
Elementary Approximation Theory

Qiyu Sun
University of Central Florida

August 17, 2011
@ Qiyu Sun



i

Important Notice

This note is written for the one-semester lectures for Honor Students at
National University of Singapore.

Part of this note is based on the following materials: “An Introduction
to the Approximation of Functions” by Theodore J. Rivlin (Dover Publica-
tions, Inc. 1981), the lecture notes for the module Approximation Theory by
Professor Toh Kim Chuan, “Approximation of Functions” by G. G. Lorentz
(Chelsea Publishing Co. 1986.), “Approximation by Spline Functions” by
Gunther Nurnberger (Springer Verlag 1989), and “Theory of Approxima-
tion” by N. I. Achieser (Dover Publications, Inc. 1992).
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Chapter 1

Introduction

The main problem in the theory of approximation can be stated as follows:
Suppose that f(x) and F (x,A1, . . . , Ar) are two functions on certain point
set, where A1, . . . , Ar are parameters. It is required to determine the para-
maters that the deviation of the function F (x,A1, . . . , Ar) from the function
f(x) shall be minimum.

Usually the function f to be approximated may have complicated struc-
ture and hard to handle, and the approximating function F (x,A1, . . . , Ar)
should have simple structure and be easily implemented, such as trigonomet-
ric polynomials, polynomials, splines, or finite linear combinations of some
“simple” functions.

Set

Πn :=

{
a0
2

+
n∑

k=1

(ak cos kx+ bk sin kx) : a0 ∈ R, ak, bk ∈ R for 1 ≤ k ≤ n

}
,

and

Pn :=

{
n∑

k=0

akx
k : ak ∈ R for 1 ≤ k ≤ n

}
, n ≥ 0.

Wemay take a trigonometric polynomial in Πr−1 as the function F (x,A1, . . . , Ar)
to approximate a periodic function, a polynomial in Pr−1 to approximate a
function on an interval.

For the set X of points x0, x1, . . . , xn in the interval [a, b] labeled as
a = x0 < x1 < · · · < xn = b and any positive integer m, we denote the
set of all Cm−1 functions on [a, b] which agree with polynomials of degree at
most m on each subinterval [xi−1, xi], 1 ≤ i ≤ n, by Sm(X). The functions
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in Sm(X) is known as spline of degree m at the knots x0, . . . , xn. Due to the
flexibility of knots and higher approximation order by splines, we may take a
spline as the function F (x,A1, . . . , Ar) if we require that the approximating
function concoides with the original function f(x).

We may use different distance to measure the difference between the
function f(x) and the approximating function F (x,A1, . . . , Ar). For exam-
ple, if we consider the bounded contiuous functions f and g on a finite
interval [a, b], we can take the least upper bound of the absolute value of
their difference, i.e.,

∥f − g∥∞ = sup
x∈[a,b]

|f(x)− g(x)|,

as the distance between two functions. If you consider the approximation of
a vector in Euclidean space Rn,

Rn = {(x1, . . . , xn) : xi ∈ R, 1 ≤ i ≤ n} ,

by vectors in a linear subspace in Rn, we often use the standard distance
|x− y| between two points x = (x1, . . . , xn) and y = (y1, . . . , yn)

|x− y| =
( n∑

i=1

|xi − yi|2
)1/2

,

to measure their distance. If the function f(x) represents an image and the
approximating function F (x,A1, . . . , Ar) represents the compressed image,
due to the behaviour of our human vision, we may use

∥f − F (·, A1, . . . , Ar)∥1 =
∫ b

a
|f(x)− F (x,A1, . . . , Ar)|dx

to measure the difference between the original image and the compressed
image and hence to justify the effectiveness of the compression.

For many applications, it is quite important to the explicit construc-
tion of the best approximation for a given function f and the parameters
A1, . . . , Ar. For the approximation problem by elements in a finite dimen-
sional subspace M of a Hilbert space H, for any given function in H, we can
construct the least approximating element in M explicitly, in fact, the least
approximating elment is the orthogonal project on M . It is proved that if
H is the space of all 2π-periodic square integrable functions and if M is the
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space of all trigonomotric polynomials of degree n, i.e., M = Πn, then the
least square approximating function Πn is jsut the partial sum of the corre-
sponding Fourier series of the given function in H. The situation to find the
best approximation becomes difficult when we consider the approximation
in a normed linear space instead of a Hilbert space. The process to find the
best approximation is nonlinear in general. For instance, it is known that
the best uniform approximating constant to a continuous function on the in-
terval [a, b] is (M +m)/2, where M and m are the maximam and minimum
of the function on [a, b] (see Section 2.2.1 and 5.2 for details). In general, we
do not have any linear/nonlinear algorithm to find the best uniform approxi-
mating function in a normed linear space, even for the case F (x,A1, . . . , Ar)
is a polynomial. So in some situations, we use certain good linear approxi-
mations with explicit expression, such as Bernstein polynomials, instead of
best approximation.

In some applications, we restrict ourselves on the accurancy to approxi-
mate the original function, hence we have certain flexibility on parameters.
To this end, we need study the approximation order of certain type of ap-
proximations and determine how many paramaters is enough to meet our
requirement. For instance, the uniform approximation error of a Hölder con-
tinuous function of order α ∈ (0, 1] by polynomials of degree at most n is
dominated by cn−α for some positive constant c. Hence if we want to find
a polynomial p to approximate the Hölder continuous function of order α
with accurancy ϵ > 0, then from the above observation we see that we can
find the polynomial p of degree nϵ to meet the requirement, where n0 is the
minimal integer larger than (c/ϵ)1/α.

The inverse problem in the theory of approximation is quite intersting.
In that situation, the problem is to study certain properties of the function
f through the approximating functions F (x,A1, . . . , Ar). It is known that
given a 2π-periodic continuous function f if the approximating error by
trigonometric polynomials of degree at most n is dominated by cn−α, then
f is Hölder continuous of order α, where α ∈ (0, 1) and where c > 0 is
independent of n ≥ 1.
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Chapter 2

Approximation by
Trigonometric Polynomials

In this chapter, we study the uniform approximation problem to a continuous
2π-periodic function by trigonometric polynomials.

2.1 Trigonometric Polynomials and Modulus of Con-
tinuity

2.1.1 Fourier Series

???????

2.1.2 Bernstein Theorem

In this section, we prove the Bernstein’s theorem and consider the inverse
problem of approximation.

Theorem 2.1.1 Let p be trigonometric polynomial of degree n. Then

∥p′∥∞ ≤ n∥p∥∞. (2.1.1)

Proof. Suppose on the contrary that the theorem is not true. Then
there exists p ∈ Πn so that

∥p∥∞ = 1 and ∥p′∥∞ > n.

5
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Set L = ∥p′∥∞/n. Without loss of generality we assume that p′(x0) = nL
for some x0 ∈ R, otherwise replacing p by −p instead. Define

S(x) = L sinn(x− x0)− p(x).

