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Overview

Why Graph Fourier transform (GFT)?
It is one of the fundamental tools in graph signal processing
to decompose graph signals into different frequency
components and effectively represent graph signals with
regularity using various modes of variation
What we have to describe networks and understand data on
networks?
▶ Adjacent matrix, Laplacian, graph shifts and their variation
▶ Finite Fourier transform on circulant graphs

How to define GFT?
▶ GFT on undirected graphs: a conventional approach is based

on the eigendecomposition of the graph Laplacian
▶ This eigendecomposition method does not apply to directed

graph settings. Several approaches have been proposed to
define GFTs on directed graphs, including Jordan
decomposition of Laplacian, eigendecomposition of the
magnetic Laplacian, SVD-decomposition of Laplacian, and
their variants
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Graph Fourier transform (GFT) is one of the fundamental
tools in graph signal processing.
What we have for networks: Adjacent matrix, Laplacian and
their variations (graph shifts).
What we have known: The GFT on undirected graphs has
been well-studied, and several approaches have been
proposed to define GFTs on directed graphs.
The plan of this webinar?
▶ graph Laplacian and graph shifts
▶ GFT on undirected graphs
▶ GFT on directed graphs (Jordan Decomposition and Magnetic

Laplacian)
▶ GFT based on the singular value decompositions of graph

Laplacian.
▶ GFT based on the singular value decompositions of graph

Laplacian on product graphs
▶ SVD-based GFTs: Robustness and good approximation of

signals with regularity by band limiting procedure.
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This presentation is based on joint works with Yang Chen, Cheng
Cheng, Nazar Emirov, Junzheng Jiang, YeoJu Lee and Cong Zheng. 1

1C. Cheng, Y. Chen, Y. J. Lee and Q. Sun, SVD-based graph Fourier transforms
on directed product graphs, IEEE Transactions on Signal and Information
Processing over Networks, 9(2023), 531-541; Y. Chen, C. Cheng and Q. Sun, Graph
Fourier transform based on singular value decomposition of directed
Laplacian, Sampling Theory, Signal Processing, and Data Analysis, 12(2023),
article no. 24; N. Emirov, C. Cheng, J. Jiang and Q. Sun, Polynomial graph filter of
multiple shifts and distributed implementation of inverse filtering Sampling
Theory, Signal Processing, and Data Analysis, 20(2022), Article No. 2; C. Zheng,
C. Cheng and Q. Sun, Wiener Filters on Graphs and Distributed
Implementations, Digital Signal Processing, 162(2025), Paper No. 105156.

3 38



Graph Fourier transform



GFT on the undirected Minnesota traffic graph

Figure: Left: Piecewise signal x on the undirected Minnesota traffic
graph; Right: magnitude of GFT |x̂| = |UTx| = [|⟨u1, x⟩|, . . . , |⟨uN, x⟩|]T ,
where L = UΛUT =

∑N
n=1 λnunuT

n (Eigendecomposition of graph
Laplacian L)

Observation: The graph signal x is decomposed into different
frequency components (mode of variation) effectively
x =

∑N
n=1⟨un, x⟩un (frequency components ⟨un, x⟩un; modes of

variation un).
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Magnetic-Laplacian-based GFT based on di-
rected graphs

Figure: Plot on the left and right are the real part ℜ(VH
q x0) and imaginary

part ℑ(VH
q x0) of the GFT by q-ML L(q) = VqΛqVH

q with q = 1/4, where x0 is
the piecewise constant signal on a weighted Minnesota traffic graph.
The relative percentage of signal energy

(∑M−1
k=0 |vH

k;qx0|2
)1/2

/∥x0∥2 for
the first M = 20, 50 and 100 frequencies (about 0.76%, 1.89% and 3.79%
of the total 2640 frequencies) are 0.1289,0.2385,0.3289 respectively.
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SVD-based GFT on the directed graph

Figure: The main component (UT + VT)x0/2 (left) and companion
component (UT − VT)x0/2 of the SVD-based GFT Fx0 of the signal x0,
where x0 is a piecewise constant signal on the weighted directed
Minnesota traffic graph with the weights aij on adjacent edges (j, i)
being randomly chosen in the interval [0, 2], and
L = UΣVT =

