
ON SYLVESTER EQUATIONS IN BANACH SUBALGEBRAS

QIQUAN FANG, CHANG EON SHIN AND QIYU SUN

In celebration of the 65th birthday of Professor Akram Aldroubi

Abstract. Let B be a Banach algebra and A be a Banach subalgebra that admits
norm-controlled inversion in B. In this work, we take A,B in the Banach subalgebra
A with the spectra of A and B in the Banach algebra B being disjoint, and show that
the operator Sylvester equation BX −XA = Q has a unique solution X ∈ A for every
Q ∈ A. Under the additional assumptions that B is the operator algebra B(H) on a
Hilbert space H and that A and B are normal in B(H), an explicit norm estimate for
the solution X of the above operator Sylvester equation is provided. In this work, the
above conclusion on norm control is also discussed for Banach subalgebras of localized
infinite matrices and integral operators.

1. Introduction

Let m,n ≥ 1 and take matrices A ∈ Rn×n and B ∈ Rm×m. It is well known that the
Sylvester equation

(1.1) BX −XA = Q

has a unique solution X ∈ Rm×n for every Q ∈ Rm×n if and only if A and B have no
common eigenvalues [27, 50]. For the case that both A = diag(λ1, . . . , λn) and B =
diag(µ1, . . . , µm) are diagonal matrices with no common eigenvalues, one may verify that
the solution of the above matrix Sylvester equation (1.1) is given by

xij =
qij

µi − λj
for all 1 ≤ i ≤ m and 1 ≤ j ≤ n,

where X = (xij)1≤i≤m,1≤j≤n and Q = (qij)1≤i≤m,1≤j≤n, see [43, Theorem 3.1] for the
explicit expression of the solution X when A and B are diagonalizable.

The Sylvester equation (1.1) appears in block diagonalization of matrices. Roth’s theo-

rem states that matrices

(
B Q
0 A

)
and

(
B 0
0 A

)
are similar if and only if the Sylvester
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equation (1.1) has a solution [34]. In particular, we have(
B Q
0 A

)
=

(
I X
0 I

)−1(
B 0
0 A

)(
I X
0 I

)
,

where I is the identity matrix of appropriate size.
The Sylvester equation (1.1) with assuming m = n and replacing B by −AT becomes

the Lyapunov equation

(1.2) ATX +XA+Q = 0.

For the Lyapunov equation (1.2), there exists a unique positive definite solution X when
−A and Q are symmetric and positive definite (hence −AT and A have no common
eigenvalues) [2, 9, 28, 29]. In that scenario, the linear dynamical system

(1.3) ż(t) = Az(t)

is stable in the sense that limt→+∞ z(t) = 0. Define the Lyapunov function by V (z(t)) =
z(t)TXz(t), where X is the positive definite solution of the Lyapunov equation (1.2) with
Q replaced by the identity I. Then it follows from (1.2), (1.3) and the positive-definiteness
of the matrix X, the quadratic function V (z) satisfies

V̇ (z(t)) = z(t)T (ATX +XA)z(t) = −z(t)T z(t) ≤ −τV (z(t)),

where τ > 0 is an absolute constant. Solving the above differential inequality and using
the positive-definiteness of the matrix X, we can find a positive constant C such that

(1.4) 0 ≤ z(t)T z(t) ≤ CV (z(t)) ≤ Ce−τt for all t ≥ 0.

This proves the (exponential) stability of the dynamical system (1.3).

Let B be a Banach algebra. Given A and B ∈ B, we define the Sylvester operator TA,B
on B by

(1.5) TA,B(X) = BX −XA, X ∈ B.
As the family of all matrices A ∈ Rn×n forms a Banach algebra, the Sylvester equation
(1.1) has been extended in the Banach algebra setting. Sylvester-Rosenblum theorem
states that the operator Sylvester equation

(1.6) TA,B(X) = Q

has a unique solution in B for every Q ∈ B (hence the homogenous Sylvester equation
BX = XA has zero as its unique solution) if the spectra σB(A) and σB(B) of A and B in
B are disjoint [7, 33, 36].

