dimensional discrete autonomous systems where the state ma-
trix is a Laurent polynomial matrix the shift operator. They provide necessary and
sufficient conditions that the exponential `2 and `∞ stability for such systems are
equivalent, but the `2 stability is an outlier. In [7], they analyze an infinite chain
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of kinematic points with nearest neighbor coupling and show that the system will
converge to an equilibrium point if the initial perturbations are bounded.

In [35, 38, 39], it is suggested that stability of the class of spatially decaying
systems can be verified in a localized manner using spatial truncation techniques.
In Section 2, we formally define a class of proximity graphs, introduce a notion
of spatial coverings for their corresponding networks, and provide several central-
ized quantitative characterizations of exponential stability property of spatially dis-
tributed linear systems. It is shown that some of these characterizations are more
amenable to localized and decentralized verification schemes. Several necessary
conditions for exponential stability are obtained in Section 3 that can be verified in
a localized manner. In Section 4, it is shown that global stability of a network can
be guaranteed by only verifying a set of localized sufficient conditions in vicinity
of leading subsystems. We prove that these sufficient conditions are also necessary
and almost optimal. The significant feature of our localized verifiable conditions
is that they depend only on the spatially localized portions of the state matrix of
the system and they are independent of the size of the entire system. The suffi-
cient conditions in Theorem 5.4 provide a reliable tool to re-examine exponential
stability of a symmetric linear system on an spatially distributed networks when
coupling (e.g., communication) links between some subsystems are lost or added,
as it suffices to verify localized stability conditions for affected subsystems. In Sec-
tion 5, we show that our proposed necessary and sufficient conditions take a more
tractable form for symmetric linear networks. It is proven that the global stability
threshold of a symmetric linear network can be enhanced by improving the local-
ized stability threshold via adjusting components of properly localized portions of
the state matrix. In Section 6, we show how one can design a new symmetric lin-
ear network via adjusting coupling weights (i.e., elements of the state matrix) in a
localized fashion. In Section 7 we support our theoretical findings by considering
two thorough examples, and in Section 8 we conclude the paper with some remarks
on the application of our proposed methodology to stability of spatially distributed
systems on `∞ and (non)linear dynamical systems on a spatially distributed net-
work. It should be emphasized that all technical conclusions in this paper hold
equally for finite- and infinite-dimensional linear systems.

Preliminary versions of this work were appeared in [40, 42], where the journal
version contains new materials, including two extensive case studies in the sim-
ulation section, several definitions including materials in Subsection 2.1 and 2.2,
proof of all the technical results, example in Section 3, and remarks Section 4 and
5.

1.1. Notations. The set of nonnegative integers, nonnegative real numbers and
complex numbers with nonnegative real parts are shown by Z+, R+ and C+, re-
spectively. The real and imaginary parts of a complex number z ∈ C are repre-
sented by <(z) and =(z) respectively. For a matrix A with complex entries, we
denote its Hermitian by A∗ and we define its Hermitian and skew-Hermitian ma-
trix decomposition by A = Ah + Aah, where Ah = (A + A∗)/2 and Aah =
(A − A∗)/2. For a countable set V , let `p(V), 1 ≤ p ≤ ∞, contain all vectors
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c = [c(i)]i∈V with bounded norm ‖c‖p :=
(∑

i∈V |c(i)|p
)1/p

, 1 ≤ p < ∞ and
‖c‖∞ = supi∈V |c(i)|. Whenever it is not ambiguous, we simply use abbreviated
notation `p to represent the linear space `p(V). The set Bp, 1 ≤ p ≤ ∞, contains
all matrices A on `p with bounded induced norm ‖A‖Bp := sup‖c‖p=1 ‖Ac‖p.
For a set F , we denote its cardinality by #F and define its characteristic function
by χF , where χF (s) = 1 for s ∈ F and χF (s) = 0 for s 6∈ F .

2. PRELIMINARIES
Our interest in the (in)finite-dimensional linear dynamical system (1.1) is moti-

vated by distributed control on spatially distributed networks (SDNs). In Section
2.1, we define a class of sparse proximity graphs to describe the coupling topology
of an SDN, see Assumptions 2.1 and 2.3. The localized stability certificate devel-
oped in this paper depends on a covering of the graph with finite overlapping, which
follows from Assumptions 2.1 and 2.3 [14]. To consider local stability certificate,
we always assume that the state matrix A in the linear dynamical system (1.1)
does not have large bandwidth, which indicates that the linear dynamic subsystems
with large geodesic distance having non-direct impact on each other’s dynamics,
see Section 2.2. Our localized stability conditions can be implemented in a de-
centralized/distributed manner and their computational complexity is independent
of network size. Some exponential stability characterizations in the centralized
implementation is recalled in Section 2.3.

2.1. Spatially distributed networks. This class consists of networks whose sub-
systems are distributed over a spatial domain and interconnected to each other
through a coupling graph

G := (V, E),(2.1)

where V is the set of nodes (also known as vertices) and E is the set of edges
[14, 41]. Every node in the graph G corresponds to a subsystem and every edge
represents a direct coupling (e.g., communication/data transmission) link between
those subsystems at the two ends of that edge. For example, two subsystems may
communicate with each other via broadcasting their relevant information if their
spatial distance is less than their communication range. It is assumed that all sub-
systems have identical coupling characteristics, e.g., they all use identical commu-
nication modules with similar communication range. The resulting coupling graph
for this class of networks can be modeled by spatially distributed proximity graphs.

Assumption 2.1. All coupling graphs are undirected and unweighted.

The above assumption implies that all coupling links are bidirectional and have
identical characteristics.

Definition 2.2. For an undirected and unweighted graph G = (V, E), we define a
geodesic distance ρ : V × V → Z+ ∪ {+∞} by imposing: (i) ρ(i, i) = 0 for all
i ∈ V; (ii) ρ(i, j) is the number of edges in a shortest path connecting two distinct
nodes i, j ∈ V; and (iii) ρ(i, j) = +∞ if there is no paths connecting distinct
nodes i, j ∈ V .
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FIGURE 1. Illustration of 2-neighborhood of subsystem i, marked by
red color, on a generic coupling graph.

A geodesic distance on a coupling graph can be utilized to assess coupling (e.g.,
communication) cost between two given subsystems [17]. When two subsystems
are not neighbors (i.e., not connected through a direct link), they are still connected
with each other via a chain of intermediate subsystems that connect them over a
shortest path; however, the coupling cost between two subsystems gets larger as
their geodesic distance increases.

For a given coupling graph G = (V, E) equipped with a geodesic distance ρ, the
r-neighborhood of subsystem i ∈ V is defined by

B(i, r) :=
{
j ∈ V | ρ(i, j) ≤ r

}
.

We refer to Figure 1 for an illustrative example. In this paper, we require that the
coupling graph G = (V, E) has the following global feature: number of subsystems
in the r-neighborhood and 2r-neighborhood of each subsystem are comparable.

Assumption 2.3. The counting measure µG : 2V 7−→ Z+ of the coupling graph
G = (V, E) is a doubling measure, i.e., there exists a positive number D0(G) ≥ 1
such that

µG(B(i, 2r)) ≤ D0(G)µG(B(i, r))(2.2)

hold for all i ∈ V and r ≥ 0, where µG(F ) := #F for all F ⊂ V .
The minimal constantD0(G) for the inequality (2.2) to hold is known as the dou-

bling constant of the counting measure µG [14, 22]. For a coupling graph G, one
can verify that the doubling constant D0(G) of its counting measure µG dominates
its maximal node degree, i.e., dmax(G) ≤ D0(G). This implies that every subsys-
tem in an SDN, whose coupling graph satisfies Assumption 2.3, is coupled with
at most D0(G) other subsystems in that network directly. Shown in the following
examples are two classes of coupling graphs satisfying Assumption 2.3.

Example 2.4. The first class consists of all (in)finite circulant graphs CG = (VG, EG)
associated with an abelian group

VG =
{ k∏
i=1

gnii
∣∣ n1, . . . , nk ∈ Z

}
generated byG = {g1, . . . , gk}, where (λ, λ′) ∈ EG if and only if either λ(λ′)−1 or
λ′λ−1 ∈ G [10, 25, 28, 34]. This class of graphs enjoys certain shift-invariance in
its construction. Let Ω = (−N1, N1)×· · ·× (−Nd, Nd) be a (un)bounded domain
with 1 ≤ N1, · · · , Nd ≤ ∞ and X = {xi} be a relatively-separated subset of the
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domain Ω such that the family of open balls B(xi, 1/2), xi ∈ X , with radius 1/2
and center xi ∈ X is a covering of the domain Ω with finite overlapping,

1 ≤ inf
x∈Ω

∑
xi∈X

χB(xi,1/2)(x) ≤ sup
x∈Ω

∑
xi∈X

χB(xi,1/2)(x) <∞.