∑N
n=1 σnunvT

n. The relative percentage of signal energy
(
∑M−1

k=0 |(uk + vk)
Tx0/2|2 + |(uk − vk)

Tx0/2|2)1/2/∥x0∥2 for the first
M = 20, 50 and 100 frequencies (about 0.76%, 1.89% and 3.79% of the
total 2640 frequencies) are 0.7005,0.7655,0.8166, where ∥x∥2 =

√
xTx.
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Graph Signal Processing, Graph
Laplacian and Graph Shifts



Graph Signal Processing

Graph signal processing provides an innovative framework
to handle data residing on spatially distributed sensor
networks, neural networks, social networks and many other.
A graph can be represented by G := (V, E), where
V = {1, 2, · · · ,N} denotes the node set and E = {eij}i,j∈V
contains the edges linking the nodes. The graph topology
offers a flexible tool to model the interrelationship between
data on networks 2

Figure: US temperature graph (left) and Minnesota traffic graph (right).
2Antonio Ortega, Introduction to Graph Signal Processing, Cambridge

University Press, 20217 38



Graph signals and Laplacian

A graph signal is defined as a vector residing on the graph
nodes, denoted by x = [x1, x2, · · · , xN]

T .

Adjacency matrix A = [aij]i,j∈V of a (un)directed graph
G = (V, E), where aij = wij is (i, j) is an edge, and aij = 0 if
(i, j) is not an edge.
Degree matrix D = diag(di)i∈V , where di =

∑
j∈V aij is the

number of edges connecting to the vertex i.
Laplacian L = D − A and symmetrically normalized Laplacian
Lsym = D−1/2LD−1/2 (all eigenvalues of L is nonnegative, and
all eigenvalues of Lsym are contained in [0, 2] for undirected
graphs.)
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From Laplacian to graph shifts

Graph shifts S = (s(i, j))i,j∈V if s(i, j) ̸= 0 only if either j = i or
(i, j) ∈ E.
Examples: Adjacent matrix A, Laplacian L, symmetric
(random walk) normalized Laplacian matrix, and their
variations.
Commutative graph shifts S1, . . . ,Sd if SiSj = SjSi, 1 ≤ i, j ≤ d.
The concept of commutative graph shifts may play a similar
role in graph signal processing as the one-order delay
z−1

1 , . . . , z−1
d in classical multi-dimensional signal processing,

and in practice graph shifts are selected to have specific
features and physical interpretation 3

3N. Emirov, C. Cheng, J. Jiang and Q. Sun, Polynomial graph filter of multiple
shifts and distributed implementation of inverse filtering Sampling Theory,
Signal Processing, and Data Analysis, 20(2022), Article No. 2
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Given two finite graphs G1 = (V1, E1) and G2 = (V2, E2) with
adjacency matrices A1 and A2, define their Cartesian product
graph G1 × G2 has vertex set V1 × V2 and adjacency matrix
given by A = A1 ⊗ I#V2 + I#V1 ⊗ A2. (Kronecker product)
Lsym1 ⊗ I#V2 and I#V1 ⊗ Lsym2 are graph filters of the Cartesian
product graph G1 × G2, where Lsymi are symmetric normalized
Laplacian matrices of the graph Gi, i = 1, 2.
Property: Let S1, . . . ,Sd be commutative graph shifts. Then
they can be upper-triangularized simultaneously over C

Ŝk = USkUH, 1 ≤ k ≤ d

are upper triangular matrices for some unitary matrix U.
Furthermore, if Sk are symmetric and real-valued, then U can
be chosen to be orthogonal and Ŝk, 1 ≤ k ≤ d be diagonal. 4

4Theorem 2.3.3 of the book Matrix Analysis by Horn and Johnson, Cambridge
University Press, (2012); N. Emirov, C. Cheng, J. Jiang and Q. Sun, Polynomial
graph filter of multiple shifts and distributed implementation of inverse
filtering Sampling Theory, Signal Processing, and Data Analysis, 20(2022),
Article No. 2
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Graph signal processing, graph Laplacian and
graph shifts: Summary

Graph signal processing provides an innovative framework
to handle data on networks.
Graph shifts are building blocks for graph signal processing
and they are designed and selected to have specific features
and physical interpretation.
Laplacian L = D − A and symmetrically normalized Laplacian
Lsym = D−1/2LD−1/2 and their variants are illustrative
examples of graph shifts.
Symmetric commutative graph shifts could be diagonalized
simultaneously by some orthogonal matrix.
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Graph Fourier transform on
undirected graphs