Let H be a complex Hilbert space and denote the C?-algebra of all linear operators on
H by B(H). We say that a linear subspace M of the Hilbert space H is invariant under the
operator A ∈ B(H) if Ax ∈M for every x ∈M , and hyperinvariant if it is invariant under
every operator B ∈ B(H) which commutes with A. One of the most famous problems in
functional analysis is whether every operator on an infinite-dimensional Hilbert space have
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a non-trivial invariant subspace. The Sylvester-Rosenblum Theorem provides a sufficient
condition on A ∈ B(H) so that its invariant space M is also hyperinvariant. Given
A ∈ B(H), its invariant subspace M ⊂ H can be described by

(1.7) (I − P )AP = 0,

where P is the projection operator from H onto M . For any B ∈ B(H) commutating
with A, we have

((I − P )A(I − P ) + µ1P )(I − P )BP = (I − P )A(I − P )BP = (I − P )ABP

= (I − P )BAP = (I − P )BPAP = (I − P )BP (PAP + µ2(I − P )),(1.8)

where µ1, µ2 ∈ C and the second and fourth equalities follow from (1.7). By (1.8) with
µ1 and µ2 appropriately chosen and the Sylvester-Rosenblum theorem for homogenous
operator Sylvester equations, we conclude that (I − P )BP = 0 and hence M is hyper-
invariant, provided that the spectra of restrictions of the operator A onto the invariant
subspace M and its orthogonal complement M⊥ are disjoint [7, 31].

The Sylvester-Rosenblum theorem on the operator Sylvester equation (1.6) also plays
a crucial role to establish spectral theorem for normal operator on a Hilbert space, see [7,
Section 6]. The Sylvester equation appears in many mathematical fields and engineering
applications, including linear algebra, functional analysis, ordinary differential equation,
control theory, and signal processing. For historical remarks and recent advances on
Sylvester equations, the reader may refer to [5, 7, 12, 36] and references therein.

In this work, we solve the operator Sylvester equation (1.6) in an inverse-closed Banach
subalgebra and consider norm control of its unique solution.

2. Main Results

Given a Banach algebra B, we say that its subalgebra A sharing the same identity I
with B is inverse-closed in B if any element in A that is invertible in B is also invertible
in A. Inverse-closedness has numerous applications in time–frequency analysis, sampling
theory, numerical analysis and optimization. It has been established for infinite matrices,
integral operators, and pseudo-differential operators satisfying various off-diagonal decay
conditions, see the survey papers [18, 26, 40] for historical remarks and [15, 23, 29, 35, 39]
and references therein for recent advances. For an inverse-closed subalgebra A of a Banach
algebra B, it is known that for any element A ∈ A, its spectra in the algebras A and
B are the same. Therefore by the Sylvester-Rosenblum theorem, we have the following
result on solving the operator Sylvester equation (1.6) in an inverse-closed subalgebra A.

Theorem 2.1. Let B be a Banach algebra and A be its inverse-closed Banach subalgebra
of B. If A,B,Q ∈ A and the spectra of A and B in B are disjoint, then there is a unique
solution X to the operator Sylvester equation (1.6) in A.
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A quantitative version of inverse-closedness is norm-controlled inversion [4, 20, 30, 44].
Here we say that an inverse-closed subalgebra A of a Banach algebra B admits a norm-
controlled inversion if there exists a nonnegative function h : R+ × R+ → R+ that is
bounded on any compact subset of R+ × R+ such that

(2.1) ‖A−1‖A ≤ h(‖A−1‖B, ‖A‖A)

for all A ∈ A that are invertible in B, where R+ is the set of all nonnegative real numbers,
and ‖ · ‖A and ‖ · ‖B are norms on Banach algebras A and B respectively. We remark that
not every inverse-closed Banach subalgebra has norm-controlled inversion. In particular,
the classical Wiener algebra of periodic functions with summable Fourier coefficients does
not admit a norm-controlled inversion in the Banach algebra of all bounded periodic
functions. We also observe that a good estimate for the norm-control function h in (2.1)
to the inversion is important for some mathematical and engineering applications [10, 45],
and the norm-control function associated with some norm-controlled inversion subalgebras
may have polynomial growth [14, 19, 21, 39, 41].

Given a complex Hilbert space H, we say that a linear operator A ∈ B(H) on H is
normal if A?A = AA? [37]. For a normal operator A ∈ B(H), we have

(2.2) ‖A‖B(H) = sup{|z|, z ∈ σB(H)(A)}.

In this work, we consider solving the operator Sylvester equation (1.6) in an inverse-closed
subalgebra A that admits a norm-controlled inversion in the C?-algebra B(H).

Theorem 2.2. Let H be a complex Hilbert space, and A be a Banach subalgebra of the
operator algebra B(H) that admits norm-controlled inversion in B(H). If A,B,Q ∈ A,
and A,B are normal operators in B(H) with their spectra in B(H) being disjoint, then
there is a bivariate function g on R+ × R+ that is bounded on any compact subset of
R+ × R+ such that

(2.3) ‖X‖A ≤ g((d(A,B))−1, ‖A‖A + ‖B‖A)

holds for the unique solution X of the operator Sylvester equation (1.6), where d(A,B) is
the distance of the spectra of A and B in B(H).