The second class includes coupling graphs of spatially distributed networks whose
agents i ∈ V are located at xi ∈ X in the domain Ω and a direct coupling be-
tween subsystems equipped on agents i and j exists if the spatial distance of their
locations xi and xj is no more than one [1, 14, 15, 35, 36, 51].

Definition 2.5. For an integer N > 0, an N -covering of a coupling graph G =
(V, E) is a set of indices VN = {im |m ≥ 1} such that for every subsystem i ∈ V
there exists at least one im such that i ∈ B(im, N/2).

A simple procedure to identify an N -covering is by the following procedure: (i)
taking an arbitrary subsystem i1 ∈ V for every connected component of G, and
then (ii) iteratively finding new subsystems im ∈ V for all m ≥ 2 such that

ρ(im, i1) = min

{
ρ(i, i1)

∣∣∣∣ i 6∈ m−1⋃
m′=1

B(im′ , N/2)

}
.(2.3)

By Assumption 2.3 on the counting measure, the resultingN -covering VN from the
above algorithm satisfies the following property [14]: every subsystem i ∈ V is in
the (N/2)-neighborhoods of im ∈ VN at least once and in the 2N -neighborhoods
of im ∈ VN at most (D0(G))5 times, i.e.,

1 ≤ α1 ≤ α2 ≤
(
D0(G)

)5(2.4)

in which

α1 =
∑

im∈VN

χB(im,N/2)(i), α2 =
∑

im∈VN

χB(im,2N)(i),(2.5)

and D0(G) is the doubling constant in (2.2), cf. Remark 4.3.
The set of all subsystems in VN are referred to as leading subsystems of a spa-

tially distributed system. The importance of leading subsystems will become more
evident later in the paper, e.g., see results of Theorems 4.1, 4.2 and 5.4, where it is
shown that global stability of a network can be inferred by only verifying a set of
localized sufficient conditions in vicinity of leading subsystems. Therefore, due to
their crucial role, the leading subsystems can be equipped with high performance
computational units to enable them verify localized stability conditions using local
information.

The set of leading subsystems constructed through the above procedure is nei-
ther unique nor optimal, see Figure 2 for an illustrative example. Therefore, in
our results, we can safely employ any subset ṼN ⊂ V that satisfies inequalities
(2.4) as the set of leading subsystems. The number of leading subsystems in an N -
covering decreases as N increases. This may impose some trade-offs between the
number of leading subsystems and their minimal required on-board computational
capabilities: when the number of leading subsystems decreases, they should, in
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FIGURE 2. A 2-covering of a spatially distributed system with 19 sub-
systems. This network can also be covered by 1-neighborhood of 6 lead-
ing subsystems.

turn, be equipped with more powerful computers to enable them to verify stability
conditions for larger covering regions.

Definition 2.6. For a coupling graph G = (V, E), its counting measure µG has
polynomial growth if there exist positive constants D1(G) and d such that

µG(B(i, r)) ≤ D1(G)(1 + r)d for all i ∈ V and r ≥ 0.(2.6)

For an SDN with coupling graph G, the smallest constants d and D1(G) for
which the inequality (2.6) holds are so called Beurling dimension and density of
that network, respectively [14]. For an SDN whose subsystems are embedded on
a d-dimensional manifold and direct coupling (e.g., communication) link between
two subsystems exists only if their spatial locations are within a certain range, the
Beurling dimension is equal to the dimension of the manifold, see the second class
of coupling graphs in Example 2.4.

We remark that a doubling measure µG has polynomial growth,

µG(B(i, r)) ≤ D0(G) (1 + r)log2D0(G)

for all i ∈ V and r ≥ 0. However, the Beurling dimension d of the graph G is
usually much smaller than log2D0(G) in the above estimate. For circulant graphs
CG = (VG, EG) in (2.4), one may verify that their Beurling dimensions are at most
#G, the cardinality of the generator in G, while their exact value depend on the
topological structure of the Abelian group VG and the selection of the generator G.

2.2. State matrices with small bandwidth. In this paper, we consider (in)finite-
dimensional spatially distributed networks whose state matrices have small band-
width, i.e., subsystems with large geodesic distance have indirect impact on each
other’s dynamics only.

Definition 2.7. For a given coupling graph G = (V, E) and a nonnegative integer
τ , a matrix A = [a(i, j)]i,j∈V is called τ -banded if its entries satisfy

a(i, j) = 0 if ρ(i, j) > τ.(2.7)

The set of all τ -banded matrices is represented by Bτ (G) or the abbreviated
notation Bτ whenever it is not ambiguous. For a matrix A = [a(i, j)]i,j∈V , we
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define its boundedness norm by ‖A‖∞ := supi,j∈V |a(i, j)| and its Schur norm by

‖A‖S := max
{

sup
i∈V

∑
j∈V
|a(i, j)|, sup

i∈V

∑
j∈V
|a(i, j)|

}
.(2.8)

It has been proved that the following hold,

‖A‖∞ ≤ ‖A‖Bp ≤ ‖A‖S ≤ D1(G) (1 + τ)d ‖A‖∞(2.9)

for all matrices A ∈ Bτ ∩ Bp, where 1 ≤ p ≤ ∞ [14]. Therefore, a matrix
with finite bandwidth is bounded on `p, 1 ≤ p ≤ ∞, if and only if it has bounded
entries.

Remark 2.8. It is emphasized that adding new or eliminating existing edges does
not change the set of vertices, however, it will result in a new edge set that will
affect the geodesic distance between vertices. Hence, the bandwidth of the state
matrix will change accordingly and the double measuring property for the counting
measure could be invalid.

2.3. Centralized exponential stability conditions. In this section, we recall sev-
eral equivalent versions of the exponential stability condition (1.2) of finite and
infinite-dimensional linear systems on a spatially distributed proximity graph [11,
12, 20, 52, 59], which will be used in the next two sections to derive localized suf-
ficient and necessary stability conditions.

Theorem 2.9. Suppose that the state matrix A of the linear system (1.1) belongs
to B2. Then the exponential stability (1.2) is equivalent to each of the following:

(i) Spectrum of the state matrix A is strictly contained in the open left-half
complex plane, i.e., there exists δ > 0 such that

σ(A) ⊂
{
z ∈ C | <(z) ≤ −δ

}
.(2.10)

(ii) zI−A is invertible for all z ∈ C+ and

A0 := inf
z∈C+

‖(zI−A)−1‖−1
B2 > 0.(2.11)

(iii) There exists a positive constant A0 such that

min
(
‖(zI−A)c‖2, ‖(zI−A∗)c‖2

)
≥ A0‖c‖2(2.12)

for all z ∈ C+ and c ∈ `2.

We recall that the solution of the linear system (1.1) is given by

ψ(t) = eAtψ(0)

for all t ≥ 0. Then, the equivalence between statement (i) of Theorem 2.9 and
the exponential stability (1.2) is a restatement of the well-known Hille-Yosida the-
orem. The equivalent statement (ii) of the exponential stability (1.2) is known as a
resolvent growth assumption for the semigroup eAt for t ≥ 0 with bounded gener-
ator A on `2 [52,59]. The localized stability certificates proposed in this paper are
mainly based on the equivalent statement (iii) to the exponential stability (1.2) and
its equivalence to statement (ii), which follows from the quantitative version of the
conclusion that a bounded operator T on a Hilbert space is invertible if and only



LOCALIZED STABILITY CERTIFICATES FOR SPATIALLY DISTRIBUTED SYSTEMS 9

if TT ∗ and T ∗T are invertible. For the completeness of this paper, we provide a
sketch proof of Theorem 2.9 at the end of this section.

The exponential stability rate α in (1.2), the stability margin δ in (2.10), and
constant A0 in the statements (ii) and (iii) of Theorem 2.9 are closely related.
By [59, Theorem 1.5], the exponential stability (1.2) holds for all α < δ if the
spectral set property (2.10) holds. From the proof of Theorem 2.9, it follows that
the spectral set property (2.10) is true for all δ ≤ A0 if the resolvent growth con-
dition (2.11) is satisfied. Moreover, the constant A0 in the statements (ii) and (iii)
can be chosen to be identical; in that case, we refer to A0 as stability threshold of
system (1.1).

By Theorem 2.9, exponential stability of the linear system (1.1) with a state
matrix A can be understood as uniform stability of the family of matrices zI−A
and zI − A∗ for z ∈ C+ on `2. We say that a matrix B ∈ B2 is `2 stable if
there exists a positive constant E such that ‖Bc‖2 ≥ E‖c‖2 hold for all c ∈ `2.
The notion of matrix stability for a matrix is one of the fundamental tools in frame
theory, sampling theory, wavelet analysis and many other fields [2, 16, 50, 51, 53,
55, 56], where matrix stability verification in a decentralized/distributed manner
has been studied in [14, 54].