Then the trigonometric polynomial S takes values of alternating signs at
xk = x0 + (2k − 1)π/(2n), k = 1, . . . , 2n. Therefore between two of those
points, S has a zero, and hence S has 2n different zeros. By Rolle’s theorem,

S′(x) = nL cosn(x− x0)− p′(x)

also has 2n different zeros. One of those zeros is x0, since S′(x0) = nL −
p′(x0) = 0. Also,

S′′(x) = −n2L sinn(x− x0)− p′′(x)

vanishes at x0 since p′(x) takes the maximam. Moreover, S′′ has, again by
Rolle’s theorem, 2n zeros between zeros of S′. Therefore S′ has at least
2n+1 zeros, which yields that S′′ is identically zero. Hence S is a constant,
which a contradiction since S changes sign on the line. 2

2.1.3 Modulus of Continuity

In this subsection, we introduce the concept of modulus of continuity, which
is a quantity to measure the smoothness of a continuous function. Also we
introduce the class of Hölder continuous functions.

Given a continuous function f on a set K, we define the modulus of
continuity of f on a set K, to be denoted by ω(f,K, δ), or ω(f, δ), δ > 0 for
short, by

ω(f, δ) = sup
x1,x2∈K,|x1−x2|≤δ

|f(x1)− f(x2)|.

Theorem 2.1.2 Let f be a continuous function on the interval [a, b], and
ω(f, δ), δ > 0 be its modulus of continuity. Then

(i) ω(f, δ1) ≤ ω(f, δ2) for any 0 < δ1 ≤ δ2;

(ii) limδ→0 ω(f, δ) = 0 if f is uniform continuous;

(iii) ω(f, λδ) ≤ (1 + λ)ω(f, δ) for any λ, δ > 0;

(iv) If f has bounded derivative f ′ on [a, b], then

ω(f, δ) ≤ ∥f ′∥∞δ. (2.1.2)
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Proof. The assertion (i) is obvious, the assertion (ii) follows easily from
the definition of uniform continuity, and the assertion (iv) is true by mean
value theorem.

Now we prove the third assertion. Let the integer n be so chosen that
n ≤ λ < n+ 1. Using the first assertion, we obtain

ω(f, λδ) ≤ ω(f, (n+ 1)δ).

Therefore it suffices to prove

ω(f, nδ) ≤ nω(f, δ) (2.1.3)

for any positive integer n and any δ > 0. For any x1, x2 ∈ [a, b] with
|x1 − x2| < nδ, we insert n− 1 equally spaced knots zj = x1 + (x2 − x1)j/n,
0 ≤ j ≤ n, in the interval between x1 and x2. Then z0 = x1, zn = x2,
|zj+1 − zj | = |x2 − x1|/n < δ for all 0 ≤ j ≤ n, and

|f(x2)− f(x1)| = |f(zn)− f(z0)| ≤
n−1∑
j=0

|f(zj+1)− f(zj)|

≤
n−1∑
j=0

ω(f, δ) = nω(f, δ).

Taking supremum on all points x1, x2 ∈ [a, b] with |x1 − x2| ≤ nδ in the
above estimate yields (2.1.3) and hence the third assertion follows. 2

We say that a continuous function f satisfies the Lipschitz condition of
order α ∈ (0, 1] with constant K if

ω(f, [a, b], δ) ≤ Kδα ∀ δ > 0. (2.1.4)

A continuous function satisfying Lipschitz condition is also called Hölder
continuous function. The index α in (2.1.4) is known as Hölder exponent of
f . The class of all continuous functions with Hölder exponent α is denoted
by Lipα or Cα in some literatures. By Theorem 2.1.2, a continuous function
with bounded derivative belongs to Lip1.

Example 2.1.3 Show that the function f defined by f(x) := |x|α, x ∈
[−1, 1], belongs to Lipα, where 0 < α ≤ 1.
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Solution Let x1, x2 ∈ [−1, 1] satisfies |x1−x2| ≤ δ. Then either x1, x2 ∈
[−2δ, 2δ] or x1, x2 ∈ [−1, 1]\[−δ, δ]. For the first case that x1, x2 ∈ [−2δ, 2δ],

|f(x1)− f(x2)| ≤ |f(x1)|+ |f(x2)| ≤ 2(2δ)α = 21+αδα. (2.1.5)

For the second case that x1, x2 ∈ [−1, 1]\[−δ, δ], by mean value theorem,
there exists ξ between x1 and x2 such that

|f(x1)− f(x2)| = |f ′(ξ)||x1 − x2| ≤ αδα−1δ = αδα. (2.1.6)

Combining (2.1.5) and (2.1.6) proves f ∈ Lipα. 2

2.2 Least Square Approximation and Planchel For-
mula

Denote the space of all square integrable 2π-periodic functions by L2
2π. One

may verify that L2
2π is an inner product space with the inner product defined

by

⟨f, g⟩ =
∫ 2π

0
f(x)g(x)dx ∀ f, g ∈ L2

2π.

Let Πn be the space of all trigonometric polynomials of degree n,

Πn =

{
a0
2

+
n∑

k=0

(ak cos kx+ bk sin kx) : a0 ∈ R and ak, bk ∈ R, 1 ≤ k ≤ n

}
.

One may easily verify that Πn is a linear subspace of L2
2π, and{

1√
2π

,
1√
π
cosx,

1√
π
sinx, . . . ,

1√
π
cosnx,

1√
π
sinnx

}
is an orthonormal basis of Πn. Therefore by Theorems 6.1.3 and 6.2.1, we
have the following result about the least square approximation to a function
in L2

2π by trigonometric polynomials of degree at most n.

Theorem 2.2.1 Let f ∈ L2
2π. Then the least square approximation to f

from Πn is

pn =
a0
2

+
n∑

k=1

(ak cos kx+ bk sin kx),

where

ak =
1

π

∫ π

0
f(x) cos kxdx, 0 ≤ k ≤ n (2.2.1)
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and

bk =
1

π

∫ π

0
f(x) sin kxdx, 1 ≤ k ≤ n. (2.2.2)

For any function f ∈ L2
2π, we associate f with a Fourier series,

f ∼ a0
2

+
∞∑
k=1

(ak cos kx+ bk sin kx), (2.2.3)

where a0 and ak, bk, k ≥ 1, are defined as in (2.2.1) and (2.2.2). Define the
partial sum Snf of degree n of the Fourier series (2.2.3) by

Snf =
a0
2

+
n∑

k=1

(ak cos kx+ bk sin kx).

Therefore as a consequence of Theorem 2.2.1, we have

Theorem 2.2.2 Let f ∈ L2
2π. Then the partial sum Snf of degree n of its

corresponding Fourier series is the least square approximation to f out of
Πn.

Let pn be as in Theorem 2.2.1. By direct computation, we have

∥pn∥22 = π

∥∥∥∥∥ a0√2
× 1√

2π
+

n∑
k=1

(
ak

cos kx√
π

+ bk
sin kx√

π

)∥∥∥∥∥
2

2

= π

(
a20
2

+
n∑

k=1

(a2k + b2k)

)
. (2.2.4)

This together with the fact that pn is orthogonal projection onto Πn (see
Theorem 6.2.1) leads to

0 ≤ ∥f − pn∥22 = ∥f∥22 − ⟨pn, pn⟩

= ∥f∥22 − π

(
a20
2

+
n∑

k=1

(a2k + b2k)

)
. (2.2.5)

Letting n → ∞ in (2.2.5) yields

∥f∥22 ≥
πa20
2

+
∞∑
k=1

π(a2k + b2k). (2.2.6)

For the case that f is a trigonometric polynomial, the inequality (2.2.6)
becomes an equality since f = pn for sufficiently large n. Moreover, by
the density of trigonometric polynomials in L2

2π, the inequality (2.2.6) is an
identity for all f ∈ L2

2π, which is known as Planchel formula.
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Theorem 2.2.3 Let f ∈ L2
2π, and a0

2 +
∑∞

k=1(ak cos kx + bk sin kx) be its
corresponding Fourier series. Then

∥f∥22 =
πa20
2

+ π
∞∑
k=1

(a2k + b2k).

