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Abstract

Graph signal processing provides an innovative framework
to handle data residing on networks.
Polynomial graph filters and their inverses play important
roles in graph signal processing vs. FIR (finite impulse
response) and IIR filters in classical signal processing.
The concept of commutative graph shifts plays a similar role
in graph signal processing as the one-order delay in classical
multi-dimensional signal processing.
Consider the filtering and inverse filtering procedure
associated polynomial filters of multiple commutative shifts
and also iterative approximation algorithms and the
associated distributed optimization problems.
Mainly based on the paper “Polynomial graph filters of
multiple shifts and distributed implementation of inverse
filtering" with N. Emirov, C. Cheng and J. Jiang, submitted to
Sampling Theory, Signal Processing, and Data Analysis
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Graph signal processing and data
science on networks



GSP and DSN

Networks have been widely used in many real world
applications, including (wireless) sensor networks, smart
grids, social network and epidemic spreading 1

The topological structures of networks could be described
by some graphs G = (V, E) with vertices in V representing
agents and edges in E between two vertices indicating the
availability of a peer-to-peer communication between
agents, or the functional connectivity between neural
regions in brain, or the correlation between temperature
records of neighboring weather stations.

1R. Hebner, The power grid in 2030, IEEE Spectrum, 54 (2017), pp. 50–55. A.
Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst,
Proceedings of the IEEE, 106 (2018), pp. 808–828. D. I. Shuman, S. K. Narang, P.
Frossard, A. Ortega, and P. Vandergheynst, IEEE Signal Processing Magazine, 30
(2013), pp. 83–98. C. Cheng, Y. Jiang, and Q. Sun, Appl. Comput. Harmon. Anal.,
vol. 47, pp. 109-148, 2019
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A data set on the network can be described by a signal on
the graph G = (V, E), i.e., a vector x = (xv)v∈V residing on the
nodes, where xv represent the real/complex/vector-valued
data at the knot/agent v ∈ V.

4 32



Visualize a citation network of 5000 journals with the largest
number of citation links with other journals from all fields of
science in the period 1980-2016 in VOSviewer. 2

2https://www.cwts.nl/blog?article=n-r2r294
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Data processing on the network can be described by a graph
signal processing, usually represented by a (non)linear
function x 7−→ A(x), or in graph signal processing,
non(linear) filtering procedure on the signal space.
Graph signal processing provides an innovative framework
to handle data residing on various networks and many
irregular domains.
By leveraging graph spectral theory and applied harmonic
analysis, many concepts in classical Euclidean setting have
been extended to graph setting, such as graph Fourier
transform, graph wavelet transform and nonsubsampled
filter banks, in recent years. 3

Objective of this talk is on polynomial filters of multiple
commutative shifts: distributed implementation and
inverses.

3Book chapter: Introduction to Graph Signal Processing by L. Stankovic, M.
Dakovic and E. Sejdic, Spring 2018; Special Issue: Sampling Signals on Graphs:
From Theory to Applications, IEEE Signal Processing Magazine, November 2020;
and Special Issue on Harmonic Analysis on Graphs, JFAA, 2021.
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Graph Laplacian and graph
Fourier transform



Graph Laplacian

Graph G := (V; E) provides a flexible model to represent
complicated relationships between data on networks, where
V = {1, . . . ,N} and E ⊂ V × V.
Adjacency matrix A = (a(i; j))i,j∈V of an undirected graph
G = (V; E), where a(i, j) > 0 if and only if (i, j) ∈ E.
Unweighted graph: a(i, j) = 1 if (i, j) ∈ E.
Degree matrix D = diag(di)i∈V with di =

∑
j∈V a(i, j).