Proof of Theorem 2.9. We divide the proof into the following three implications
(i) ⇐⇒ (ii) ⇐⇒ (iii) and prove them one by one. First, we start with (i)⇐⇒(ii).
The sufficiency follows as the quantity ‖(zI−A)−1‖B2 is continuous about z with
<(z) ≥ 0 and it tends to zero as |z| → +∞. For the necessity, we have

(wI−A)−1 = ((w − a)I−A)−1
∞∑
n=0

(−a((w − a)I−A)−1)n(2.13)

for all w ∈ C with <(w) > −A0, where a = min{0,<(w)}. The Neumann series
expansion in (2.13) holds as |a| ‖((w− a)I−A)−1‖B2 ≤ |a|/A0 < 1. Therefore,

σ(A) ⊂ {z ∈ C, <(z) ≤ −A0},(2.14)

which proves statement (i) with δ = A0.
Next, we show (ii)⇐⇒(iii). The sufficiency holds as matrices zI−A and zI−

A∗, where <(z) ≥ 0, have uniformly bounded inverses. To prove the necessity, let
us pick a z ∈ C with <(z) ≥ 0. By the `2-stability property (2.12), it suffices to
prove that the range of zI−A is the entire `2 space. Let us suppose, on the contrary,
that the range space is not the entire space. As the range space is closed by the
`2-stability property (2.12), the orthogonal complement of the range is nontrivial,
i.e., there exists 0 6= d ∈ `2 such that d∗(zI − A)c = 0 for all c ∈ `2. Thus,
(z̄I−A∗)d = 0, which together with the `2-stability property (2.12) for z̄I−A∗

implies that d = 0. This is a contradiction, which proves our claim. �

3. DECENTRALIZED NECESSARY CONDITIONS

Let G = (V, E) be the coupling graph of an SDN that satisfies Assumption 2.1.
In this section, we utilize finite truncation techniques to obtain several decentral-
ized necessary conditions for exponential stability of the spatially distributed linear
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network (1.1). In Section 4, it is shown that these conditions become also sufficient
for large value of N .
Definition 3.1. For every node i ∈ V and integer N ≥ 0, we define the truncation
operator χNi : `2 7−→ `2 by

χNi [c(j)]j∈V :=
[
χB(i,N)(j) c(j)

]
j∈V .(3.1)

The truncation operator χNi localizes a vector to the N -neighborhood of the
subsystem i ∈ V and its action can be equivalently expressed by a diagonal matrix
whose (j, j)-th diagonal entry χB(i,N)(j) := χ[0,N ](ρ(i, j)) for all j ∈ V .
Theorem 3.2. Let G = (V, E) be the undirected and unweighted graph of an SDN.
Suppose that the state matrix A of the linear system (1.1) belongs to Bτ ∩ B2 for
some integer τ ≥ 0 and the system is exponentially stable with stability threshold
A0. Then, for all vertices i ∈ V , positive integers N ≥ 1 and d ∈ `2,

min
(
‖(zI−A)χNi d‖2, ‖(zI−A∗)χNi d‖2

)
≥ A0‖χNi d‖2, z ∈ C+,(3.2)

hold or equivalently

min
{
‖AχNi d‖22, ‖A∗χNi d‖22

}
≥ A2

0‖χNi d‖2 + ΦN
i (d)(3.3)

hold, where

ΦN
i (d) =

|d∗χNi Aahχ
N
i d|2 +

(
max

{
0,d∗χNi Ahχ

N
i d
})2

‖χNi d‖22
.(3.4)

Proof. Condition (3.2) is the localized version of (2.12) in Theorem 2.9 with d
replaced by χNi d.

For z ∈ C+, write z = a + b
√
−1 for a ≥ 0 and b ∈ R. Then for any d ∈ `2

with ‖χNi d‖2 = 1, we obtain

inf
z∈C+

‖(zI−A)χNi d‖22(3.5)

= inf
a≥0,b∈R

a2 + b2 − 2ad∗χNi Ahχ
N
i d− 2b

√
−1d∗χNi Aahχ

N
i d + ‖AχNi d‖22

= inf
a≥0

(
a2 − 2ad∗χNi Ahχ

N
i d
)

+ ‖AχNi d‖22 − |d∗χNi Aahχ
N
i d|2

= ‖AχNi d‖22 − ΦN
i (d),

and similarly

inf
z∈C+

‖(zI−A∗)χNi d‖22 = ‖A∗χNi d‖22 − ΦN
i (d).(3.6)

Therefore combining the above two estimate establishes the equivalence between
the requirements in (3.2) and (3.3). �

We remark that the second term in the quantity ΦN
i (d) vanishes when Ah is a

negative definite matrix, and the whole quantity ΦN
i (d) in (3.4) vanishes when A

is a negative definite Hermitian matrix, cf. Theorem 5.1. The necessary condi-
tion (3.3) are spatially localized and can be verified in a decentralized/distributed
manner by having access only to local information about the state matrix A, and
moreover, the constant in (3.2) can be selected to be the same as the one in (2.12).
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For i ∈ V and N ≥ 1, let us define

BN (i) := inf
‖χNi d‖2=1

√
min

{
‖AχNi d‖22, ‖A∗χNi d‖22

}
− ΦN

i (d)

= inf
z∈C+

inf
‖χNi d‖2=1

min
(
‖(zI−A)χNi d‖22, ‖(zI−A∗)χNi d‖22

)
(3.7)

Using the following relationship {χNi d | d ∈ `2} ⊆ {χ
N+1
i d | d ∈ `2} ⊆ `2, we

have that the sequences {BN (i)}∞N=1, i ∈ V , are monotonic,

BN (i) ≥ BN+1(i) ≥ 0 for all N ≥ 1 and i ∈ V

and denote their limits by B∞(i), i ∈ V . By Theorem 3.2 it follows that

BN (i) ≥ B∞(i) ≥ A0 for all N ≥ 1 and i ∈ V.(3.8)

By (3.7), we obtain

min(‖(zI−A)χNi d‖2, ‖(zI−A∗)χNi d‖2
)
≥ BN (i)‖χNi d‖2 ≥ B∞(i)‖χNi d‖2

for all z ∈ C+ and d ∈ `2. Taking limit N →∞ yields

min(‖(zI−A)d‖2, ‖(zI−A∗)d‖2
)
≥ B∞(i)‖d‖2 for all z ∈ C+ and d ∈ `2.

This together with (3.8) and Theorem 2.9 implies that the sequences {BN (i)}∞N=1, i ∈
V decrease to A0, the largest positive constant such that (2.12) holds,

lim
N→∞

BN (i) = A0 for all i ∈ V.(3.9)

Example 3.3. If linear system (1.1) is spatially invariant with a Toeplitz state ma-
trix A0 =

[
p(i− j)

]
i,j∈Z, we have

min
(
‖(zI−A0)c‖2, ‖(zI−A∗0)c‖2

)
≥
(

inf
ξ∈R
|z − p̂(ξ)|

)
‖c‖2(3.10)

for all z ∈ C+ and c ∈ `2, where p̂(ξ) =
∑

j∈Z p(j)e
−2πjξ

√
−1 . From the above

inequality (3.10), we have

A0 = inf
z∈C+

inf
ξ∈R

∣∣z − p̂(ξ)∣∣ = inf
ξ∈R

max(−<p̂(ξ), 0).(3.11)

Also for the above spatially invariant linear system, the local stability threshold
BN (i) in (3.7) is independent of the node index i. If the state matrix A0 is further
assumed to have finite bandwidth τ ≥ 0, i.e., p(j) = 0 for all |j| > τ , we write
z − p̂(ξ) =

∑
j∈Z pz(j)e

−2π
√
−1jξ. Then for every N ≥ τ , i ∈ Z and c =
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[c(j)]j∈Z ∈ `2,

‖(zI−A0)χNi c‖22 ≥
i+N−τ∑

k=i−N+τ

∣∣∣∑
l∈Z

pz(k − l)cN,i(l)
∣∣∣2

+
1

2

i+N∑
k=i+N−τ+1

∣∣∣∑
l∈Z

pz(k − l)(cN,i(l − 2N − 1) + cN,i(l))
∣∣∣2

+
1

2

i−N+τ−1∑
k=i−N

∣∣∣∑
l∈Z

pz(k − l)(cN,i(l + 2N + 1) + cN,i(l))
∣∣∣2

≥ 1

2

i+N∑
k=i−N

∣∣∣ i+N∑
l=i−N

pz(k − l)c̃N,i(l)
∣∣∣2,

where χNi c =
[
cN,i(j)

]
j∈Z, and c̃N,i =

[
c̃N,i(j)

]
j∈Z is a periodic vector taking

the same values with χNi c on intervals [i−N, i+N ]. Thus,

‖(zI−A0)χNi c‖22 ≥
infξ∈Z/(2N+1) |z − p̂(ξ)|2

2
‖χNi c‖22

for all c ∈ `2. Using the same argument, we can show that

‖(zI−A∗0)χNi c‖22 ≥
infξ∈Z/(2N+1) |z̄ − p̂(ξ)|2

2
‖χNi c‖22

for all c ∈ `2. As a result, we obtain the following estimate for the local stability
threshold of the spatially invariant linear system (1.1),

BN (i) ≥
√

2

2
inf
z∈C+

inf
ξ∈Z/(2N+1)

|z − p̂(ξ)|

=

√
2

2
inf

ξ∈Z/(2N+1)
max(−<p̂(ξ), 0)(3.12)

for all N ≥ τ and i ∈ Z.