2.3 Approximation by Convolution Operators with
Nonnegative Kernel

Let C2π be the space of all 2π-periodic continuous functions. We say that
an operator T on the space of C2π is a convolution operator if there exists a
continuous function k ∈ C2π such that

Tg(θ) =

∫ π

−π
g(ϕ)k(θ − ϕ)dϕ.

The function k is said to be the kernel of the convolution operator T . If∫ π

−π
k(ϕ)dϕ = 1,

then we say that T is a convolution operator with normalized kernel k. If
k ≥ 0, then we say that the convolution operator T has nonnegative kernel.

For a continuous function g, we associate g with its Fourier series

g ∼ a0
2

+
∞∑
k=1

(ak cos kθ + bk sin kθ),

where

ak =
1

π

∫ π

−π
g(θ) cos kθdθ, k = 0, 1, . . . ,

bk =
1

π

∫ π

−π
g(θ) sin kθdθ, k = 1, . . . .

Denote the partial sum of the Fourier series of g by Sng,

Sng(θ) =
a0
2

+
n∑

k=1

(ak cos kθ + bk sin kθ).

It is known that Sng is the least square approximation to g out of Πn (see
Theorem 2.2.2 for details).
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To study the uniform approximation to g out of Πn, we need a weighted
version of partial sum of Fourier series. For an infinite triangulation ρk,n ∈
R, 1 ≤ k ≤ n, n = 1, 2, . . ., we define weighted partial sum of Fourier series
Qng by

Qng(θ) =
a0
2

+
n∑

k=1

ρk,n(ak cos kθ + bk sin kθ), n ≥ 1.

Obviously Qn = Sn when all entries in the infinite triangulation are identi-
cally one, and the weighted partial sum Qn of Fourier series is a convolution
operator with kernel un(θ)/π, where

un(θ) =
1

2
+

n∑
k=1

ρk,n cos kθ. (2.3.1)

For the usual partial sum Sn, the corresponding kernel kn(x) is

kn(θ) =
sin(n+ 1/2)θ

2π sin θ/2
. (2.3.2)

For the uniform approximation by convolution operator with nonnegative
kernel, we have the following result.

Theorem 2.3.1 Let T be a convolution operator with normalized nonnega-
tive kernel k. Then for any g ∈ C2π and n ≥ 1,

|g(θ)− Tg(θ)| ≤
[
1 +

nπ√
2
(1− ρ1)

1/2
]
ω(g, n−1), (2.3.3)

where

ρ1 =

∫ π

−π
k(ϕ) cosϕdϕ, (2.3.4)

and ω(g, θ) is the modulus of continuity of the continuous function g on R.

Proof. By the normalization condition of the kernel k, we have

g(θ)− Tg(θ) =

∫ π

−π
(g(θ)− g(ϕ))k(θ − ϕ)dϕ

=

∫ π

−π
(g(θ)− g(θ − ϕ))k(ϕ)dϕ.
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Therefore,

|g(θ)− Tg(θ)| ≤
∫ π

−π
|g(θ)− g(θ − ϕ)|k(ϕ)dϕ

≤
∫ π

−π
ω(g, |ϕ|)k(ϕ)dϕ ≤ ω(g, n−1)

∫ π

−π
(1 + n|ϕ|)k(ϕ)dϕ

≤ ω(g, n−1) + nω(g, n−1)

∫ π

−π
|ϕ|k(ϕ)dϕ,

where we have also used Theorem 2.1.2 and the assumption that k is a
nonnegative kernel. Hence it suffices to justify∫ π

−π
|ϕ|k(ϕ)dϕ ≤ π√

2
(1− ρ1)

1/2. (2.3.5)

One may show that x−1 sinx is monotonously decreasing on [0, π/2], and
hence

|x| ≤ π

2
| sinx|, x ∈

[
− π

2
,
π

2

]
. (2.3.6)

By the Cauchy inequality and by the nonnegativeness and normalization
condition of the kernel k, we obtain

∫ π

−π
| sin ϕ

2
|k(ϕ)dϕ ≤

(∫ π

−π

∣∣∣ sin ϕ

2

∣∣∣2k(ϕ)dϕ)1/2

×
(∫ π

−π
k(ϕ)dϕ

)1/2

=

(∫ π

−π

1− cosϕ

2
k(ϕ)dϕ

)1/2

=

(
1− ρ1

2

)1/2

.(2.3.7)

Then the estimate in (2.3.5) follows from (2.3.6) and (2.3.7). 2

2.4 Best Uniform Approximation by Trigonomet-
ric Polynomials

In this section, we estimate the approximation error En(g) between a func-
tion g ∈ C2π and its best uniform approximating polynomial in Πn,

En(g) = inf
p∈Πn

∥g − p∥.

The main result of this section is stated as follows, which is known as Jack-
son’s theorem.



13

Theorem 2.4.1 Let g ∈ C2π and ω(g, δ) denote the modulus of continuity
of the function g on R. Then

En(g) ≤ 6ω(g, n−1), n ≥ 1. (2.4.1)

As a consequence of Theorem 2.4.1, we have the following result about
the uniform approximation of a Hölder continuous function by trigonometric
polynomials.

Corollary 2.4.2 Let g be continuous and satisfy a Lipschitz condition of
order α with constant K, where 0 < α ≤ 1. Then

En(g) ≤ 6Kn−α, n ≥ 1.

By Theorems 2.1.2 and 2.4.1, we have

Corollary 2.4.3 The space of all trigonometric polynomials is dense in
C2π.

We shall use a convolution operator with nonnegative kernel to approxi-
mation the identity and then establish the estimate (2.4.1). To this end, we
construct a nonnegative kernel.

Lemma 2.4.4 For n ≥ 1, set

ck,n = (n+ 2)−1/2 sin
(k + 1)π

n+ 2
, k = 0, 1 . . . , n,

define

un(θ) =

∣∣∣∣∣
n∑

k=0

ck,ne
−ikθ

∣∣∣∣∣
2

,

and write

un(θ) = ρ0,n +
n∑

k=1

ρk,n cos kθ

for some ρk,n, 0 ≤ k ≤ n, n ≥ 1. Then

ρ0,n =
1

2
, (2.4.2)

and

nπ

√
1− ρ1,n

2
≤ 5. (2.4.3)
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Proof. By direct computation, we have

un(ϕ) =
n∑

k=0

c2k,n + 2
n−1∑
k=0

ck,nck+1,n cosϕ

+2
n−2∑
k=0

ck,nck+2,n cos 2ϕ+ · · ·+ 2c0,ncn,n cosnϕ.