Commutative graph shifts S1, . . . ,Sd if SiSj = SjSi, 1 ≤ i, j ≤ d.
Starting from Sk, 1 ≤ k ≤ d being symmetric, real-valued and
commutative, there exists an orthgonal matrix
U = [u1, . . . ,uN]

T such that

Sk =
N∑

n=1
λk(n)ukuT

k. (1)

(simultaneous eigendecomposition)
Define graph Fourier transform (GFT) of a graph signal x by

x̂ = UTx = [⟨u1, x⟩, . . . , ⟨uN, x⟩]T.

Model of variations (GFT): u1, . . . ,uN.
Frequencies of GFT:
λλλ1 = [λ1(1), . . . , λk(1)], . . . ,λλλN = [λ1(N), . . . , λk(N)].
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Figure: Left: Piecewise signal x on the undirected Minnesota traffic
graph; Right (coordinate λn ∈ [0, 2]): magnitude of GFT
|x̂| = [|⟨u1, x⟩|, . . . , |⟨uN, x⟩|]T , where L = UΛUT =

∑N
n=1 λnunuT

n
(Eigendecomposition of the Laplacian L (the graph shift))

Observation: The graph signal x is decomposed into different
frequency components (mode of variation) effectively
x =

∑N
n=1⟨un, x⟩un (frequency components ⟨un, x⟩un; modes of

variation un).
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Polynomial filtering and convolution

Polynomial filter: Let S1, . . . ,Sd be commutative filters. A
graph filter A is a polynomial filter if

A = h(S1, . . . ,Sd) = h0I+
L∑

l=1

∑
α1+...+αd=l

pα1,...,αdSα1
1 · · ·Sαd

d , (2)

The filtering procedure x → Ax can be implemented in a
one-hop communication network. 5

Convolution associated with b: b̂ ∗ x = b̂ ⊗ x̂
In the frequency domain, the filtering procedure can be
described as Âx = h(Λ1, . . .Λd)x̂. Hence a polynomial filter is
a convolution. The converse is true if frequencies λλλ1, . . . ,λλλN
of the GFT are distinct.

5N. Emirov, C. Cheng, J. Jiang and Q. Sun, Sampling Theory, Signal Processing,
and Data Analysis, 20(2022), Article No. 2
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Graph shifts and graph Fourier transform on
undirected graphs: Summary

Commutative graph shifts S1, . . . ,Sd on undirected graphs
are selected to be symmetric, real-valued and commutative.
Define GFT on undirected graph by x̂ = UTx where U is the
orthogonal matrix U to diagonalize S1, . . . ,Sd.
GFT provide a tool to decompose graph signals into different
frequency components and effectively represent graph
signals with regularity using various modes of variation.
Polynomial filtering is widely used in graph signal
processing. It can be implemented distributedly in the
one-hop communication network. Polynomial filtering is a
convolution and the converse holds if all frequencies are
distinct.
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Graph Fourier Transform on Di-
rected Graphs I



The conventional definition of GFT on undirected graph x̂ = UTx
is based on simultaneous eigendecomposition of graph shifts
S1, . . . ,Sd,
The eigendecomposition approach does not apply for the
directed setting directly. Various approaches to define GFT on
directed graph have been proposed. The following are some of
them:

Jodan decomposition L = B−1JB, where J is diagonal and
define x̂ = Bx.
Magnetic Laplacian L(q) = VqΛqVH

q ,0 ≤ q < 1 and define
x̂ = VH

q x.
Optimization-based: Use certain optimization to find model
of variation u1, . . . ,uN, and define x̂ = [⟨u1, x⟩, . . . , ⟨uN, x⟩]T .
SVD-based: L = UΣV (SVD), and define DFT by

x̂ =

[
(U + V)x/2
(U − V)x/2

]
.

Polar decomposition of adjacent matrix A = PQ = QF, where
P, F are positive semi-definite (PSD) Hermitian matrix and Q
is unitary. Write P = VpΛpVp, F = VfΛf VT

f and Q = UqΛqUH
q .