Laplacian matrix L = D−A (all eigenvalues are nonnegative).
Symmetric normalized Laplacian Lsym = D−1/2LD−1/2 (all
eigenvalues contained in [0, 2]); Random walk normalized
Laplacian Lrw = D−1L = I− D−1A.
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Graph Fourier transform

Write L = UTΛU =
∑N

i=1 λiuiuTi where U = [u1, . . . ,uN] is an
orthogonal matrix, Λ = diag(λ1, . . . , λN) is a diagonal matrix
(eigendecompostion)
Graph Fourier transform of a graph signal x is by x̂ = Ux and
the inverse graph Fourier transform is x = UT x̂. ( Finite
Fourier transform for the cycle graph)

Piecewise constant signal on Minnesota tra�c graph and its
Fourier transform in magnitudes.
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Phase retrieval

Phase retrieval: How to find real/complex/vector-valued
graph signals x in some linear space so that they can
determined, up to a trivial ambiguity, from magnitude |x̂| of
their Fourier measurements or |〈ψ, x〉|, ψ ∈ Ψ of their frame
measurements?
Chen, Cheng and S. made some contribution on the recovery
of a velocity field on graphs from from absolute speed
(distance) at each vertex and relative speed (distance) of
neighboring vertices. It is closely related to the classical
Euclidean distance geometry (EDG) used in molecular
conformation in computational chemistry, localization of
wireless sensor networks, dimensionality reduction in
machine learning, statistics of multidimensional scaling etc.4
Phase retrieval for real/complex/vector-valued graph
signals is an inverse problem widely open for further study.

4Y. CHEN, C. CHENG AND S., PHASE RETRIEVAL OF COMPLEX AND
VECTOR-VALUED FUNCTIONS, submitted
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Commutative graph shifts



On a connected undirected graph G, geodesic distance ρ(i, j)
between vertices i and j ∈ V is the number of edges in the
shortest path to connect i and j. Using the geodesic distance
ρ, we denote the set of all R-neighbors of a vertex i ∈ V by

B(i,R) = {j ∈ V, ρ(j, i) ≤ R}.

Graph shifts S = (s(i, j))i,j∈V if s(i, j) = 0 if ρ(i, j) ≥ 2.
Examples: Adjacent matrix, Laplacian, symmetric (random
walk) normalized Laplacian matrix, and more
Commutative graph shifts S1, . . . ,Sd if

SiSj = SjSi, 1 ≤ i, j ≤ d. (1)
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Commutative graph shifts S1, . . . ,Sd if SiSj = SjSi for all
1 ≤ i, j ≤ d.
Simultaneous upper-triangularization 5:

Proposition
There is a unitary matrix U such that Ŝk = UHSkU, 1 ≤ k ≤ d are
upper-triangular matrices with diagonal entries Ŝk(i, i), i ∈ V
(eigenvalues of Sk).

Joint spectrum

Λ =
{
λλλi =

(
Ŝ1(i, i), ..., Ŝd(i, i)

)
, 1 ≤ i ≤ N

}
. (2)

If S1, . . . ,Sd are simultaneously triangularizable, i.e.,
Sk = V−1S̃kV, 1 ≤ k ≤ d, where S̃k are diagonal matrices. Then

SiSj = V−1S̃iS̃jV = V−1S̃jS̃iV = SjSi, 1 ≤ i, j ≤ d,

=⇒ Sk, 1 ≤ k ≤ d, are commutative.
5R. A. Horn and C. R. Johnson. Matrix Analysis, Cambridge University Press,

2012
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Commutative graph shifts: Example 1

Circurant graph C(N,Q) = (VN, EN(Q)) generated by
Q = {q1, . . . ,qM}, where 1 ≤ qi < N/2, VN = {0, 1, . . . ,N− 1}
and EN(Q) = ∪1≤k≤d

{
(i, i± qk mod N), i ∈ VN

}
.

The circulant graph C(N,Q) can be decomposed into a family
of cycle graphs C(N,Qk) generated by Qk = {qk}, 1 ≤ k ≤ d,
(cycle graph) and the symmetric normalized Laplacian matrix
LsymC(N,Q) on C(N,Q) is the average of symmetric normalized
Laplacian matrices LsymC(N,Qk) on C(N,Qk), 1 ≤ k ≤ d, i.e.,

LsymC(N,Q) =
1
d

d∑
k=1

LsymC(N,Qk).