Taking A = 0 (resp., B = 0), the corresponding operator Sylvester equation (1.6)
becomes a trivial inverse problemBX = Q (resp.,−XA = Q), and it has a unique solution
X in the subalgebra A. Therefore the estimate in (2.3) for the solution of the operator
Sylvester equation (1.6) could be considered as the correspondence of the norm estimate
(2.1) for the inversion in the Sylvester setting. We remark that an appropriate norm
estimate for the solution of Sylvester equations could be essential for some mathematical
and engineering applications, such as stability of dynamical systems and optimal control.

The bivariate function h in (2.1) is known as a norm-control function of the norm-
controlled inversion subalgebra A. We remark that the norm-control function h can be
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chosen so that it is monotonic about every variable, i.e.,

(2.4) 0 ≤ h(s1, t1) ≤ h(s2, t2) if 0 ≤ s1 ≤ s2 and 0 ≤ t1 ≤ t2.

Otherwise, we may replace the original norm-control function h by the following bivariate
function

h̃(s, t) = sup
0≤u≤s,0≤v≤t

h(u, v) for s, t ≥ 0,

which is well-defined by the boundedness assumption for the original norm-control func-
tion on any bounded set. Applying a similar argument, we see that the function g in (2.3)
could be selected to be monotonic about every variable.

Let m ≥ 2 be an integer. Given a Banach algebra B, we say that it is a symmetric
?-algebra if the spectrum σB(A?A) of A?A is contained in [0,∞) for any A ∈ B, and
that its Banach subalgebra A is differential if there exist θ ∈ (0,m − 1] and an absolute
constant D satisfying

(2.5) ‖Am‖A ≤ D‖A‖m−θA ‖A‖θB for all A ∈ A
[8, 11, 20, 25, 32, 39]. In [38, Theorem 4.1], it is shown that a differential ?-subalgebra
admits a norm-controlled inversion with the norm-control function having subexponential
growth.

Combining [38, Theorem 4.1] and Theorem 2.2, we have the following corollary on
solving the operator Sylvester equation (1.6) in differential ?-subalgebra.

Corollary 2.3. Let H be a complex Hilbert space, and A be a ?-subalgebra of B(H) with
common identity and involution ?. If A is a differential subalgebra of B(H), and A,B ∈ A
are normal operators in B(H) with their spectra in B(H) being disjoint, then the operator
Sylvester equation (1.6) has a norm-controlled solution in the differential ?-subalgebra A.

3. Sylvester equations for infinite matrices and integral operators

In this section, we apply the conclusion in Corollary 2.3 to solve Sylvester equations in
Banach algebras of localized infinite matrices and integral operators.

Let `p := `p(Zd), 1 ≤ p ≤ ∞, be the Banach space of all p-summable sequences on
Zd with the norm denoted by ‖ · ‖p. Given 1 ≤ p ≤ ∞ and α ≥ 0, we define the
Gröchenig-Schur algebra of infinite matrices by

(3.1) Ap,α =
{
A = (a(i, j))i,j∈Zd , ‖A‖Ap,α <∞

}
,

the Baskakov-Gohberg-Sjöstrand algebra of infinite matrices by

(3.2) Cp,α =
{
A = (a(i, j))i,j∈Zd , ‖A‖Cp,α <∞

}
,

and the Beurling algebra of infinite matrices by

(3.3) Bp,α =
{
A = (a(i, j))i,j∈Zd , ‖B‖Bp,α <∞

}
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respectively, where uα(i, j) = (1 + |i− j|)α, α ≥ 0, are polynomial weights on Z2d,

(3.4) ‖A‖Ap,α = max
{

sup
i∈Zd

∥∥(a(i, j)uα(i, j)
)
j∈Zd

∥∥
p
, sup

j∈Zd

∥∥(a(i, j)uα(i, j)
)
i∈Zd
∥∥
p

}
,

(3.5) ‖A‖Cp,α =
∥∥∥( sup

i−j=k
|a(i, j)|uα(i, j)

)
k∈Zd

∥∥∥
p
,

and

(3.6) ‖A‖Bp,α =
∥∥∥( sup
|i−j|≥|k|

|a(i, j)|uα(i, j)
)
k∈Zd

∥∥∥
p

[1, 3, 6, 14, 15, 17, 22, 29, 39, 42, 46, 48, 49]. Clearly, we have

(3.7) Bp,α ⊂ Cp,α ⊂ Ap,α for all 1 ≤ p ≤ ∞ and α ≥ 0.