Then use VT
px,VT

f x,UHx as GFT.16 38
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GFT based on Jordan decomposition

Jordan decomposition for Laplacian: L = BJB−1, and define
x̂ = B−1x. 6.
Convenience for graph signal processing: Polynomial
filtering is widely used in graph signal processing. It can be
implemented distributedly in the one-hop communication
network. Polynomial filtering is a convolution and the
converse holds if all frequencies are distinct.

6J. A. Deri and J. M. F. Moura, IEEE J. Sel. Top. Signal Process., vol. 11, no. 6, pp.
785-795, Sept. 2017; J. Domingos and J. M. F. Moura, IEEE Trans. Signal Process.,
vol. 68, pp. 4422-4437, July 2020; A. Sandryhaila and J. M. F. Moura, quency
analysis," IEEE Trans. Signal Process., vol. 62, no. 12, pp. 3042-3054, June 2014; A.
Sandryhaila and J. M. F. Moura, IEEE Signal Process. Mag., vol. 31, no. 5, pp.
80-90, Sept. 2014; R. Singh, A. Chakraborty, and B. Manoj, Proc. IEEE Int. Conf.
Signal Process. Commun., 2016, pp.1-5.
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GFT based on Jordan decomposition

Jordan decomposition for Laplacian: L = BJB−1, and define
x̂ = B−1x.
Convenience for graph signal processing: Polynomial
filtering is a convolution and the converse holds if all
frequencies are distinct.
The GFT could have complex frequencies (diagonal entries of
J) and the Parseval identity ∥x̂∥ = ∥x∥ does not hold in
general.
Jordan decomposition of the Laplacian on directed graphs
could be numerically unstable and computationally
expensive, and hence it could be difficult to be applied for
graph spectral analysis and decomposition on a large
network7

Not all matrices can be diagonalized.
7J. Domingos and J. M. F. Moura, IEEE Trans. Signal Process., vol. 68, pp.

4422-4437, July 2020.
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GFT based on Magnetic Laplacian

Connectivity matrix A = (W + WT)/2 and directionality matrix
Γ(q) with entries γv,v′ = exp(2πiq(wv,v′ − wv′,n)) where
0 ≤ q < 1 is the rotation matrix and W is the adjacent matrix
of the directed graph.
Define magnetic Laplacian L(q) = D − Γ(q) ⊗ A where D is a
diagonal matrix with diagonal entries

∑
v′∈V wv,v′ , v ∈ V.

L(q) = VqΛqVH
q , where Vq is unitary and Λq is a diagonal

matrix with diagonal entries λq,k,0 ≤ k ≤ N − 1, in a
nondecreasing order.
DFT x̂ = VH

q x 8

8S. Furutani, T. Shibahara, M. Akiyama, K. Hato, and M. Aida, “Graph signal
processing for directed graphs based on the Hermitian Laplacian,” in Proc. Joint
Eur. Conf. Mach. Learn. Knowl. Discov. Databases, 2020, pp. 447–463; X. Zhang, Y.
He, N. Brugnone, M. Perlmutter, and M. J. Hirn, “MagNet: A neural network for
directed graphs,” in Proc. Adv. Neural Inf. Process Syst., 2021, pp. 27003–27015.
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Figure: Plot on the left and right are the real part ℜ(VH
q x0) and

imaginary part ℑ(VH
q x0) of the GFT by q-ML L(q) with q = 1/4, where x0 is

the piecewise constant signal on a weighted Minnesota traffic graph.
The relative percentage of signal energy

(∑M−1
k=0 |vH

k;qx0|2
)1/2

/∥x0∥2 for
the first M = 20, 50 and 100 frequencies (about 0.76%, 1.89% and 3.79%
of the total 2640 frequencies) are 0.1289,0.2385,0.3289 respectively.
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L(q) = VqΛqVH
q , where Vq is unitary and Λq is a diagonal

matrix with diagonal entries λq,k,0 ≤ k ≤ N − 1, in a
nondecreasing order.
DFT x̂ = VH

q x
The GFT could have real frequencies and the Parseval
identity ∥x̂∥ = ∥x∥ hold.
How to understand the rotation parameter 0 ≤ q < 1? It is
unclear whether graph signals with regularity can
decomposed into different frequency components very
effectively.
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GFT based on SVD of graph Laplacian