Proposition
The symmetric normalized Laplacian matrices LsymC(N,Qk) of the

circulant graphs C(N,Qk), 1 ≤ k ≤ d, are commutative graph
shifts on the circulant graph C(N,Q).
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Figure: The circulant graph with 50 nodes and generating set
Q0 = {1, 2, 5}, where edges in red/green/blue are also edges of the
circulant graphs C1, C2 and C5 generated by {1}, {2}, {5} respectively.

LsymC(N,Qk), 1 ≤ k ≤ d are commutative graph shifts on circulant
graphs. Similar conclusions for Cayley graphs.
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Commutative graph shifts: Example 2

Given two finite graphs G1 = (V1, E1) and G2 = (V2, E2) with
adjacency matrices A1 and A2, define their Cartesian product
graph G1 × G2 has vertex set V1 × V2 and adjacency matrix
given by A = A1 ⊗ I#V2 + I#V1 ⊗ A2. (Kronecker product)
Lsym1 ⊗ I#V2 and I#V1 ⊗ Lsym2 are graph filters of the Cartesian
product graph G1 × G2, where Lsymi are symmetric normalized
Laplacian matrices of the graph Gi, i = 1, 2.

Proposition
Lsym1 ⊗ I#V2 and I#V1 ⊗ Lsym2 are commutative graph shifts of the

Cartesian product graph G1 × G2.
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Commutative graph shifts

LsymC(N,Qk), 1 ≤ k ≤ d are commutative graph shifts on circulant
graphs. Similar conclusions for Cayley graphs.
Lsym1 ⊗ I#V2 and I#V1 ⊗ Lsym2 are commutative graph filters.
An illustrative example of Cartesian product graph is for
time-varying data processing on networks, where Lsym1 ⊗ I#V2

and I#V1 ⊗ Lsym2 have di�erent features (regularity in the
time/spatial domain, for instance, weather data including
time and location, smart grids, social networks.
The concept of commutative graph shifts S1, . . . ,Sd plays a
similar role in graph signal processing as the one-order
delay z−1

1 , . . . , z−1
d in classical multi-dimensional signal

processing, and in practice graph shifts may have specific
features and physical interpretation.
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Polynomial filters and dis-
tributed implementation



For a polynomial p(t) =
∑M

m=0 pmtm, define polynomial
filters

p(Lsym) = p0I +
M∑

m=1
pm(Lsym)m.

Spline filter banks Hspln
0,M = (I− Lsym/2)M and

Hspln
0,M = (Lsym/2)M, M ≥ 1. 6

6M. S. Kotzagiannidis and P. L. Dragotti, Appl. Comput. Harmon. Anal, 47
(2019), 539-565; Junzheng Jiang, Cheng Cheng and Qiyu Sun, IEEE Transactions
on Signal Processing, 67(2019), 3938 - 3953.
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For a polynomial p(t) =
∑M

m=0 pmtm, define polynomial
filters p(Lsym) = p0I +

∑M
m=1 pm(Lsym)m.

Given a commutative graph shifts S1, . . . ,Sd and a
multivariate polynomial h(t1, . . . , td) =

∑
cm1,...,mdt

m1
1 . . . tmd

d ,
define polynomial filter of multiple graph shifts

h(S1, . . . ,Sd) =
∑

cm1,...,mdSm1
1 . . .Smd

d .

(The polynomial filter is well-defined due to the
commutativity, for instance t1t2 and t2t1 are the same
polynomial) 7

Geodesic-width ω(H) of a graph filter H = (H(i, j))i,j∈V is the
smallest nonnegative integer ω(H) such that H(i, j) = 0 hold
for all i, j ∈ V with ρ(i, j) > ω(H). cf. Finite response filter (FIR)
in classical signal processing.
Conclusion: For a polynomial filter H, its geodesic-width is
no more than its degree.