4. DECENTRALIZED SUFFICIENT CONDITIONS

In this section, we introduce several decentralized sufficient conditions to verify
exponential stability of the linear system (1.1) on a spatially distributed proximity
graph. Our proposed sufficient conditions are based on the limit property (3.9) and
the fact that the localized stability thresholds are uniformly bounded below by the
stability threshold, according to (3.8).

Theorem 4.1. Let the spatially distributed proximity graph G = (V, E) satisfy
Assumption 2.1 and its counting measure µG have the polynomial growth (2.6).
Suppose that the state matrix A belongs to Bτ ∩ B2 for some τ ≥ 0. If there exists
a positive integer N0 ≥ τ and a positive number BN0 satisfying

BN0 ≥ 4τ
√
α∗2/α

∗
1 ‖A‖S N

−1
0(4.1)
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such that

min
(∥∥(zI−A)χN0

im
c
∥∥

2
,
∥∥(zI−A∗)χN0

im
c
∥∥

2

)
≥ BN0

∥∥χN0
im

c
∥∥

2
(4.2)

hold for all z ∈ C+, c ∈ `2 and im ∈ VN0 (the set of leading subsystems according
to Definition 2.5), then the linear system (1.1) with state matrix A is exponentially
stable and its stability threshold A0 satisfies

A0 ≥ BN0

√
α∗1/(4α

∗
2),(4.3)

in which

α∗1 := inf
i∈V

∑
im∈VN0

χB(im,N0/2)(i) and α∗2 := sup
i∈V

∑
im∈VN0

χB(im,2N0)(i).(4.4)

A detailed proof of Theorem 4.1 is postponed to the end of this section. The
sufficient condition (4.2) in Theorem 4.1, in their current form, require verification
for all complex numbers z ∈ C+. In the following result, following the argu-
ments used to prove (3.5) and (3.6), we obtain an equivalent verifiable condition
by eliminating the complex variable and combining these two conditions into one.

Theorem 4.2. Let the spatially distributed proximity graph G = (V, E) satisfy
Assumption 2.1 and its counting measure µG have the polynomial growth (2.6) and
the state matrix A belong to Bτ ∩B2 for some τ ≥ 0. Then the linear system (1.1)
with state matrix A ∈ Bτ ∩B2 for some τ ≥ 1 is exponentially stable if there exists
a positive integer N0 ≥ τ and a constant BN0 satisfying (4.1) such that

min
{
||AχN0

im
d‖22, ‖A∗χ

N0
im

d‖22
}
≥ B2

N0

∥∥χN0
im

d
∥∥2

2
+ ΦN0

im
(d)(4.5)

for all im ∈ VN0 and vectors d ∈ `2, where ΦN0
im

is defined in Theorem 3.2.

We omit a detailed proof of Theorem 4.2 as the requirements (4.2) and (4.5) are
equivalent to each other from the proof of Theorem 3.2. The sufficient conditions
in Theorems 4.1 and 4.2 assert that exponential stability can be only verified in
neighborhoods of the leading subsystems, i.e., one only needs validate the con-
dition (4.5) for leading subsystems in VN0 , rather than checking them for every
single subsystem. This feature drastically reduces time-complexity of the verifi-
cation process and makes it attractive for real-world applications. Our results also
suggest an important design protocol: all leading subsystems of a spatially dis-
tributed system should be equipped with high performance computational units to
allow them to verify localized stability conditions more reliably and timely.

Remark 4.3. For the set of leading subsystems VN0 in Theorem 4.1, the corre-
sponding covering constants α1, α2 in (2.5) satisfy 1 ≤ α1 ≤ α2 ≤ D1(G)5 by
(2.4), which follows from Assumption 2.3 on the counting measure on the graph
G [14]. As a result, the right hand side of (4.1) tends to zero when N0 →∞. This
implies that the decentralized sufficient condition (4.2) for exponential stability of
the linear dynamical network (1.1) in Theorem 4.1 is also necessary for large N0

(cf. Theorem 3.2).



14 NADER MOTEE AND QIYU SUN

From Theorems 3.2 and 4.1, we conclude that exponential stability of the linear
system (1.1) can be verified via a decentralized/distributed manner. Moreover, the
global stability threshold A0 in (2.12) and the local stability threshold BN0 in (4.2)
are comparable through the following inequalities

A0 ≤ BN0 ≤ 2
√
α∗2/α

∗
1 A0(4.6)

for those integers N0 satisfying (4.1).

Remark 4.4. The implication of small N0 in real-world applications is that the
leading subsystems can be equipped with reasonable (bounded) computational
powers to verify stability conditions. The requirement (4.1) on size of N0 is con-
servative, but as shown in Example 4.5, it is almost optimal.

The next example shows that a linear network may not be exponentially stable
even though conditions (4.2) are met with some constant B′N0

that has the same
order of N−1

0 as the lower bound in (4.1) for large enough N0.

Example 4.5. Let us consider a spatially invariant system whose state matrix is a
bi-infinite Toeplitz matrix A1 = [a1(i− j)]i,j∈Z with Fourier symbol∑

k∈Z
a1(k)e−2πk

√
−1ξ = −1 + e−2π

√
−1ξ.

It is straightforward to check that A1 is 1-band matrix with ‖A1‖∞ = 1 and
property 0 ∈ σ(A1). Therefore, the linear system (1.1) with state matrix A1 is not
exponentially stable. In the following, we show that (4.2) hold for this system with
constant B′N0

= 1
2N
−1
0 . For every z ∈ C+, i ∈ Z and N0 ≥ 1, we have

inf
‖χN0
i c‖2=1

‖(zI−A1)χN0
i c‖22 ≥ inf∑2N0+1

j=1 |dj |2=1

(
1 + <

{ 2N0+1∑
j=2

djdj−1

})2

= inf∑2N0+1
j=1 |dj |2=1

|z + 1|2 + 1− 2<
{

(z + 1)

2N0+1∑
j=2

djdj−1

}

= inf∑2N0+1
j=1 |ej |2=1,ej∈R

|e1|2 + |e2N0+1|2 +

2N0+1∑
j=2

|ej − ej−1|2 = 4 sin2 π

4N0 + 4
,

where the last equality follows from [31, Lemma 1 of Chapter 9]. Following a
similar argument, we have

inf
‖χN0
i c‖2=1

‖(zI−A∗1)χN0
i c‖22 ≥ 2 sin

π

4N0 + 4
≥ (2N0)−1.

Thus, the conditions (4.2) hold with constant B′N0
= (N0)−1 for all N0 ≥ 1.

On the other hand, we observe that the underlying coupling graph of this system
with node set V = Z has Beurling dimension 1, density 2, and the set of leading
subsystems VN0 = (N0 + 1)Z with covering constants C1 = 1 and C2 = 4.
Therefore, the lower bound for the constant BN0 in (4.1) is 26N−1

0 . One observes
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that although condition (4.2) hold with some constant B′N0
= 2−1N−1

0 , whose
value is smaller than 26N−1

0 but vanishes with the same rate of N−1
0 , the linear

system is still not exponentially stable. This explains the critical role and near-
optimality of the sufficient condition (4.1).