The above inclusion become an equality for p = ∞, which is also known as the Jaffard
algebra [24].

For 1 ≤ p ≤ ∞ and α > d − d/p, it is known that Ap,α, Cp,α and Bp,α are differential
*-subalgebras of B(`2), the algebra of all bounded linear operators on `2. This together
with Corollary 2.3 yields the following conclusion on solving the Sylvester equation (1.6)
in the above three algebras of infinite matrices.

Theorem 3.1. Let d ≥ 1, 1 ≤ p ≤ ∞, α > d− d/p, and A be either the Gröchenig-Schur
algebra Ap,α, or the Baskakov-Gohberg-Sjöstrand algebra Cp,α, or the Beurling algebra
Bp,α. If A,B ∈ A have their spectra σB(`2)(A) and σB(`2)(B) in B(`2) being disjoint,
then for every Q ∈ A, the operator Sylvester equation (1.6) has a unique solution in A.
Furthermore, if A,B are normal in B(`2), then there is a bivariate function g on R+×R+

such that (2.3) holds.

Let Zd+ be the set of all d-tuples of nonnegative integers, and Lp := Lp(Rd), 1 ≤ p ≤ ∞,
be the space of all p-integrable functions on Rd with its norm denoted by ‖ · ‖p. Take
1 ≤ p ≤ ∞, α > 0 and a positive integer m ≥ 1, and consider Banach algebra Wm

p,α of
localized integral operators

(3.8) Tf(x) =

∫
Rd
K(x, y)f(y)dy

on the space L2 with the norm defined by

(3.9) ‖T‖Wm
p,α

:= max
k,l∈Zd+,|k|+|l|≤m−1,0<δ≤1

‖∂kx∂lyK(x, y)‖p,α + δ−1‖ωδ(∂kx∂lyK(x, y))‖p,α,

where uα(x, y) = (1 + |x − y|)α is a polynomial weight on R2d, and for a kernel function
K(x, y), x, y ∈ Rd, we define its modulus of continuity ωδ(K) by

(3.10) ωδ(K)(x, y) := sup
|x′|≤δ, |y′|≤δ

|K(x+ x′, y + y′)−K(x, y)|, x, y ∈ Rd,
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and set

‖K‖p,α := max
(

sup
x∈Rd

∥∥K(x, ·)uα(x, ·)
∥∥
p
, sup
y∈Rd

∥∥K(·, y)uα(·, y)
∥∥
p

)
.

For α > d− d/p, Wm
p,α is a non-unital Banach algebra [13, 47]. Define the unital Banach

algebra IWm
p,α induced from Wm

p,α by

(3.11) IWm
p,α :=

{
λI + T : λ ∈ C and T ∈ Wm

p,α

}
with

(3.12) ‖λI + T‖IWm
p,α

:= |λ|+ C0‖T‖Wm
p,α

for some positive constant C0. With appropriate selection of the constant C0 in (3.12),
one may verify that IWm

p,α, 1 ≤ p ≤ ∞,m ≥ 1, α > d− d/p, are differential ?-subalgebra

of B(L2) (the ?-algebra of bounded linear operators on L2) [13, 47]. Therefore as a
consequence of Corollary 2.3, we have the following result on the Sylvester equation (1.6)
in the above algebra of localized integral operators.

Theorem 3.2. Let 1 ≤ p ≤ ∞,m ≥ 1, α > d − d/p, and let IWm
p,α be as in (3.11).

If A,B ∈ IWm
p,α have their spectra in B(L2) being disjoint, then there exists a unique

solution to the Sylvester equation (1.6) for every Q ∈ IWm
p,α. Furthermore, if A,B are

normal in B(L2), then there is a bivariate function g on R+ × R+ such that (2.3) holds.

The reader may refer to [13, 16, 23] for additional Banach algebras of localized integral
operators and pseudo-differential operators.

4. Proof of Theorem 2.2

We say that a bounded and open set D in the complex plane is a Cauchy domain if it
contains only a finite number of components with the closures of any two of them being
disjoint, and its boundary ∂D is composed of a finite positive number of closed positive
oriented rectifiable Jordan curves with no two of those curves intersecting. To prove the
main theorem, we need a technical lemma in [7, 33] for the unique solution of the operator
Sylvester equation (1.6).