7Nazar Emirov, Cheng Cheng, Junzheng Jiang and S. “Polynomial graph filters
of multiple shifts and distributed implementation of inverse filtering"
submitted to Sampling Theory, Signal Processing, and Data Analysis
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Given a filter H = (H(i, j))i,j∈V with geodesic-width ω, the
filtering procedure (xi)i∈V =: x 7−→ Hx = y = (yi)i∈V can be
implemented at the vertex level,

yi =
∑
j∈V

H(i, j)xj =
∑

ρ(j,i)≤ω

H(i, j)xj.

(For i ∈ V, receive data xj, j ∈ B(i, ω) and then evaluate).
For a polynomial filter p(Lsym) = p0I +

∑M
m=1 pm(Lsym)m,

y = p0x + Lsym(p1x + · · ·+ Lsym(pM−2x + (pM−1x + pMLsymx)).

Iterative one-hop implementation (each vertex communicate
with neighboring vertex only)

x1 = pM−1x+pMLsymx, xi+1 = pM−i−1x+Lsymxi, 1 ≤ i ≤ M−1, xM = y.

Emirov, Cheng, Jiang and S. proposed an one-hop
implementation for the filtering procedure associated with
polynomial filter of multiple graph shifts
h(S1, . . . ,Sd) =

∑
cm1,...,mdSm1

1 . . .Smd
d .
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Inverse of polynomial filters and
distributed implementation



Consider the inverse H−1 of polynomial filters of multiple
graph shifts H = h(S1, . . . ,Sd) =

∑
cm1,...,mdSm1

1 . . .Smd
d .

Inverse filtering associated with the graph filter having small
geodesic-width plays an important role in graph signal
processing, such as denoising, graph semi-supervised
learning, non-subsampled filter banks and signal
reconstruction.
G0 = H−1HT

0 and G1 = H−1HT
1 , where H = HT

0H0 + HT
1 H1 in

nonsubsampled filter banks.

Figure: Block diagram of an NSGFB with analysis filter bank (H0,H1)
and synthesis filter bank (G0,G1), where x is the input of the
NSGFB and x̃ is its output.
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Minimization problem minx ‖Hx− b‖2
2 + λ‖Lsymx‖2

2 or in
general

min
x
F(x) =

∑
j∈V

fj(x)

where local objective functions fj depend only on
neighboring vertices xj, j ∈ B(i,m). 8

The challenge arisen in the inverse filtering is on its
implementation, as the inverse filter H−1 usually has full
geodesic-width even if the original filter H has small
geodesic-width.
For the case that the filter H is strictly positive definite, the
inverse filtering procedure b 7−→ H−1b can be implemented
by applying the iterative gradient descent method in a
distributed network,

xn+1 = xn − β(Hxn − b),n ≥ 1

when the step size β is appropriately selected.
8N. Emirov, G. Song and S., A Divide-and-Conquer Algorithm for Distributed

Optimization on Networks, in preparation
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If H is strictly positive definite, the inverse filtering
procedure b 7−→ H−1b cab be solved by the iterative gradient
descent method, xn+1 = xn − β(Hxn − b),n ≥ 1.
To consider implementation of inverse filtering of an
arbitrary invertible filter H, we select a graph filter G with
small geodesic-width to approximate H−1, ρ(I− GH) < 1, and
propose the following iterative algorithm to implement the
inverse filtering procedure:

z(m) = Ge(m−1)

e(m) = e(m−1) − Hz(m)

x(m) = x(m−1) + z(m),m ≥ 1
(3)

with initial e(0) = b and x(0) = 0.
Conclusion: x(m) converges to H−1b exponentially.
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If ρ(I− GH) < 1, then x(m) in the iterative algorithm
z(m) = Ge(m−1)

e(m) = e(m−1) − Hz(m)

x(m) = x(m−1) + z(m),m ≥ 1
(4)

with initial e(0) = b and x(0) = 0, converges to H−1b
exponentially.
Problem: How to choose G with small geodesic-width or
polynomial filters of small degree so that ρ(I− GH) < 1?
Recall Joint spectrum of Commutative graph shifts S1, . . . ,Sd:

Λ =
{
λλλi =

(
Ŝ1(i, i), ..., Ŝd(i, i)

)
, 1 ≤ i ≤ N

}
.