4.1. Proof of Theorem 4.1. Let us pick z ∈ C+ and c ∈ `2. By Theorem 2.9, it
suffices to prove the uniform stability for matrices zI−A and zI−A∗, i.e.,

‖(zI−A)c‖2 ≥
BN0

2

√
α∗1/α

∗
2‖c‖2(4.7)

and

‖(zI−A∗)c‖2 ≥
BN0

2

√
α∗1/α

∗
2‖c‖2.(4.8)

For every subsystem i ∈ V and integer N ≥ 0, we define operator ΨN
i by

ΨN
i : `2 3 [c(j)]j∈V 7−→

[
ψ0(ρ(i, j)/N)c(j)

]
j∈V ∈ `

2

in which ψ0(t) = max(min(2− 2|t|, 1), 0) is the trapezoid function. By the local
stability assumption (4.2), we have

‖(zI−A)ΨN0
im

c‖2 ≥ BN0‖Ψ
N0
im

c‖2(4.9)

for all c ∈ `2 and im ∈ VN0 . Let us denote A = [a(i, j)]i,j∈V . Then, for every
c = [c(j)]j∈V we obtain∑

im∈VN0

∥∥(AΨN0
im
−ΨN0

im
A)c

∥∥2

2
=

∑
im∈VN0

∥∥(AΨN0
im
−ΨN0

im
A)χ2N0

im
c
∥∥2

2

≤
∑

im∈VN0

∑
i∈V

{ ∑
ρ(i,j)≤τ

|a(i, j)|χB(im,2N0)(j) |c(j)|

×
∣∣∣∣ψ0

(
ρ(i, im)

N0

)
− ψ0

(
ρ(j, im)

N0

)∣∣∣∣ }2

≤ 4
∑

im∈VN0

∑
i∈V

{ ∑
ρ(i,j)≤τ

|a(i, j)| ρ(i, j)

N0
χB(im,2N0)(j) |c(j)|

}2

≤ 4τ2N−2
0 ‖A‖

2
S
∑

im∈VN0

‖χ2N0
im

c‖22 ≤ 4τ2N−2
0 α∗2‖A‖2S ‖c‖22,(4.10)

in which the second inequality follows from the Lipschitz property for the trapezoid
function ψ0 and the third one holds by the second inequality in (2.9). By combining
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(4.9) and (4.10), we get√
α∗2 ‖(zI−A)c‖2 ≥

( ∑
im∈VN0

∥∥ΨN0
im

(zI−A)c
∥∥2

2

)1/2

≥
( ∑
im∈VN0

∥∥(zI−A)ΨN0
im

c
∥∥2

2

)1/2
−
( ∑
im∈VN0

∥∥(AΨN0
im
−ΨN0

im
A)c

∥∥2

2

)1/2

≥ BN0

( ∑
im∈VN0

‖ΨN0
im

c‖22
)1/2

− 2
√
α∗2 τ N

−1
0 ‖A‖S‖c‖2

≥
(
BN0

√
α∗1 − 2

√
α∗2 τ N

−1
0 ‖A‖S

)
‖c‖2.

This together with (4.1) proves (4.7). By applying similar arguments, we can es-
tablish the lower bound estimate in (4.8).

5. SYMMETRIC LINEAR SYSTEMS

In this section, we consider exponential stability of the following linear system

d

dt
ψ(t) = Bψ(t)(5.1)

with initial condition ψ(0) ∈ `2, whose state matrix B ∈ B2 is Hermitian. The
class of first- and second-order consensus, e.g., platoon of vehicles with transla-
tion invariant communication (interconnection) topologies, networks with general
nodal dynamics over undirected graphs are examples of networks with Hermitian
state matrices [43].

In the following, we present several equivalent conditions for exponential sta-
bility of the symmetric linear systems (5.1), which take more simpler forms than
those conditions in Theorem 2.9 [11, 12, 20, 52, 59].

Theorem 5.1. The exponential stability of the linear system (5.1) with a Hermitian
state matrix B in B2 is equivalent to each of the following statements:

(i) B is strictly negative definite.
(ii) There exists a positive constant A0 such that

‖(zI−B)c‖2 ≥ A0‖c‖2 for all z ∈ C+ and c ∈ `2.(5.2)

(iii) There exists a positive constant A0 such that

c∗Bc ≤ 0 and ‖Bc‖2 ≥ A0 ‖c‖2 for all c ∈ `2.(5.3)

The equivalence between the statement (i) of Theorem 5.1 and the exponential
stability of the linear system (5.1) is a restatement of the well-known Hille-Yosida
Theorem in the self-adjoint operator setting, cf. the statement (i) of Theorem 2.9.
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The statement (ii) of Theorem 5.1 is the reformulation of the statement (iii) of The-
orem 2.9 in the self-adjoint operator setting. The equivalence between the state-
ments (ii) and (iii) of Theorem 5.1 follows from the observation that

inf
z∈C+

‖(zI−B)c‖22 = inf
a∈R+

inf
b∈R
‖(aI−B)c‖22 + b2‖c‖22 = inf

a∈R+

‖(aI−B)c‖22

= inf
a∈R+

a2‖c‖22 − 2a〈c,Bc〉+ ‖Bc‖22 = ‖Bc‖22, c ∈ `2,

for a negative definite Hermitian matrix B ∈ B2. From the above argument, we see
that the constant A0 in the statements (ii) and (iii) can be chosen to be the same.

Example 5.2. When the linear system (1.1) is spatially invariant with a Hermitian
Toeplitz state matrix B0 =

[
p(i− j)

]
i,j∈Z, its Fourier symbol p̂(ξ) becomes real-

valued and takes negative values. According to (3.11), stability threshold of the
symmetric spatially invariant linear system is equal to A0 = infξ∈R−p̂(ξ).

Building upon Theorem 5.1, we propose the following necessary conditions that
can be verified by evaluating maximum or minimum eigenvalues of some localized
matrices, cf. Theorems 3.2.

Theorem 5.3. Let G = (V, E) be the coupling graph of a spatially distributed
network. Suppose that the symmetric linear system (5.1) is exponentially stable
with stability threshold A0, whose state matrix B is a Hermitian matrix in Bτ ∩B2

for some τ ≥ 0. Then, the following localized inequalities

c∗χNi Bχ
N
i c ≤ 0 and c∗χNi B

2χNi c ≥ A2
0 ‖χNi c‖22(5.4)

hold for all N ≥ τ , i ∈ V , and c ∈ `2.

Proof. We can use similar argument used in the proof of Theorem 3.2 and then we
omit the detailed proof. �

Inequalities in (5.4) are localized version of global stability condition (5.3) in
Theorem 5.1. For symmetric linear systems, sufficient conditions for the exponen-
tial stability take rather simple forms.

Theorem 5.4. Suppose that all assumptions of Theorem 4.1 hold and state matrix
B ∈ Bτ ∩B2 is Hermitian for some τ ≥ 0. Then, the linear system (5.1) with state
matrix B is exponentially stable if there exists a positive integer N0 and a positive
number BN0 satisfying (4.1) such that

c∗χN0
im

BχN0
im

c ≤ 0 and c∗χN0
im

B2χN0
im

c ≥ B2
N0
‖χN0

im
c‖22(5.5)

hold for all im ∈ VN0 and c ∈ `2.

Proof. For every z ∈ C+ and c ∈ `2, by Theorem 5.1, it suffices to prove the
uniform stability for the family of matrices zI−B, i.e.,

‖(zI−B)c‖2 ≥
BN0

2

√
α∗1
α∗2
‖c‖2.(5.6)



18 NADER MOTEE AND QIYU SUN

From sufficient conditions (5.5), it follows that

‖(zI−B)χN0
im

c‖22 = |z|2 ‖χN0
im

c‖22 − 2<(z) c∗χN0
im

BχN0
im

c + ‖BχN0
im

c‖2

≥ B2
N0
‖χN0

im
c‖22

for all c ∈ `2 and im ∈ VN0 . Applying the above estimate and using similar
argument used in the proof of Theorem 4.1, one concludes the inequality (5.6). �

For a given Hermitian matrix B = [b(i, j)]i,j∈V in Bτ ∩B2, the sufficient condi-
tions (5.5) in Theorem 5.4 are spatially localized in neighborhoods of each leading
subsystem im ∈ VN0 , where each leading subsystem has to only have access to
localized portions of state matrix B determined by truncation operator χN0

im
. In

particular, the requirement (5.5) holds if the largest eigenvalue of the spatially lo-
calized principal submatrix [b(j, j′)]j,j′∈B(im,N) is non-positive for every subsys-
tem im ∈ VN0 . For a Hermitian matrix B, let us define

B̃N (i) = inf
‖χNi c‖2=1

‖BχNi c‖2(5.7)

in which N ≥ 1 and i ∈ V . The quantity B̃N (i) is equal to the square root of the
smallest eigenvalue of the spatially localized matrix

χNi B
2χNi =

 ∑
k∈B(j,τ)∩B(j′,τ)

b(j, k)b(k, j′)


j,j′∈B(i,N)

(5.8)

that can be evaluated in a decentralized/distributed manner. Then, the constant B̃N0

in (5.5) can be thought of as the uniform stability threshold for small-scale systems
with state matrices χN0

im
B2χN0

im
for all im ∈ VN0 .

Using a similar argument that leads to (3.9), one can verify that {B̃N (i)}∞N=τ is
a decreasing sequence that converges to A0 for every i ∈ V , i.e.,

lim
N→∞

B̃N (i) = A0 for all i ∈ V.(5.9)

Inequalities (4.6) and (5.6) imply that the global stability threshold of a symmet-
ric linear dynamical network can be enhanced by improving the localized stability
threshold via adjusting components of properly localized portions of the state ma-
trix.