Therefore

ρ0,n =
1

n+ 2

n∑
k=0

sin2
(k + 1)π

n+ 2
(2.4.4)

and

ρ1,n =
2

n+ 2

n−1∑
k=0

sin
(k + 1)π

n+ 2
sin

(k + 2)π

n+ 2
. (2.4.5)

By direct computation, we get

n∑
k=0

sin2
(k + 1)π

n+ 2
=

1

2

n∑
k=0

(
1− cos

2(k + 1)π

n+ 2

)

=
n+ 1

2
− 1

2
Re

(
e2πi/(n+2) 1− e2(n+1)πi/(n+2)

1− e2πi/(n+1)

)

=
n+ 1

2
+

1

2
=

n+ 2

2
, (2.4.6)

and

n−1∑
k=0

sin
(k + 1)π

n+ 2
sin

(k + 2)π

n+ 2

=
1

2

n∑
k=0

(
sin

kπ

n+ 2
+ sin

(k + 2)π

n+ 2

)
sin

(k + 1)π

n+ 2

=
n∑

k=0

cos
π

n+ 2
sin2

(k + 1)π

n+ 2
=

n+ 2

2
cos

π

n+ 2
. (2.4.7)

Hence (2.4.2) follows from (2.4.4) and (2.4.6). By (2.4.5) and (2.4.7), we
obtain

nπ

√
1− ρ1,n

2
= nπ

√
1− cos π

n+2

2

= nπ sin
π

2n+ 4
≤ nπ2

2n+ 4
≤ π2

2
≤ 5.
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This proves (2.4.3). 2

Now we start to prove Theorem 2.4.1.

Proof of Theorem 2.4.1. Let un be defined as in Lemma 2.4.4, and Qn

be the convolution operator with kernel un/π. By Lemma 2.4.4, the kernel
of the convolution operator Qn is nonnegative and satisfies the normalization
condition. Therefore by Theorem 2.3.1,

∥g −Qng∥ ≤
[
1 +

nπ√
2
(1− ρ1)

1/2
]
ω(g, n−1), (2.4.8)

where

ρ1 =
1

π

∫ π

−π
un(θ) cos θdθ.

By Lemma 2.4.4, ρ1 = ρ1,n. This together with (2.4.3) and (2.4.8) yields the
estimate (2.4.1). 2

2.5 Comparison of Best Uniform Approximation
and Least Square Approximation

In this section, we compare the L∞ error between a 2π-periodic function
g and its least square approximating polynomial in Πn, and between the
function g and its best uniform approximating polynomial in Πn.

Theorem 2.5.1 Suppose that g ∈ C2π and let qn ∈ Πn be the least square
approximation to g out of Πn. Then

∥g − qn∥∞ ≤
(
4 +

4 lnn

π2

)
En(g), (2.5.1)

where En(g) = minq∈Πn ∥g − q∥∞.

By Theorems 2.4.1 and 2.5.1, the least square approximating polynomial
to a Hölder continuous function converges uniformly.

Corollary 2.5.2 Let f be 2π-periodic and belong to Lipα for some α > 0.
Then the partial sum Snf of its corresponding Fourier series converges to f
uniformly as n tends to infinity.

To prove Theorem 2.5.1, we need the following lemma.
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Lemma 2.5.3

1

π

∫ π

0

| sin(n+ 1/2)θ|
sin θ/2

dθ < 3 +
4 lnn

π2
, n ≥ 1. (2.5.2)

Proof. For n = 1,

1

π

∫ π

0

| sin 3θ/2|
sin θ/2

dθ ≤ 1

π

∫ π

0

∣∣∣∣2 cos2 θ2 + cos θ

∣∣∣∣ dθ ≤ 3.

Hence the estimate (2.5.1) holds for n = 1.

Now we suppose that n ≥ 2. Set

In =

∫ π

0
| cosnθ|dθ

and

Jn =

∫ π

0

| sinnθ|
tan θ/2

dθ.

For In, we have

In =

∫ π

0
| cosnθ|dθ =

1

n

∫ nπ

0
| cos θ|dθ = 2. (2.5.3)

Note that tanx ≥ x for all 0 ≤ x ≥ π/2 since the function h defined by
h(x) = tanx− x is monotonously increasing on [0, π/2]. Therefore

Jn ≤ 2

∫ π

0

| sinnθ|
θ

dθ = 2

∫ nπ

0

| sin θ|
θ

dθ

= 2

∫ π

0

| sin θ|
θ

dθ + 2

∫ π

0
sin θ ×

n−1∑
k=1

1

θ + kπ
dθ

≤ 2

∫ π

0

| sin θ|
θ

dθ + 2

∫ π

0
sin θ ×

n−1∑
k=1

1

kπ
dθ

= 2

∫ π

0

| sin θ|
θ

dθ +
4 + 4 ln(n− 1)

π
. (2.5.4)

By numerical computation,∫ π

0

sin θ

θ
dθ ≈ 1.8524. (2.5.5)
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Combining (2.5.3), (2.5.4) and (2.5.5), we obtain

1

π

∫ π

0

| sin(n+ 1/2)θ|
sin θ/2

dθ ≤ 1

π

∫ π

0

| sinnθ|
tan θ/2

dθ +
1

π

∫ π

0
| cosnθ|dθ

≤
( 2
π
+

2

π

∫ π

0

sin θ

θ
dθ +

4

π2

)
+

4 lnn

π2
< 3 +

4 lnn

π
.

Hence the estimate (2.5.2) follows for n ≥ 2. 2

Now we start to prove Theorem 2.5.1.
Proof of Theorem 2.5.1. Let p∗n ∈ Πn be so chosen that En(g) =

∥g−p∗n∥∞. By Theorem 2.2.2, qn−p∗n is the partial sum Sn(g−p∗n) of degree
n of the corresponding Fourier series of g − p∗n. By (2.3.1) and (2.3.2), we
have

(qn − p∗n)(θ) =

∫ π

−π
(g − p∗n)(θ − ϕ)

sin(n+ 1/2)ϕ

2π sinϕ/2
dϕ.

Therefore

∥qn − p∗n∥∞ ≤ ∥g − p∗n∥∞ ×
∫ π

−π

| sin(n+ 1/2)ϕ|
2π| sinϕ/2|

dϕ ≤
(
3 +

4 lnn

π2

)
En(g).

(2.5.6)
Hence

∥g − q∗n∥∞ ≤ ∥q∗n − p∗n∥∞ + ∥g − p∗n∥∞ ≤
(
4 +

4 lnn

π2

)
En(g).

This completes the proof of Theorem 2.5.1. 2

2.6 Bernstein’s Theorem

In this section, we prove the Bernstein’s theorem and consider the inverse
problem of approximation.

Theorem 2.6.1 Let p be trigonometric polynomial of degree n. Then

∥p′∥∞ ≤ n∥p∥∞. (2.6.1)

Proof. Suppose on the contrary that the theorem is not true. Then
there exists p ∈ Πn so that

∥p∥∞ = 1 and ∥p′∥∞ > n.
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Set L = ∥p′∥∞/n. Without loss of generality we assume that p′(x0) = nL
for some x0 ∈ R, otherwise replacing p by −p instead. Define

S(x) = L sinn(x− x0)− p(x).