Observation:

ρ(I− GH) = max
λ∈Λ
|1− g(λ)h(λ)|

for polynomial filters G = g(S1, . . . ,Sd) and H = h(S1, . . . ,Sd)
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Problem: How to choose G with geodesic-width so that
ρ(I− GH) < 1?
Recall Joint spectrum of Commutative graph shifts S1, . . . ,Sd:

Λ =
{
λλλi =

(
Ŝ1(i, i), ..., Ŝd(i, i)

)
, 1 ≤ i ≤ N

}
. (5)

Observation: ρ(I− GH) = maxλ∈Λ |1− g(λ)h(λ)| for
polynomial filters G = g(S1, . . . ,Sd) and H = h(S1, . . . ,Sd)
If H = h(S1, . . . ,Sd) is a polynomial filter and the joint
spectrum is known, we may select the optimal
approximation filter GO,n = go,n(S1, . . . ,Sd) as follows:

gO,n = arg min
g∈Pn

max
λ∈Λ
|1− g(λ)h(λ)|

where Pn is the space of all polynomial of degree at most n.
Conclusion: If H is invertible, then
rn := ρ(I− GO,nH) = maxλ∈Λ |1− gn(λ)h(λ)| is a decreasing
sequence with rN = 0, and hence the proposed iterative
algorithm converges exponentially for all n ≥ n0.
Conclusion: Every iteration can be one-hop implemented at
the vertex level.
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Problem: How to choose G with geodesic-width so that
ρ(I− GH) < 1?
If H = h(S1, . . . ,Sd) is a polynomial filter and the joint
spectrum is known, we may select the approximation filter
Gn = gn(S1, . . . , Sd), where
gn = arg ming∈Pn maxλ∈Λ |1− g(λ)h(λ)|.
For a graph G of large order, it is often computationally
expensive to find the joint spectrum Λ exactly. However, the
graph shifts Sk, 1 ≤ k ≤ d„ in some engineering applications
are symmetric and their spectrum sets are known being
contained in some intervals. For instance, the normalized
Laplacian matrix on a simple graph is symmetric and its
spectrum is contained in [0, 2].
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Assume that commutative shifts S1, . . . , Sd is contained in a
cube. Let gK,K ≥ 0 be the multivariate Chebyshev
polynomial approximation to (h(t1, . . . , td))−1 and denote
GK = gK(S1, . . . , Sd).
Observation:

sup
t∈Q
|1− gKh(t)| ≤ CrK, K ≥ 1

for some r ∈ (0, 1) and C ∈ (0,∞).
For large K, the sequence x(m),m ≥ 1 in the iterative
algorithm 

z(m) = GKe(m−1)

e(m) = e(m−1) − Hz(m)

x(m) = x(m−1) + z(m),m ≥ 1
(6)

converges exponentially to H−1b and it can be implemented
in one-hop communication in each iteration.
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Distance between non-
polynomial filters and polyno-
mial filters



For a polynomial filter H of commutative graph shifts
S1, . . . ,Sd, we have

[H,Sk] = HSk − SkH = 0, 1 ≤ k ≤ d
How to estimate the distance

dist(H,P) = inf
P∈P
‖H− P‖F

between a graph filter H and the set P of all polynomial
filters of commutative graph shifts S1, . . . ,Sd.