Singular value decomposition (SVD) of the Laplacian ,

L = UΣΣΣVT =
N−1∑
k=0

σkukvT
k (3)

where σk,0 ≤ k ≤ N − 1 are its nonnegative singular values
considered as frequencies of GFT and uk, vk,0 ≤ k ≤ N − 1,
as the associated left/right frequency components, where

U = [u0, . . . ,uN−1] and V = [v0, . . . , vN−1] (4)

are orthogonal matrices, and the diagonal matrix
ΣΣΣ = diag(σ0, . . . , σN−1) has singular values deployed on the
diagonal in a nondecreasing order, i.e.,
0 = σ0 ≤ σ1 ≤ . . . ≤ σN−1.

GFT x̂ =

(
(UT + VT)x/2
(UT − VT)x/2

)
22 38



Figure: The main component (UT + VT)x0/2 (left) and companion
component (UT − VT)x0/2 of the SVD-based GFT Fx0 of the signal x0,
where x0 is a piecewise constant signal on the weighted directed
Minnesota traffic graph with the weights aij on adjacent edges (j, i)
being randomly chosen in the interval [0, 2]. The relative percentage of
signal energy (

∑M−1
k=0 |(uk + vk)

Tx0/2|2 + |(uk − vk)
Tx0/2|2)1/2/∥x0∥2 for

the first M = 20, 50 and 100 frequencies (about 0.76%, 1.89% and 3.79%
of the total 2640 frequencies) are 0.7005,0.7655,0.8166, where
∥x∥2 =

√
xTx.
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GFT and DFT

On the directed circulant graph Cd := Cd(N), define the
discrete Fourier transform matrix by

DFT(x) = WHx,

where W :=
(
N−1/2ωij

N
)

0≤i,j≤N−1 and where
ωN = exp(2π

√
−1/N) is the N-th root of the unit.

The GFT based on SVD is given by

Fx =
1
2

(
P1 O
O P1

)T (R O
O R

)H (
P0 O
O P0

)(
ΘΘΘ ΘΘΘ
I −I

)H (
DFT(x)
DFT(x)

)
,

(5)
where R is a rotation, ΘΘΘ is a phase adjustment matrix and P0
and P1 are permutations. 9

9Y. Chen, C. Cheng and Q. Sun, Graph Fourier transform based on singular
value decomposition of directed Laplacian, Sampling Theory, Signal
Processing, and Data Analysis, 12(2023), article no. 24

24 38



Compared with the magnetic Laplacian, it decompose graph
signals into different frequency components and represent them
more effectively.

Figure: The relative percentage of signal energy for the first M = 20, 50
and 100 frequencies (about 0.76%, 1.89% and 3.79% of the total 2640
frequencies) are 0.7005,0.7655,0.8166 (left two, SVD-based DFT). The
relative percentage of signal energy for the first M = 20, 50 and 100
frequencies (about 0.76%, 1.89% and 3.79% of the total 2640
frequencies) are 0.1289,0.2385,0.3289 respectively (right two,
Magnetic-based DFT).
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Compared with the GFT based on a Jordan decomposition of
Laplacian, a significant advantage of the proposed
SVD-based GFT is the numerical stability and low
computational cost.
SVD-based GFT: real frequencies and Parseval identity holds,
while Jordan-based GFT: complex frequencies and Parseval
identity does not apply.
However, SVD-based GFT can not be used to define
convolution and hence establish the equivalence between
convolution and polynomial filtering procedure.
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GFT on Directed Graphs I: Summary

GFT based on Jordan decomposition of Laplacian:
polynomial filtering procedure is a convolution. However,
numerical instable and computationally expensive for large
networks, complex frequencies, no Parseval identity
GFT based on Magnetic Laplacian: real frequencies, Parseval
identity. However it is unclear whether graph signals with
regularity can decomposed into different frequency
components effectively, and inconvenience to define
convolution and establish the equivalence between
convolution and polynomial filtering procedure
GFT based on SVD of Laplacian: real frequencies, Parseval
identity, numerical stability and low computational cost,
effective representation of graph signals with regularity;
however inconvenience to define convolution and establish
the equivalence between convolution and polynomial
filtering procedure
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Graph Fourier Transform on Di-
rected Graphs II: Product Graph