Then the trigonometric polynomial S takes values of alternating signs at
xk = x0 + (2k − 1)π/(2n), k = 1, . . . , 2n. Therefore between two of those
points, S has a zero, and hence S has 2n different zeros. By Rolle’s theorem,

S′(x) = nL cosn(x− x0)− p′(x)

also has 2n different zeros. One of those zeros is x0, since S′(x0) = nL −
p′(x0) = 0. Also,

S′′(x) = −n2L sinn(x− x0)− p′′(x)

vanishes at x0 since p′(x) takes the maximam. Moreover, S′′ has, again by
Rolle’s theorem, 2n zeros between zeros of S′. Therefore S′ has at least
2n+1 zeros, which yields that S′′ is identically zero. Hence S is a constant,
which a contradiction since S changes sign on the line. 2

Theorem 2.6.2 Let f be a 2π-periodic continuous function and En(f), n ≥
0, be the best approximation error to f from Πn. Then there exist a positive
constant C independent of δ > 0 so that

ω(f, δ) ≤ Cδ
∑

0≤n≤δ−1

En(f) ∀ δ > 0. (2.6.2)

By Corollary 2.4.2 and Theorem 2.6.2, we have the following result due
to Bernstein.

Corollary 2.6.3 A 2π-periodic continuous function f satisfies the Lipschitz
condition of order α if and only if the corresponding approximation error
En(f) from Πn satisfies

En(f) ≤ Cn−α,

where 0 < α < 1.

Now we prove Theorem 2.6.2.
Proof of Theorem 2.6.2. Let pn ∈ Πn be the best approximating

trigonometric polynomial to f in Πn. Then

∥f − pn∥∞ = En(f). (2.6.3)
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For δ > 1, we have

ω(f, δ) = ω(f − p0, δ) ≤ ∥f − p0∥∞.

Hence the estimate (2.6.2) follows from δ > 1.

Recall that En(f) is monotonuously decreasing. Then it suffices to prove

ω(f, 2−k) ≤ C2−k
k−1∑
l=0

2lE2l(f), (2.6.4)

where we have also used the first and third assertions of Theorem 2.1.2. Write
f = f −p2k +p2k . By (2.6.3) and the definition of modulus of continuity, we
have

ω(f, 2−k) = ω(f − p0, 2
−k) ≤ 2∥f − p2k∥∞ + 2−k∥p′2k − p′0∥∞. (2.6.5)

Write

p2k − p0 = (p2k − p2k−1) + (p2k−1 − p2k−2) + · · ·+ (p2 − p1) + (p1 − p0).

By Bernstein’s theorem (Theorem 2.6.1) and the monotonicity of En(f), it
follows that

∥p′2k − p′0∥∞ ≤
k∑

l=1

∥(p2l − p2l−1)′∥∞ + ∥(p1 − p0)
′∥∞

≤
k∑

l=1

2l∥p2l − p2l−1∥∞ + ∥p1 − p0∥∞

≤
k∑

l=1

2l+1E2l−1(f) + 2E0(f) (2.6.6)

Combining (2.6.5) and (2.6.6) leads to the estimate (2.6.2) for δ < 1. 2

Exercises

1. Let h be the hat function defined by h(x) = max(0, 1 − |x|), x ∈ [−1, 1].
Compute ω(h, [−1, 1], δ) for all 0 < δ < 2.
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2. Let f be a continuous function on [a, b], and [c, d] be a subinterval of [a, b].
Show that

ω(f, [c, d], δ) ≤ ω(f, [a, b], δ).

3. Let f be a 2π-periodic continuous function. Show that

ω(f, [a, a+ 2π], δ) ≤ 2ω(f, [b, b+ 2π], δ), δ > 0,

where a, b ∈ R.

4. Let f be a continuous function on [a, b], and let g be a continuous funftion from
[c, d] to [a, b] and satisfy the Lipschitz condition of order one with constant
K. Show that the composition of f and g, to be denoted by h, satisfies

ω(h, [c, d], δ) ≤ ω(f, [a, b],Kδ), δ > 0,

5. Show that |x|α ln |x|, x ∈ [0, 1] belongs to Lipβ for all β with 0 < β < α, but
does not belong to Lipα, where 0 < α ≤ 1.

6. Show that
1

2
+

n∑
k=1

cos kθ =
sin(n+ 1

2 )θ

2 sin 1
2θ

, 1 ≤ n ∈ Z.

7. Show that En(f, [a, b]) = En(f − pn, [a, b]) for any pn ∈ Pn, where Pn is the
space of all polynomial of degree at most n, and where En(f) = infp∈Pn ∥f −
p∥.

8. Let n ≥ 1 and ρk,n ∈ R, 1 ≤ k ≤ n. For 2π-periodic function g, define Qng
by

Qng(θ) =
a0
2

+
n∑

k=1

ρk,n(ak cos kθ + bk sin kθ),

where a0 and ak, bk, 1 ≤ k ≤ n are the Fouries coefficents of g. Show that Qn

is a convolution operator with kernel un(θ)/π, where

un(θ) =
1

2
+

n∑
k=1

ρk,n cos kθ.

9. Let

kn(x) = (2nπ)−1

(
sinnx/2

sinx/2

)2

.

Denote the convolution operator with kernel kn by σn. Show that if f is 2π-
periodic and satisfies the Lipschitz condition of order α for some 0 < α < 1,
then there exists a positive constant C such that

∥σnf − f∥∞ ≤ Cn−α, n ≥ 1.
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10. Let the Fourier series of a 2π-periodic continuous function f be a0/2 +∑∞
k=1 ak cos kx, and let En(f) be the best approximation error to f from

Πn. Prove that
1

2
|an+1| ≤ En(f) ≤

∞∑
k=n+1

|ak|.

7. Find all least square approximations to | cosx| out of Πn, n = 1, 2, 3.

8. Compute the L2 norm of the least square approximation to | cosx| out of
Πn, n ≥ 1, and justify whether it converges to the L2 norm of | cosx| or not.
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Chapter 3

Approximation by
Polynomials

In this chapter, we consider the uniform polynomial approximation problem.

3.1 Lagrange Interpolation

In the approximation to a given continuous function by functions with simple
structure, it is natural to require that the approximating function coincides
with the given function at certain points of the interval.

Theorem 3.1.1 Let f ∈ C([a, b]), a ≤ x1 < x2 < . . . < xn ≤ b be given,
and G be an n-dimensional subspace of C([a, b]) with g1, . . . , gn being a basis.
If

det

 g1(x1) · · · gn(x1)
...

. . .
...

g1(xn) · · · gn(xn)

 ̸= 0,

then there exists unique g ∈ G so that

g(xi) = f(xi), 1 ≤ i ≤ n. (3.1.1)

Moreover the coefficients in the solution g =
∑n

i=1 aigi satisfies the linear
system  g1(x1) · · · gn(x1)

...
. . .

...
g1(xn) · · · gn(xn)


 a1

...
an

 =

 f(x1)
...

f(xn)

 . (3.1.2)

23
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Proof. Write g =
∑n

i=1 aigi. Substituting the above expression into the
condition (3.1.1) leads to

n∑
i=1

aigi(xj) = f(xj), 1 ≤ j ≤ n,

which can be written as the matrix form (3.1.2). Hence the result follows
from standard result of linear algebra. 2

To problem to find a function g ∈ G to satisfy (3.1.1) is known as La-
grange interpolation problem, and the points x1, . . . , xn are known as the
knots of the interpolation. For the simplicity, we denote the following deter-
minant

det

 g1(x1) · · · gn(x1)
...