6. DESIGN OF SPATIALLY DISTRIBUTED SYSTEMS

In this section, we consider the problem of coupling weight adjustment between
a given pair of subsystems in an exponentially stable symmetric linear dynamical
systems (5.1).

The coupling weight between subsystems k, l ∈ V can be adjusted in a localized
manner via the following class of feedback control laws

u(t) = wEklψ(t)(6.1)
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that modifies the dynamics of (5.1) as follows:

d

dt
ψ(t) = (B + wEkl)ψ(t)(6.2)

where w is a scalar feedback gain, Ekl = [e(i, j)]i,j∈V , and

e(i, j) =

{
1 if (i, j) ∈ {(k, l), (l, k)}
0 otherwise.

The conclusion of Theorem 5.4 plays a critical role in computing an admissi-
ble range of values for the scalar w such that the resulting closed-loop network
(6.2) remains exponentially stable with stability threshold equal or greater than the
original network. From a network design perspective, when an existing coupling
between subsystems k and l with coupling weight b(k, l), as an element of state
matrix B = [b(i, j)]i,j∈V , is nonzero, the local weight adjustment law (6.1) will
strengthen the existing coupling when wb(k, l) > 0 and weaken the existing cou-
pling (and possibly zero it out) whenever wb(k, l) < 0.

To state the following main result of this section, we let Bτ (M) denote the set
of all band matrices B ∈ Bτ with bounded entries ‖B‖∞ < M , where τ ∈ Z+

and M ∈ R+.

Theorem 6.1. Suppose that the coupling graph G = (V, E) of the linear control
network (5.1) satisfies Assumption 2.1, its counting measure µG enjoys the poly-
nomial growth property (2.6), and the state matrix B is a strictly negative definite
matrix in Bτ (M) ∩ B2. A positive integer N0 exists such that

B̃N0 := inf
im∈VN0

B̃N0(im) ≥ 4M

√
α∗2
α∗1

D1(G)τ(τ + 1)dN−1
0(6.3)

in which B̃N (i) is defined by (5.7). For every pair of subsystems k, l ∈ V with
ρ(k, l) ≤ τ , let us define the following quantities

ηkl = inf
ρ(k,im)≤N0
ρ(l,im)≤N0

inf
‖PN0

im
c‖2=1

<
(
(PN0

im
c)∗EklBPN0

im
c
)

(6.4)

and

βkl = sup
ρ(k,im)≤N0
ρ(l,im)≤N0

sup
‖PN0

im
c‖2=1

<
(
(PN0

im
c)∗EklBPN0

im
c
)
,(6.5)

where PN0
im

is the projection matrix onto the eigenspace of the localized matrix

χN0
im

B2χN0
im

corresponding to its smallest eigenvalue, which is equal to
(
B̃N0(im)

)2.
Then, the following design rules hold:
(i) When ηkl > 0, there exists ε0 > 0 such that for all w in (0, ε0) the resulting
closed-loop network (6.2) is exponentially stable with the state matrix B + wEkl
that still belongs to Bτ (M).
(ii) When βkl < 0, there exists ε1 > 0 such that for all w in (−ε1, 0) the resulting
closed-loop network (6.2) is exponentially stable with the state matrix B + wEkl
that still belongs to Bτ (M).



20 NADER MOTEE AND QIYU SUN

A detailed proof of the above theorem will be given at the end of this sec-
tion. When the smallest eigenvalue is simple with normalized eigenvector qN0

im
, the

project matrix is given by PN0
im

= qN0
im

(qN0
im

)∗. In this case, the norm constraint
‖PN0

im
c‖2 = 1 implies that PN0

im
c = qN0

im
. This gives us the following closed-form

solutions

inf
‖PN0

im
c‖2=1

<
(
(PN0

im
c)∗EklBPN0

im
c
)

= <
(

(qN0
im

)∗EklBqN0
im

)
and

sup
‖PN0

im
c‖2=1

<
(
(PN0

im
c)∗EklBPN0

im
c
)

= <
(

(qN0
im

)∗EklBqN0
im

)
that are useful in calculating quantities ηkl and βkl. Computation of quantities ηkl
and βkl only involve those entries b(i, j) of the state matrix B whose indices satisfy
i, j ∈ B(k, 2N0 + τ) ∩ B(l, 2N0 + τ). Therefore, the requirements ηkl > 0 and
βkl < 0 in Theorem 6.1 can be verified by utilizing localized information about the
state matrix B in neighborhoods of subsystems k, l ∈ V .

The design parameterN0 determines the size of neighborhoods required to com-
pute quantities ηkl and βkl using localized matrices. Suppose that N0 and B̃N0 are
chosen properly to satisfy the inequality (6.3). According to (2.9), (4.1), and (4.3),
stability threshold of all networks with state matrices in Bτ (M) is lower bounded
by ÃN0 := B̃N0

√
α∗1/(4α

∗
2). Theorem 6.1 shows that state matrix of the result-

ing closed-loop networks still belong to Bτ (M), which implies that their stability
threshold is guaranteed to be greater than ÃN0 .

In summary, the result of Theorem 6.1 asserts that: a properly chosen positive
feedback gain w when ηkl > 0, and a properly chosen negative feedback gain w
when βkl < 0, will both result in exponentially stable closed-loop networks with
guaranteed stability thresholds.

Remark 6.2. The conclusions of Theorem 6.1 will remain true if matrix Ekl is
replaced by rotation matrix Rkl(θ) whose (k, l)-th and (l, k)-th entries are sin θ,
(k, k)-th entry is cos θ, and (l, l)-th entry is− cos θ for some 0 ≤ θ ≤ π. Moreover,
one can establish similar results when the matrix Ekl in Theorem 6.1 is replaced
by Lij where Lij = eie

∗
i + eje

∗
j −Eij and ei’s are the standard basis for `2. This

is particularly useful when the state matrix B is a graph Laplacian.

Proof of Theorem 6.1. According to our assumptions, the state matrix B is a
strictly negative definite matrix in Bτ (M)∩B2. By Theorem 5.4, it suffices to find
proper positive or negative weight adjustment w such that

c∗χN0
im

(
B + wEkl

)
χN0
im

c ≤ 0(6.6)

and ∥∥(B + wEkl)χ
N0
im

c
∥∥2

2
≥
(
B̃N0

)2 ∥∥χN0
im

c
∥∥2

2
(6.7)

hold for all im ∈ VN0 and c ∈ `2, where B̃N0 is the constant in (5.5).
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Since B ∈ Bτ (M) and ρ(k, l) ≤ τ , we have |b(k, l)| < M . Hence, B +
wEkl ∈ Bτ (M) if

|w| ≤ M − |b(k, l)|.(6.8)

We observe that (4.1) holds according to (2.9), (6.3), and the assumption B ∈
Bτ (M). Therefore, B is strictly negative definite by Theorem 4.1. Moreover, it
follows from (5.6), (6.3) and Theorem 5.1 that

c∗Bc ≤ −BN0

2

√
α∗1
α∗2
‖c‖22 ≤ −2MD1(G)τ(τ + 1)dN−1

0 ‖c‖
2
2(6.9)

for all c ∈ `2. Direct calculations reveal that
∣∣c∗Eklc∣∣ ≤ ‖c‖22 for all c ∈ `2. This

together with (6.9) implies that B + wEkl is negative definite matrices and, as a
result, inequality (6.6) holds for all w satisfying

|w| < 2MD1(G)τ(τ + 1)dN−1
0 .(6.10)

Now, suppose that im ∈ VN0 such that k, l ∈ B(im, N0), where k and l are indices
of Ekl. From the definition of the projection matrix PN0

im
, it follows that there exists

C̃N0(im) > BN0(im) such that

‖BχN0
im

c‖22 ≥ B̃N0(im)2 ‖Pimc‖22 + C̃N0(im)2 ‖χN0
im

c−Pimc‖22(6.11)

for all c ∈ `2. In fact, the second smallest eigenvalue of the matrix χN0
im

B2χN0
im

,
if it exists, can be employed as the constant C̃N0(im) in (6.11). Let us choose
c1 = Pimc and c2 = χN0

im
c−Pimc for c ∈ `2. Then,

‖χN0
im

c‖22 = ‖c1‖22 + ‖c2‖22.
For any positive weight w, we obtain

‖(B + wEkl)χ
N0
im

c‖22
= c∗χN0

im
B2χN0

im
c + 2w<

(
c∗χN0

im
EklBχ

N0
im

c
)

+ w2‖EklχN0
im

c‖22
≥ c∗χN0

im
B2χN0

im
c + 2w<

(
c∗χN0

im
EklBχ

N0
im

c
)