GFT: Product space

Let G1 = (V1, E1) and G2 = (V2, E2) be two directed graphs of
orders N1 and N2. Our illustrative example are the temporal
line graphs and spatial graphs to describe time-varying data
sets on directed networks.
The Cartesian product graph G := G1 ⊠ G2 = (V1 × V2, E1 ⊠ E2)
has vertices (v1, v2) ∈ V1 × V2 and edges between vertices
(v1, v2) and (ṽ1, ṽ2) if either (v1, ṽ1) ∈ E1 and ṽ2 = v2, or ṽ1 = v1
and (v2, ṽ2) ∈ E2

Denote the adjacency, in-degree and (in-degree) Laplacian
matrices of graphs Gl by Al,Dl and Ll = Dl − Al, l = 1, 2,
respectively. Then

L⊠ = L1 ⊗ IN2 + IN1 ⊗ L2. (6)
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GFT on Product Graphs

L⊠ = L1 ⊗ IN2 + IN1 ⊗ L2.
SVD decomposition L⊠ = U⊠ΣΣΣVT

⊠ =
∑N−1

k=0 σkukvT
k, where

N = N1N2, U⊠ = [u0, . . . ,uN−1] and V⊠ = [v0, . . . , vN−1] are
orthogonal matrices, and the diagonal matrix
ΣΣΣ = diag(σ0, . . . , σN−1) has singular values of the Laplacian
L⊠ deployed on the diagonal in a nondecreasing order, i.e.,

0 = σ0 ≤ σ1 ≤ . . . ≤ σN−1.

GFT F⊠x =

(
(UT

⊠ + VT
⊠)x/2

(UT
⊠ − VT

⊠)x/2

)
The computational complexity to perform the SVD is
O(N3

1N3
2).
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GFT and well-approximation of bandlimiting

Theorem
For a frequency bandwidth M ∈ {1, 2, . . . ,N} of the GFT F⊠, define
the low frequency component of a graph signal x on G with
bandwidth M by

xM,⊠ =
1
2

M−1∑
k=0

(z1,k + z2,k)uk + (z1,k − z2,k)vk, (7)

where z1,k = (uk + vk)
Tx/2 and z2,k = (uk − vk)

Tx/2,0 ≤ k ≤ M − 1.
Then

∥x − xM,⊠∥2 ≤ 1
2σM−1

(
∥L⊠x∥2 + ∥LT

⊠x∥2
)

(8)

where σM−1 is the cut-off frequency of the bandlimiting procedure
(7).

30 38



GFT on product space, a new approach

L⊠ = L1 ⊗ IN2 + IN1 ⊗ L2.
Observation: L1 and L2 are graph Laplacian on G1 and G2
respectively, and L1 ⊗ IN2 and IN1 ⊗ L2 are commutative graph
shifts, representing diffusion on graph G1 and G2 respectively.
SVD of the Laplacian matrices Ll, l = 1, 2:

Ll = UlΣΣΣlVT
l =

Nl−1∑
i=0

σl,iul,ivT
l,i, (9)

where σl,i,0 ≤ i ≤ Nl − 1, are singular values of the Laplacian
matrix Ll with a nondecreasing order, Ul = [ul,0, . . . ,ul,Nl−1]
and Vl = [vl,0, . . . , vl,Nl−1] are orthonormal matrices.
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Set U⊗ = U1 ⊗ U2 and V⊗ = V1 ⊗ V2.

Define GFT F⊗ : RN 7−→ R2N on the product graph G by

F⊗x :=
1
2

(
(U⊗ + V⊗)

Tx
(U⊗ − V⊗)

Tx

)
(10)

where x ∈ RN is a signal on the graph G. 10

The computational complexity to perform the SVD is
O(N3

1 + N3
2) and find models of variation in the GFT F⊗x,

comparing with the default one: O((N1N2)
3) and models of

variation in the GFT F⊠x.