. . .
...

g1(xn) · · · gn(xn)


by

D

(
g1 · · · gn
x1 · · · xn

)
,

where g1, . . . , gn are continuous functions and x1, . . . , xn are points on the
real line.

From the proof of Theorem 3.1.1, we see that the Lagrange interpolation
problem is solvable if and only if the linear system (3.1.2) is solvable. For
instance, for the space spanned by g1(x) = 1 and g2(x) = sinx, x ∈ [0, π],
one may verify that

D

(
g1 g2
x1 x2

)
̸= 0

for all x1, x2 ∈ [0, π] with x1+x2 ̸= π, and hence the corresponding Lagrange
interpolation is solvable and the solution is unique for any given continuous
function f on [0, π], in fact,

g(x) =
sinx2f(x1)− sinx1f(x2)

sinx2 − sinx1
+

f(x1)− f(x2)

sinx2 − sinx1
sinx.

For the case that x1 = π − x2, the corresponding Lagrange interpolation
problem is solvable for a given continuous function f if and only if f(x1) =
f(x2).
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3.2 Polynomial Interpolation

In this section, we consider the Lagrange interpolation problem with the
interpolating functions being polynomials of degree at most n− 1.

3.2.1 Explicit Formula

It is known that {1, x, . . . , xn−1} is a basis of Pn−1, and

D

(
1 · · · xn−1

x1 · · · xn

)
=

∏
1≤i<j≤n

(xj − xi) ̸= 0

for any interpolating knots a ≤ x1 < . . . < xn ≤ b, since the determinant is
a Vandermonde determinant. Therefore by Theorem 3.1.1, we have

Theorem 3.2.1 Let f ∈ C([a, b]), a ≤ x1 < x2 < . . . < xn ≤ b be given.
Then there exists unique g ∈ Pn−1 so that

g(xi) = f(xi), 1 ≤ i ≤ n. (3.2.1)

Moreover the coefficients in the solution g =
∑n−1

i=0 aix
i satisfies the linear

system 
1 · · · xn−1

1
...

. . .
...

1 · · · xn−1
n


 a0

...
an−1

 =

 f(x1)
...

f(xn)

 . (3.2.2)

By Theorem 3.2.1, the construction of the interpolating polynomial re-
duces to solving a linear system (3.2.2). Unlike the linear system (3.1.2) not
having explicit solution in general, the linear system (3.2.2) can be solved
explicitly.

Given distinct points x1, . . . , xn ∈ [a, b], one may easily verify that the
polynomials li, 1 ≤ i ≤ n,

li(x) =
(x− x1) · · · (x− xi−1)(x− xi+1) · · · (x− xn)

(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
, (3.2.3)

are of degree at most n− 1, and satisfy

li(xj) =

{
1 j ̸= i
0 j = i

for i, j = 1, . . . , n. (3.2.4)
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In the case n = 1, we set l1(x) = 1. Therefore for any given continuous
function f on [a, b], the polynomial Ln−1 ∈ Pn−1 defined by

Ln−1(x) =
n∑

i=1

f(xi)li(x) (3.2.5)

satisfies
Ln−1(xi) = f(xi), i = 1, . . . , n.

Hence Ln−1(x) is the interpolating polynomial of degree at most n−1 to f at
the knots x1, . . . , xn by Theorem 3.2.1. The polynomial Ln−1(x) is called the
Lagrange interpolating polynomials to f at x1, . . . , xn, and the polynomials
li(x), 1 ≤ i ≤ n, in (3.2.3) are called the fundamental polynomials for the
interpolation at x1, . . . , xn.

3.2.2 Divided Difference

Let f ∈ C([a, b]) and points x1 < x2 < . . . < xn+1 be given. We define
divided difference of order n of f with respect to the points x1, . . . , xn+1 by

f [x1, . . . , xn+1] = an,

where p(t) =
∑n

i=0 aix
i is the unique interpolating polynomial in Pn−1 to

the corresponding Lagrange problem from Pn−1. By (3.2.2), we have

f [x1, . . . , xn+1] =

D

(
1 · · · xn−1 f
x1 · · · xn xn+1

)

D

(
1 · · · xn

x1 · · · xn+1

) . (3.2.6)

From the above expression, we can compute the divided difference by com-
puting two determinants. Having the following property about the divided
difference, we can compute the divided difference recursively.

Theorem 3.2.2 Let f ∈ C([a, b]) and points x1 < x2 < . . . < xn be given.
Then

f [x1, . . . , xn] =
f [x2, . . . , xn]− f [x1, . . . , xn−1]

xn − x1
. (3.2.7)

Proof. For any f ∈ C([a, b]), define

L(f) = f [x1, . . . , xn]−
f [x2, . . . , xn]− f [x1, . . . , xn−1]

xn − x1
.



27

By (3.2.6), there exist coefficients bj , 1 ≤ j ≤ n, such that

L(f) =
n∑

j=1

bjf(xj).

Therefore it suffices to prove that

bj = 0, j = 1, 2, · · · , n. (3.2.8)

For f(t) = xi, 0 ≤ i ≤ n− 3, it follows from (3.2.6) that

f [x1, . . . , xn] = f [x2, . . . , xn] = f [x1, . . . , xn−1] = 0,

which leads to
L(xi) = 0 ∀ 0 ≤ i ≤ n− 3. (3.2.9)

For f(x) = xn−2,
f [x1, . . . , xn] = 0

by (3.2.6), and
f [x2, . . . , xn] = f [x1, . . . , xn−1] = 1

since the Lagrange interpolating polynomials to xn−2 at the knots x1, . . . , xn−1

and at the knots x2, . . . , xn are the same, xn−2 itself. This shows that

L(xn−2) = 0. (3.2.10)

For the polynomial w(x) = (x−x1) . . . (x−xn), the interpolating polynomial
at the knots x1, . . . , xn is zero since the values of the function w on x1, . . . , xn
are zero. Write

w(x) = xn −
( n∑

i=1

xi
)
xn−1 − r(x)

for some polynomial r of degree at most n− 2. Note that the interpolating
polynomial to (

∑n
i=1 xi)x

n−1+r(x) at the knots x1, . . . , xn is the polynomial
itself. Therefore

0 = w[x1, . . . , xn] = hn[x1, . . . , xn]−
n∑

i=1

xi.

where hn(x) = xn, which yields

L(xn−1) = 1−
∑n

i=2 xi −
∑n−1

i=1 xi
xn − x1

= 0. (3.2.11)
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Combining (3.2.9), (3.2.10) and (3.2.11), we obtain

n∑
j=1

bjx
i
j = 0, 0 ≤ i ≤ n− 1.

Hence (3.2.8) follows. 2

The above theorem shows that the divided differences can be easily com-
puted according to the following scheme:

f [x1]
f [x1, x2]

f [x2]
f [x1, . . . , xn−1]

...
... · · · f [x1, · · · , xn]

f [x2, . . . , xn]
f [xn−1]

f [xn−1, xn]
f [xn]

By Theorem 3.2.2, for a differentiable function f , we have

lim
x2→x1

f [x1, x2] = f ′(x1).