≥ B̃N0(im)2 ‖c1‖22 + C̃N0(im)2 ‖c2‖22 + 2w<
(
c∗1EklBc1

)
− 2w ‖Eklc2 ‖2‖BχN0

im
c‖2 − 2w ‖Eklc1‖2 ‖Bc2‖2

≥
(
B̃N0(im)2 + 2wηkl

)
‖c1‖22 +

(
C̃N0(im)2 − 2wMD1(G)(σ + 1)d

)
‖c2‖2

− 4wMD1(G)(σ + 1)d ‖c1‖2 ‖c2‖2
≥ B̃N0(im)2 ‖χN0

im
c‖22 +

(
C̃N0(im)2 − B̃N0(im)2

)
‖c2‖22

− 2wMD1(G)(σ + 1)d
(
D1(G)(σ + 1)d

ηij
+ 1

)
‖c2‖22,

in which the second inequality holds according to (6.11) and the third inequality
follows from (2.9) and the observation

‖Eklc‖2 ≤ ‖c‖2 for all c ∈ `2.
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Hence, the inequality (6.7) holds when

0 < w <
ηkl
(
C̃N0(im)2 − B̃N0(im)2)

2MD1(G)(σ + 1)d
(
MD1(G)(σ + 1)d + ηkl

) .(6.12)

This together with (6.8) and (6.10) proves the first conclusion (6.6) with ε0 given
by

ε0 = min

{
M − |b(k, l)|, 2MD1(G)σ(σ + 1)dN−1

0 ,

ηij
(
C̃N0(im)2 − B̃N0(im)2

)
2MD1(G)(σ + 1)d

(
MD1(G)(σ + 1)d + ηij

)}.
Similar to the arguments used in proof of the first conclusion (6.6), for negative

weight w, one can obtain

‖(B + wEkl)χ
N0
im

c‖22 ≥
(
B̃N0(im)2 + 2wβkl

)
‖c1‖22

+
(
C̃N0(im)2 + 2wMD1(G)(σ + 1)d

)
‖c2‖2

+4wMD1(G)(σ + 1)d ‖c1‖2 ‖c2‖2
≥ B̃N0(im)2 ‖c1‖22 + C̃N0(im)2 ‖c2‖22

+2wMD1(G)(σ + 1)d
(

1− D1(G)(σ + 1)d

βkl

)
‖c2‖22.

Therefore, the second conclusion (6.7) holds by letting

ε1 = min

{
M − |b(k, l)|, 2MD1(G)σ(σ + 1)dN−1

0 ,

−βij
(
(C̃N0(im))2 − (B̃N0(im))2)

2MD1(G)(σ + 1)d
(
MD1(G)(σ + 1)d − βij

)}.
7. NUMERICAL SIMULATIONS

In this section, we interpret and illustrate some of the key concepts that are
developed in the previous sections.

7.1. Finite-dimensional linear networks with randomly and uniformly gener-
ated spatial locations. We consider a linear dynamical system consisting of 500
subsystems which are randomly and uniformly distributed over a square-shape re-
gion of size 100 × 100 square meter. Let us denote spatial location of subsystem
i ∈ {1, 2, . . . , 500} by xi ∈ [0, 100]× [0, 100]. The coupling graph of this network
is defined as follows: there is an undirected coupling link between subsystems i and
j, i.e., {i, j} ∈ E , only if the Euclidean distance between subsystems i and j, i.e.,
‖xi − xj‖2, is less than or equal to 10 meter; otherwise, there is no coupling link
between the two subsystems. The above coupling graph, denoted by G = (V, E), is
known as a random geometric graph in the engineering community [29,44]. Figure
3 depicts a sample coupling graph obtained according to the above procedure, and
a 2-covering of the underlying connected graph, where the graph has diameter 18,
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FIGURE 3. The red dots in the figure show spatial locations of 500 sub-
systems that are randomly and uniformly distributed in a square-shape
region of size 100 × 100. The blue links represent the coupling graph
among these subsystems as discussed in Section 7. The colored circles
represent a 2-covering of the coupling graph.

Beurling dimension 2 and density 8.1389, and the number of leading subsystems
is 62 (i.e., there are 62 localized regions).

We assume that state variable of each subsystem is scalar, i.e., ψi ∈ R for all
i ∈ {1, 2, . . . , 500}. We utilize shortest path on coupling graph G as geodesic
distance ρ(i, j) to define state matrices of this class of linear networks. In our
simulations, the bandwidth is set to τ = 1. We construct the state matrix A =
[a(i, j)] ∈ R500×500 of our linear networks using the coupling graph of Figure 3,

a(i, j) =


−1 if j = i

0.05sgn(ζ) e−α‖xi−xj‖
β

if 0 < ρ(j, i) ≤ τ
0 if ρ(j, i) > τ,

(7.1)

where decay parameters are α = 0.05 and β = 0.9 [35, 41]. In order to show
that our methodology works for a broad class of systems, sign of each entry a(i, j)
is chosen randomly using sgn(ζ), where ζ is a Bernoulli random variable taking
values from {+1,−1} with probably 1/2. After executing these steps, we adopted
one sample matrix A for our simulation purposes. The resulting linear dynamical
network is time-invariant, whose dynamics is governed by (1.1) with state vector
ψ ∈ R500. The value of the Schur norm (2.8) of the state matrix is ‖A‖S = 2.0057
and all eigenvalues of A are located in the region {z ∈ C | <z ≤ −δ} on the
left-hand-side of the imaginary axis, where δ in Theorem 2.9 is equal to 0.7702.

According to Definition 2.5, the number of leading agents in a N0-covering of
the network decreases asN0 increases. We applied the algorithm described in Def-
inition 2.5 in order to find N0-coverings. This algorithm may not be optimal, but
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it works well for both finite and infinite graphs, see Table 1 for a sample execution
of this algorithm on G. We note that the number #VN0 of leading subsystems is

TABLE 1. Leading subsystems in a covering

N0 1 3 5 7 9 11 13 15 17 18
#VN0 500 55 23 14 9 7 6 3 3 1

equal to the network size when N0 = 1, and it is equal to 1 when N0 is equal to
the graph diameter.

The parameter BN0 in the inequality (4.2) can be interpreted as an estimate for
the global stability threshold A0; cf. (3.2). The quantity in the right hand side of
the inequality (4.1), which is a lower bound for the localized stability threshold
BN0 , decays as radius of N0-covering increases, see Table 2.

TABLE 2. Local stability threshold

N0 1 3 5 7 9 11 13 15 17 18
BN0 66.6 16.7 7.7 4.3 2.7 1.9 1.5 0.92 0.81 0.45

We observe that for N0 = 18, the lower bound for BN0 is around 0.45. This is
compatible with the estimate in (4.6) as 0.45 is a lower bound A0 in (2.11) for the
global stability threshold. We highlight that for the state matrix A defined by (7.1),
the quantities δ and A0 in Theorem 2.9 satisfy 0.77 ≈ δ > A0 ≈ 0.45.

7.2. Infinite-dimensional linear networks with uniformly random couplings.
Let us consider the following class of infinite-dimensional spatially distributed sys-
tems

d

dt
ψ(t) = (A0 + Eε,τ )ψ(t)(7.2)

that consist of subsystems with state variables ψi with spatial indices i ∈ Z.
The spatially invariant matrix A0 = [p(i − j)]i,j∈Z is the Toeplitz state ma-
trix in Example 3.3 in which p(k), k ∈ Z is a symmetric real-valued sequence
satisfying p(−k) = p(k) for all k ∈ Z, p(k) = 0 for all k 6∈ [−τ, τ ], and
P0 := − supξ∈R<p̂(ξ) > 0, where p̂(ξ) =

∑
j∈Z p(j) exp(−2π

√
−1ξ). For a

given parameter ε > 0, the second term in the state matrix Eε,τ = [eε,τ (i, j))]i,j∈Z
is a symmetric matrix whose elements are independent random variables drawn
from uniform distribution U(−ε, ε) if i ≤ j ≤ i + τ and zeros if j ≥ i + τ for
every i ∈ Z. One may verify that

‖A0 + Eε,τ‖S ≤ ‖A0‖S + ‖Eε,τ‖S ≤
∑
|k|≤τ

|p(k)|+ (2τ + 1)ε(7.3)

and

‖Eε,τc‖2 ≤ ‖Eε,τ‖S‖c‖2 ≤ (2τ + 1)ε‖c‖2 for all c ∈ `2.(7.4)
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From (3.11) and (7.4), we obtain that the stability threshold (2.12) satisfies

A0 ≥ P0 − (2τ + 1)ε.(7.5)

Hence, the infinite-dimensional system (7.2) is exponentially stability if

ε <
P0

2τ + 1
.