10C. Cheng, Y. Chen, Y. J. Lee and Q. Sun, SVD-based graph Fourier transforms
on directed product graphs, IEEE Transactions on Signal and Information
Processing over Networks, 9(2023), 531-541
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Theorem
For a frequency bandwidth 1 ≤ M ≤ N of the GFT F⊗ in (10), define
the low frequency component of a graph signal x on G with
bandwidth M by

xM,⊗ =
1
2

∑
(i,j)∈SM

(u1,i ⊗ u2,j)(u1,i ⊗ u2,j)
Tx

+(v1,i ⊗ v2,j)(v1,i ⊗ v2,j)
Tx, (11)

where SM contains all pairs (i, j) with σ1,i + σ2,j being some
µk,0 ≤ k ≤ M − 1. Then

∥x − xM,⊗∥2 ≤ 1
2µM−1

(
∥(L1 ⊗ IN2)x∥2 + ∥(LT

1 ⊗ IN2)x∥2

+∥(IN1 ⊗ L2)x∥2 + ∥(IN1 ⊗ LT
2)x∥2

)
, (12)

where µM−1 is the cut-off frequency of the bandlimiting procedure
(11).
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The hourly temperature data set measured in Celsius
collected at 32 weather stations in the region of Brest
(France) in January 2014.
The temperature data set by matrices
Xd = [xd(t0) . . . , xd(t23)], 1 ≤ d ≤ 31, where the column
vectors xd(ti),0 ≤ i ≤ 23, are the regional temperature at
ti-th hour of d-th day of January 2014.
We model the matrices Xd, 1 ≤ d ≤ 31, as signals on the
Cartesian product graphs T ⊠ S of order 768 = 24 × 32,
where T is the unweighted directed line graph with 24
vertices and S is the directed graph with 32 locations of
weather observation stations as vertices and edges
constructed by the 5 nearest neighboring stations in physical
distances with weight w(i, j) = 1 + r(i, j), where
r(i, j) ∈ [−0.2,0.2] are randomly and independently selected
with uniform distribution

34 38



Figure: Plotted on the top left and right are the first component
(U⊠ + V⊠)

Tx1/2 and the second component (U⊠ − V⊠)
Tx1/2 of the GFT

F⊠x1 of the signal x1 respectively, On the middle left and right are the
first component (U⊗ + V⊗)

Tx1/2 and the second component
(U⊗ − V⊗)

Tx1/2 of the GFT F⊗x1 respectively.
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GFT on product space: GFT x̂ =

(
(UT

⊠ + VT
⊠)x/2

(UT
⊠ − VT

⊠)x/2

)
vs.

F⊗x := 1
2

(
(U⊗ + V⊗)

Tx
(U⊗ − V⊗)

Tx

)
The time to find the left/right frequency components
uk, vk,0 ≤ k ≤ 767, of the GFT F⊠ and the ones
u1,i ⊗ u2,j, v1,i ⊗ v2,j,0 ≤ i ≤ 23,0 ≤ j ≤ 31, of the GFT F⊗ are
0.1456 and 0.0255 seconds.
It is observed that the hourly temperature data set X1 has
about 99.56% and 99.60% energy concentrated on the first 32
out of total 768 (about 4.167%) frequencies of the GFTs F⊠

and F⊗, respectively. Hence weather data set has similar
energy concentration.
Frequencies σk of the GFT F⊠, µk of the GFT F⊗ and λq,k of
the GFT Fq satisfy 0 ≤ σk, µk ≤ 13.3330 and
0.1174 ≤ λq,k ≤ 13.5798,0 ≤ k ≤ 767. Of more interest, it is
observed that µk − 0.4093 ≤ σk ≤ µk and
µk − 0.4738 ≤ λq,k ≤ µk + 0.2469,0 ≤ k ≤ 767. Therefore the
GFTs F⊠,F⊗ and Fq have similar frequency information
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Conclusions and discussions



Graph shifts are building blocks for graph signal processing
and they are designed and selected to have specific features
and physical interpretation.
GFT provide a tool to decompose graph signals into different
frequency components and effectively represent graph
signals with regularity using various modes of variation.
More mathematical tools should be explored for graph
signal processing: convolution neural network, wavelet
transform, Gabor analysis etc
On undirected graph setting, a conventional definition of GFT
is based on eigendecomposition of symmetric graph shifts.
On directed graph setting, various definitions of GFTs have
been proposed, including GFT based on Jordan
decomposition of Laplacian, eigendecomposition of
magnetic decomposition, singular value decomposition of
Laplacian, polar decomposition of Laplacian, optimization of
directed variation.
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Personal website: https://sciences.ucf.edu/math/qsun/
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