So the divided difference is widely used as a replacement of the derivative in
numerical computation of solutions of differential equations.

3.2.3 Newton Form of Interpolating Polynomials

In this section, we give another explicit expression of Lagrange interpolating
polynomials. The advantage for such a formula is at least that we need only
add one term when we add one knot.

Theorem 3.2.3 Let f ∈ C([a, b]) and a ≤ x1 < . . . < xn ≤ b be given. The
unique polynomial p of degree at most n− 1 which solves the corresponding
Lagrange interpolation problem can be written as

p(x) = f [x1] + f [x1, x2](x− x1) + · · ·+ f [x1, . . . , xn](x− x1) · · · (x− xn−1).
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Proof. For 1 ≤ j ≤ n, let pj be the unique polynomial of degree at most
j−1 which solves the Lagrange interpolation problem for x1 < x2 < . . . < xj .
It is obvious that p1(x) = f [x1]. Inductively, we assume that

pj(x) = f [x1] + f [x1, x2](x− x1) + · · ·+ f [x1, . . . , xj ](x− x1) · · · (x− xj−1).

Therefore it suffices to prove that

pj+1(x) = pj(x) + f [x1, . . . , xj ](x− x1) · · · (x− xj).

Denote the polynomial at the right hand side by p̃j+1. Then pj+1− p̃j+1 is a
polynomial of degree at most j−1 by the definition of the divided difference.
On the other hand,

p̃j+1(xi) = pj(xi) = f(xi) = pj+1(xi), 1 ≤ i ≤ j.

This shows that pj+1(x)− p̃j+1(x) has at least j roots, which together with
the degree property of the polynomial pj+1 − p̃j+1 proves pj+1 ≡ p̃j+1. 2

3.3 Least Square Approximation

In this section, we consider the least square polynomial approximation of a
function in weighted L2 space.

A weight w on the interval [a, b] is a positive measurable function w on
[a, b]. For instance, the functions w1 and w2 defined by w1(x) := 1 and
w2(x) := (1 − x2)−1/2, x ∈ [−1, 1], are weight functions on [−1, 1], and the
Gaussian function w3 defined by w3(x) = (2π)−1/2e−x2/2 is a weight on
(−∞,∞).

For a weight w on [a, b], we define the weighted L2 space by

L2
w([a, b]) := {f : f is measurable on [a, b] and ∥f∥2,w < ∞} ,

where

∥f∥2,w :=

(∫ b

a
|f(x)|2w(x)dx

)1/2

.

One may verify that L2
w([a, b]) is an inner product space with the inner

product ⟨·, ·⟩w on L2
w([a, b]) defined by

⟨f, g⟩w =

∫ b

a
f(x)g(x)w(x)dx, ∀ f, g ∈ L2

w([a, b]).
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Let Pn be the space of all polynomials of degree at most n. If the interval
[a, b] is a finite interval and the weight w is integrable, then for any p ∈ Pn

∥p∥22,w =

∫ b

a
|p(x)|2w(x)dx ≤ ∥p∥2∞

∫ b

a
w(x)dx < ∞

and hence Pn ⊂ L2
w([a, b]), where we have used the fact that a polynomial

is bounded on any finite interval. So in this section, we restrict ourselves
to consider the weighted L2 space on a finite interval and the weight being
integrable.

By Theorems 6.1.2 and 6.2.1, we have the following result about the least
square approximation to a weighted L2 function by polynomials.

Theorem 3.3.1 Let w be an integrable weight on the finite interval, and let
f ∈ L2

w([a, b]). Then p∗n ∈ Πn is a least square approximation to f if and
only if

⟨f − p∗n, p⟩w = 0 ∀ p ∈ Πn.

Moreover, p∗n(x) =
∑n

k=0 α
∗
kx

k, where ⟨1, 1⟩w · · · ⟨xn, 1⟩w
...

. . .
...

⟨1, xn⟩w · · · ⟨xn, xn⟩w


 α∗

0
...
α∗
n

 =

 ⟨f, 1⟩w
...

⟨f, xn⟩w

 . (3.3.1)

Example 3.3.2 Let the function f and the weight on [−1, 1] be defined by
f(x) = ex and w(x) = 1, x ∈ [−1, 1]. Find the least square approximation in
P2.

Solution Let p∗2 be the least square approximation to f in P2, and write
p∗2(t) = α∗

0 + α∗
1t+ α∗

2t
2. Then by Theorem 3.3.1, the coefficients α∗

0, α
∗
1, α

∗
2

satisfy the following linear system: ⟨1, 1⟩ ⟨x, 1⟩ ⟨x2, 1⟩
⟨1, x⟩ ⟨x, x⟩ ⟨x2, x⟩
⟨1, x2⟩ ⟨x, x2⟩ ⟨x2, x2⟩


 α∗

0

α∗
1

α∗
2

 =

 ⟨ex, 1⟩
⟨ex, x⟩
⟨ex, x2⟩

 .

Simplifying the above system leads to

2

 1 0 1/3
0 1/3 0
1/3 0 1/5


 α∗

0

α∗
1

α∗
2

 =

 e− 1/e
2/e

e− 5/e

 .
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Figure 3.1: Figure 3.1: The least square approximating polynomials of degree

0, 1, 2, 3 to the exponential function on [−1, 1] and the errors.

Therefore

p∗2(x) = −
(3e
4

− 33

4e

)
+

3

e
+
(15e

4
− 105

4e

)
x2.

is the least square approximation to ex on [−1, 1] out of P2.

From the figure 6.1.5, the approximation errors between ex on [−1, 1] and
the least square approximating polynomials of degree 0, 1, 2, 3 have the oscil-
latory properties. This inspires us to consider the oscillatory property of the
approximation error between a function and its least square approximating
polynomials.

To this end, we introduce a concept called simple zero. A point x0 on the
real line is said to be a simple zero of a continuous function f if f changes
sign at x0, that is, there exist intervals so that f ̸≡ 0 on [a, x0] and [x0, b],
and that either (i) f(x) ≥ 0 on [x0, b] and f(x) ≤ 0 on [a, x0], or (ii) f(x) ≤ 0
on [x0, b] and f(x) ≥ 0 on [a, x0]. For the later applications, for two simple
zeros x0 and x1 of a continuous function f , we consider them as distinct
simple zeros when f(x) ̸≡ 0 on the interval between x0 and x1.

For instance, x0 = 0 is a simple zero of the function f defined by f(x) =
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x, x ∈ [−π, π], and of the piecewise linear function g defined by

g(x) =


x+ 1 if x < −1
0 if − 1 ≤ x ≤ 1
x− 1 if x > 1

But x0 = 0 is not a simple of the function x2 on [−1, 1] and of the function
max(|x|−1, 0) as well. For the function g defined above, −1, 1, 0 are thought
as identical simple zeros.

Theorem 3.3.3 Let f be a continuous function on the finite interval [a, b],
and let the weight function w(x) is strictly positive and continuous. Suppose
p∗n is the least square approximation to f out of Pn, and that en(x) = f(x)−
p∗n(x) is not identically zero. Then en(x) has at least n + 1 distinct simple
zeros in (a, b).