The underlying graph of linear dynamical network (7.2) is the circulant graph in
Example 2.4 generated byG = {±1}, which has Beurling dimension 1 and density
2. Moreover, VN0 = N0Z can be selected as the set of leading subsystems for every
given N0 ≥ 1 and the corresponding lower and upper covering numbers α∗1 and α∗2
in (4.4) become α∗1 = 1 and α∗2 = 5, respectively. According to Theorem 5.4, the
exponential stability of (7.2) can be verified in a distributed manner by finding N0

such that

c∗χN0
N0k

(A0 + Eε,τ )χN0
N0k

c ≤ 0(7.6)

and

c∗χN0
N0k

(A0 + Eε,τ )2χN0
N0k

c ≥

(
4
√

5τ
( ∑
|k|≤τ

|p(k)|+ (2τ + 1)ε
)
N−1

0

)2

‖χN0
N0k

c‖22

(7.7)

for all k ∈ Z and c ∈ `2. One observes that matrices χN0
N0k

(A0 + Eε,τ )χN0
N0k

and
χN0
N0k

(A0 + Eε,τ )2χN0
N0k

for all k ∈ Z have the following structures

Aε,τ,N0 :=
[
p(i− j) + eε,τ (i, j)

]
1≤i,j≤2N0+1

and

Hε,τ,N0 :=
[ ∑
|k−i|≤τ

(p(i− k) + eε,τ (i, k))(p(k − j) + eε,τ (k, j))
]

1≤i,j≤2N0+1
,

respectively. Let us denote the smallest and largest eigenvalues of a symmetric
matrix A by λmin(A) and λmax(A), respectively. Thus, the requirements (7.6)
and (7.7) are satisfied if and only if the following two statements that

λmax(Aε,τ,N0) ≤ 0(7.8)

and

λmin(Hε,τ,N0) ≥ 80τ2
( ∑
|k|≤τ

|p(k)|+ (2τ + 1)ε
)2
N−2

0(7.9)

hold for all eε,τ (i, j) such that eε,τ (i, j) = eε,τ (j, i) for all 1 ≤ i, j ≤ 2N0 +τ . We
recall that eε,τ (i, j) for all 1 ≤ i ≤ j ≤ i + τ are independent random variables
with uniform distribution U(−ε, ε) and eε,τ (i, j) = 0 for all i+ τ < j ≤ i.

In the next step, we examine exponential stability of the infinite-dimensional
linear systems (7.2) with an A0 whose symbol is given by p̂(ξ) = −2 + cosπξ.
We provide numerical simulations to verify (7.8) and (7.9). For this system, we
have that τ = 1 and P0 = 1. Hence, one can conclude from (7.5) that the system
is exponential stability if 0 ≤ ε < P0/(2τ + 1) = 1/3. We remark that the
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above conclusion about exponential stability can not be extended to linear system
(7.2) with ε = 1/3. For instance, system (7.2) with state matrix symbol p̂(ξ) =
−2 + cosπξ + (exp(−2π

√
−1ξ) + 1 + exp(2π

√
−1ξ))/3 = 5(−1 + cosπξ)/3

is not exponentially stable by Theorem 2.9 and the fact that the spectrum of the
state matrix is the interval [−10/3, 0] = {p̂(ξ) | ξ ∈ R}, which contains the origin.
Let us denote the matrices involved in (7.6) and (7.7) by Aε,N0 = A0 + Eε,τ and
Hε,N0 = (A0 + Eε,τ )2. Our numerical simulations indicate that the requirement
(7.8) is satisfied for state matrices Aε,N0 with ε = i/60, 0 ≤ i ≤ 18, and 1 ≤ N0 ≤
40 over 1000 independent trials. The left hand side of Figure 4 depicts behavior of
the minimum of the smallest eigenvalue of matrices Hε,N0 over 1000 independent
trials, where the z-coordinate z(ε,N0) is the minimum of the following quantity
over 1000 trials

min

(
λmin(Hε,N0)N2

0

80τ2
(∑

|k|≤τ |p(k)|+ (2τ + 1)ε
)2 , 1

)
= min

(
λmin(Hε,N0)N2

0

80(3 + 3ε)2
, 1

)
,

(7.10)

where the last equality holds as τ = 1 and
∑
|k|≤τ |p(k)| = 3 in our simulations.

Suppose that N0(ε) is the minimum integer such that z(ε,N0) = 1 for all N0 ≥
N0(ε). Therefore, the numerical verification of the requirement (7.8), which is
equivalent to the exponential stability of the infinite-dimensional systems (7.2),
reduces to finding integersN0(ε). This is illustrated in the right hand side of Figure
4. This simulation demonstrates that our theoretical results can be applied to verify
exponential stability of infinite-dimensional linear systems using a series of finite-
dimensional conditions.

FIGURE 4. The plot on the left shows the behavior of the minimum
of the smallest eigenvalue λmin(Hε,N0) over 1000 independent trials,
where the x-axis is ε = i/60 for all 0 ≤ i ≤ 18, the y-axis is 1 ≤ N0 ≤
40, and the z-axis is z(ε,N0). The plot on the right depicts the minimal
integers N0(ε) such that z(ε,N0) = 1 for all N0 ≥ N0(ε), ε = i/60,
and 0 ≤ i ≤ 18.
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8. FINAL REMARKS

This work proposes a decentralized framework to verify exponential stability
of linear dynamical network that are defined over spatial proximity connectivity
graphs. Several necessary and sufficient conditions have been formulated that al-
low us to re-examine exponential stability of a given finite- and infinite-dimensional
linear system using spatially localized certificates. There are several related prob-
lems and areas that can benefit from our proposed methodology.
Stability of Spatially Distributed Systems on `∞: In real-world applications, the
dynamics of each subsystem depends on the state variables, control inputs, and
exogenous disturbance inputs of its neighboring subsystems. Thus, it is reasonable
to consider networks with governing dynamics

d

dt
ψ(t) = Aψ(t) + ξξξ(t),(8.1)

with initial condition ψ(0) ∈ `∞, that is driven by a time-dependent bounded
control or exogenous noise ξξξ(t) = [ξi(t)]i∈V . Suppose that the control system is
exponentially stable on `∞, i.e., there exist strictly positive constants C and α such
that

‖eAtψ(0)‖∞ ≤ Ce−αt‖ψ(0)‖∞, t ≥ 0,(8.2)

then we have

‖ψ(t)‖∞ ≤

∥∥∥∥∥
∫ t

0
eA(t−s)ξξξ(s)ds+ eAtψ(0)

∥∥∥∥∥
∞

≤ Ce−αt‖ψ(0)‖∞ + C

∫ t

0
e−α(t−s)‖ξξξ(s)‖∞ds

≤ Ce−αt‖ψ(0)‖∞ + Cα−1 sup
0≤t≤s

‖ξξξ(s)‖∞.

This implies that control system (8.1) with bounded input has bounded state ψ(t)
for all t ≥ 0. It is proven in [41] that if the linear system (8.1) is exponentially
stable on `2, i.e., the inequality (1.2) holds, then it is also exponential stable on `∞,
i.e., the inequality (8.2) holds. When the state matrix A belongs toBτ∩B2, we have
that the constant C in (8.2) will depend only on the constants E,α given in (1.2),
Beurling dimension d, Beurling density D1(G) and doubling constant D0(G) of
the graph G, bandwidth τ , and the value of ‖A‖∞. This suggests that our proposed
methodology in this paper can be applied to the control system (8.1) driven by input
(which can be a feedback control law or exogenous noise) to infer global stability
in a decentralized manner.
Stability of Spatially Distributed Nonlinear Systems: Our methodology can be ex-
tended to verify local stability of equilibria of spatially distributed systems with
nonlinear dynamics. Let us consider a nonlinear system of the form

d

dt
ψ = F (ψ), t ≥ 0,(8.3)



28 NADER MOTEE AND QIYU SUN

where ψ(t) = [ψi(t)]i∈V ∈ `2 and F : `2 → `2 satisfies F (0) = 0. Following
Definition 2.7, we say that the nonlinear system (8.3) is τ -banded over the coupling
graph G = (V, E) if F (ψ) = [Fi(Ψi)]i∈V for some continuously differentiable
functions Fi on Cq, where q = #(B(i, τ) ∩ V) and Ψi = [ψj ]j∈B(i,τ)∩V for all
i ∈ V . Let us define the gradient A(ψ∗) = ∇ψF (ψ∗) (with respect to ψ at working
point ψ∗) of the nonlinear system (8.3) with (i, j)-th entry a(i, j) given by

a(i, j) =

{
∂Fi
∂ψj

(ψ∗) if ρ(i, j) ≤ τ
0 if ρ(i, j) > τ,

where ρ is a geodesic distance on G. By assuming that ψ∗ is a hyperbolic equilib-
rium and the initial state ψ(0) is close to ψ∗, our proposed localized stability cer-
tificates can be applied to the nonlinear dynamic system (8.3) with the linearized
state matrix A(ψ∗) to infer stability in a spatially localized manner. The scope of
this research problem is beyond this paper.
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