Theorem
If the commutative graph shifts S1, . . . ,Sd can be diagonalized
simultaneously by a unitary matrix and elements in their joint
spectrum Λ are distinct, then

C0
( d∑
k=1
‖[H,Sk]‖2

F

)1/2
≤ dist(H,P) ≤ C1

( d∑
k=1
‖[H,Sk]‖2

F

)1/2
.
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Numerical demonstrations



Denoising an hourly temperature dataset

Denoising the hourly temperature dataset collected at 218
locations in the United States on August 1st, 2010, measured
in Fahrenheit. The above real-world dataset is of size
218× 24, and it can be modelled as a time-varying signal
w(i), 1 ≤ i ≤ 24, on the product graph C ×W , where C is the
circulant graph with 24 vertices and generator {1}, andW is
the undirected graph with 218 locations as vertices and
edges constructed by the 5 nearest neighboring algorithm.

Figure: Presented on the left and right sides are the temperature data
w1 and w12.
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Noisy temperature data

w̃i = wi + ηηηi, i = 1, . . . , 24.

We propose the following denoising approach,

Ŵ := argmin
Z
‖Z− W̃‖2

2 + α̃ZT(I⊗ LsymW )Z + β̃ZT(LsymC ⊗ I)Z, (7)

where W̃ is the vectorization of the noisy temperature data
w̃1, . . . , w̃24 with noises ηηηi, 1 ≤ i ≤ 24 having their components
randomly selected in [−η, η] in a uniform distribution, LsymW
and LsymC are normalized Laplacian matrices on the graphW
and C respectively, and α̃, β̃ ≥ 0 are penalty constants in the
vertex and temporal domains to be appropriately selected.
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Presented in Table 1 are the average over 1000 trials of the input
signal-to-noise ratio ISNR and the output signal-to-noise ratio

SNR(m) = −20 log10
‖Ŵ(m) −W‖2
‖W‖2

, m ≥ 1,

which are used to measure the denoising performance of the
IOPA1(α̃, β̃), ICPA1(α̃, β̃) and GD0(α̃, β̃) at the mth iteration, where
Ŵ(∞) := Ŵ and Ŵ(m),m ≥ 1, are outputs of the IOPA1(α̃, β̃)
algorithm, or the ICPA1(α̃, β̃), or the GD0(α̃, β̃) at m-th iteration.

From Table 1, we see that the Tikhonov regularization on the
temporal-vertex domain has better performance on denoising
the hourly temperature dataset than the Tikhonov regularization
only either on the vertex domain (i.e. β̃ = 0) or on the temporal
domain (i.e. α̃ = 0) do.
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Table: The average over 1000 trials of the signal-to-noise ratio
SNR(m),m = 1, 2, 4, 6,∞ denoise the US hourly temperature dataset
collected at 218 locations on August 1st, 2010, where η = 35, 20, 10.

Alg.

SNR m
1 2 4 6 ∞

η=10, ISNR=22.4320
IOPA1(α̃, 0) 23.3572 24.5564 24.5565 24.5565 24.5565
IOPA1(0, β̃) 16.9511 25.9123 26.4291 26.4284 26.4284
IOPA1(α̃, β̃) 14.2863 24.9125 26.9961 26.9990 26.9990
ICPA1(α̃, 0) 22.5720 24.5572 24.5565 24.5565 24.5565
ICPA1(0, β̃) 18.6319 26.2493 26.4294 26.4285 26.4284
ICPA1(α̃, β̃) 12.7428 23.3488 26.9816 26.9989 26.9990
GD0(α̃, 0) 11.7089 21.2276 24.5387 24.5566 24.5565
GD0(0, β̃) 6.2342 12.3916 22.7545 26.1414 26.4284
GD0(α̃, β̃) 4.9806 9.9239 19.2003 25.2121 26.9990
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Take home message

GSP: an innovative framework to handle data residing on
distributed networks.
Polynomial filters of (multiple) graph shifts: important roles
in graph signal processing vs. finite impulse response filter
(FIR)
Distributed implementation for the filtering and inverse
filtering procedure.
Welcome all to submit your work to the new journal
Sampling Theory, Signal Processing, and Data Analysis
edited by Akram Aldroubi, Zuhair Nashed, Götz Pfander.
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