Lemma 4.1. Let B be a Banach algebra and A,B,Q ∈ B. If the spectra σB(A) and σB(B)
of A and B in the algebra B are disjoint, then the Sylvester operator TA,B is invertible.
Furthermore, for a Cauchy domain D such that σB(A) ⊂ D, σB(B) ⊂ C\(D ∪ ∂D), and
its oriented boundary ∂D has total winding numbers m ≥ 1 around σB(A) and 0 around
σB(B), we have

T−1A,B(Q) = − 1

2mπi

∫
∂D

(B − zI)−1Q(zI − A)−1dz.

Now we are ready to start the detailed proof of Theorem 2.2.
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Proof of Theorem 2.2. Set B = B(H) and define

δ(A,B) = min
{

max(|<z −<w|, |=z −=w|) : z ∈ σB(A), w ∈ σB(B)
}

Then δ(A,B) > 0 by the disjoint assumption for the spectra of A and B in the Ba-
nach algebra B. Set δ′(A,B) = δ(A,B)/3 > 0, let N0 be the integer part of (‖A‖B +
δ′(A,B))/δ′(A,B), and for every k, k′ ∈ Z denote the closed square in the complex plane
C with center (k + k′i)δ′(A,B) and side length δ′(A,B) by Sk,k′ . Then we have

(4.1) σB(A) ⊂ ∪−N0≤k,k′≤N0Sk,k′ .

Define the union of squares Sk,k′ , k, k
′ ∈ Z, with nonempty intersection with σB(A) by

D1 = ∪Sk,k′∩σB(A) 6=∅Sk,k′ .
Similarly, we let D2 be the union of squares Sk,k′ , k, k

′ ∈ Z, with nonempty intersection
with the domain D1, and D3 be the union of squares Sk,k′ , k, k

′ ∈ Z with nonempty
intersection with the domain D2. By the above construction of domains D1, D2, D3 and
the distance definition δ(A,B) between spectra of A and B, we obtain

(4.2) σB(A) ⊂ D1 ⊂ D2 ⊂ Q(0, (2N0 + 3)δ′(A,B)) and σB(B) ⊂ C\D3 ⊂ C\D2,

where Q(0, r) is the square in the complex plane with center zero and size length r > 0.
Let D be the interior of the domain D2 with its boundary denoted by ∂D. With

the positive direction on the boundary ∂D selected, we see that ∂D has total winding
numbers m ≥ 1 around σB(A) and 0 around σB(B). Furthermore, D is a Cauchy domain
with the boundary ∂D being made of finitely many line segments and the length `(∂D)
of its boundary ∂D is bounded, i.e.,

(4.3) |z| ≤ ‖A‖B + 2
√

2δ′(A,B) ≤ ‖A‖B + δ(A,B) for all z ∈ ∂D,
and

(4.4) `(∂D) ≤ 4(2N0 + 3)2δ′(A,B) ≤ 48(‖A‖B + δ(A,B))2(δ(A,B))−1.

By (4.2), the spectra of zI−A and zI−B, z ∈ ∂D, lie outside the square Q(0, 2δ′(A,B))
in the complex plane with the origin as its center and 2δ′(A,B) as its size length. This
together with the normal property for operators A and B in B implies that

max(‖(zI − A)−1‖B, ‖(zI −B)−1‖B)

≤ max
w∈∂Q(0,2δ′(A,B))

|w|−1 ≤ (δ′(A,B))−1 for all z ∈ ∂D.(4.5)

Let h(s, t), s, t ≥ 0, be the norm-control function for the subalgebra A which satisfies
(2.4). By (4.2) and Lemma 4.1, the unique solution of the operator Sylvester equation
(1.6) in A is given by

T−1A,B(Q) = − 1

2mπi

∫
∂D

(B − zI)−1Q(zI − A)−1dz, Q ∈ B,

where m is the total winding numbers m ≥ 1 of the boundary ∂D around σB(A).
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Combining the above expression for the solution of the operator Sylvester equation
(1.6) and the estimates in (4.3), (4.4) and (4.5), we obtain

‖T−1A,B(Q)‖A ≤ (2mπ)−1
∫
∂D

‖(B − zI)−1‖A‖Q‖A‖(zI − A)−1‖A|dz|

≤ 24π−1‖Q‖A(‖A‖B + δ(A,B))2(δ(A,B))−1

×
(
h
(
3(δ(A,B))−1, max(‖A‖A, ‖B‖A) + (‖A‖B + δ(A,B))‖I‖A

))2
.(4.6)

This complete the proof. �
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