Proof. Suppose on the contrary that f(x)− p∗n(x) has only k distinct
simple zeros in [a, b], where k ≤ n. Let these zeros be labeled as follows

a < x1 < x2 < . . . < xk < b.

First we claim that k ≥ 1. By Theorem 3.3.1,∫ b

a
en(x)w(x)dx = 0,

which implies that en(x) must take both positive and negative values in [a, b],
and then there is at least one simple zero by intermediate value theorem.
This proves our claim k ≥ 1.

Define
q(x) = (x− x1) · · · (x− xk).

Then q ∈ Pn by the assumption that k ≤ n. By the assumption on the
simple zeros f(x) − p∗n(x) changes sign at intervals [xi, xi+1], 0 ≤ i ≤ k,
where we set x0 = a and xk+1 = b, since otherwise there are more than
k simple zeros for f − p∗n. Also note that q(x) changes sign at intervals
[xi, xi+1], 0 ≤ i ≤ k too. Therefore either (f(x) − p∗n(x))q(x) ≥ 0 for all
x ∈ [a, b] or (f(x)− p∗n(x))q(x) ≤ 0 for all x ∈ [a, b]. On the other hand,∫ b

a
(f(x)− p∗n(x))q(x)w(x)dx = 0

by Theorem 3.3.1. Therefore

(f(x)− p∗n(x))q(x)w(x) = 0 ∀ x ∈ [a, b].

Thus p∗n(x) = f(x), which is a contradiction. 2
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3.4 Best Approximation by Polynomials

For a continuous function f on [a, b], denote the uniform approximation error
between f and the best uniform approximating polynomial of degree at most
n by En(f, [a, b]), or En(f) for short,

En(f, [a, b]) = inf
p∈Pn

∥f − p∥∞.

In this section, we establish the following estimate to the uniform approxi-
mation error En(f, [a, b]).

Theorem 3.4.1 Let f be continuous function on the finite interval [a, b].
Then

En(f) ≤ 6ω
(
f,

b− a

2n

)
, n ≥ 1. (3.4.1)

As a consequence of Theorem 3.4.1, we have

Corollary 3.4.2 If f is continuous on the finite interval [a, b] and satisfies
the Lipschitz condition of order α with constant K, then

En(f) ≤ 6K

(
b− a

2n

)α

, n ≥ 1.

By Theorem 2.1.2 and 3.4.1, the density of the space of all polynomials
in C([a, b]) follows.

Corollary 3.4.3 The space of all polynomials is dense in C([a, b]).

Proof of Theorem 3.4.1. Let f ∈ C([a, b]), and define a 2π-periodic
function g by

g(θ) = f
(b+ a

2
+

b− a

2
cos θ

)
.

Then g is continuous and even. Also one may verify that

ω(g, δ) ≤ ω(f, (b− a)δ/2). (3.4.2)

Let q∗n be the best uniform approximation to g out of Πn, the space of all
trigonometric polynomials of degree at most n. Therefore q∗n(−·) is a best
uniform approximation to g as well since g is even. By the convexity of the set
of all best approximations, (q∗n + q∗n(−·))/2 is a best uniform approximation
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to g out of Πn. So without loss of generality we may assume that q∗n is an
even function. Therefore q∗n is a polynomial of cos θ, i.e.,

q∗n(θ) = d0 + d1 cos θ + . . .+ dn(cos θ)
n

for some dk ∈ R, 0 ≤ k ≤ n, where we have used the fact that cos kθ is a
polynomial of cos θ of degree k. Putting

pn(x) = d0 + d1
2x− b− a

b− a
+ . . .+ dn

(
2x− b− a

b− a

)n

and using Theorem 2.4.1 leads to

sup
x∈[a,b]

|f(x)− pn(x)| = sup
cos θ∈[−1,1]

∣∣∣∣g(cos θ)− pn
(a+ b

2
+

b− a

2
cos θ

)∣∣∣∣
= sup

θ∈[−π,π]
|g(θ)− q∗n(θ)| ≤ 6ω

(
g,

1

n

)
≤ 6ω

(
f,

b− a

2n

)
.

This completes the proof. 2.

For the approximation problem of a differentiable function f , we have
the following estimate about the approximation error En(f).

Theorem 3.4.4 If f has l-th continuous derivatives on [a, b] for all 0 ≤ l ≤
k, then

En(f) ≤ cn−kω

(
f (k),

b− a

2(n− k)

)
(3.4.3)

for all n > k, where c is a positive constant independent of n (but depends
on k).

Proof. At first we claim that

En(f) ≤ 6n−1En−1(f
′) (3.4.4)

for a differentiable function f on [a, b]. Suppose p∗n−1 be a polynomial of
degree at most n− 1 so that

∥f ′ − p∗n−1∥∞ = En−1(f
′). (3.4.5)

Then setting

pn(x) =

∫ x

0
p∗n−1(t)dt
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and using (2.1.2), (3.4.5) and Theorem 3.4.1, we obtain

En(f) = En(f − pn)

≤ 6n−1∥f ′ − p′n∥∞ = 6n−1∥f ′ − p∗n−1∥∞ ≤ 6n−1En−1(f
′).

This proves our claim (3.4.4).

Repeatedly using the claim (3.4.4), we get

En(f) ≤ 6n−1En−1(f
′) ≤ 62(n(n− 1))−1En−2(f

′′)

≤ · · · ≤ 6k(n(n− 1) · · · (n− k))−1En−k(f
(k))

≤ 6k+1(n(n− 1) · · · (n− k + 1))−1ω

(
f (k),

1

n− k

)
≤ cn−kω

(
f (k),

b− a

2(n− k)

)
,

where c is a constant independent of n, but dependent on k. 2

By the proof of Theorem 3.4.1, we see that the constant c in the estimate
(3.4.3) is dominated by 12k+1 for all k ≤ n/2.

3.5 Characterization of Best Approximation

In this section, we characterize the best uniform approximating polynomials
to a continuous function f on a finite interval [a, b] in Pn.

A set of distinct points x0, x1, . . . , xk satisfying a ≤ x0 < x1 < . . . <
xk−1 < xk ≤ b is called an alternating set for a continuous function g on
[a, b] if

|g(xj)| = ∥g∥∞, j = 0, . . . , k (3.5.1)

and

g(xj) = −g(xj+1), j = 0, . . . , k − 1. (3.5.2)

For example, the set consisting of −π/2, π/2 is an alternating set for the sine
function on [−π, π].

Theorem 3.5.1 Suppose f ∈ C([a, b]). Then p∗n is a best uniform approxi-
mation on [a, b] to f out of Pn if and only if there exists an alternating set
for f − p∗n consisting of n+ 2 points.

To prove Theorem 3.5.1, we need a lemma.
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Lemma 3.5.2 Suppose f ∈ C([a, b]) and p∗n is a best uniform approximation
on [a, b] to f out of Pn. Then there exist (at least) two distinct points x1, x2 ∈
[a, b] such that

|f(x1)− p∗n(x1)| = |f(x2)− p∗n(x2)| = ∥f − p∗n∥∞

and
f(x1)− p∗n(x1) = −f(x2) + p∗n(x2).

Proof. Set m1 := maxx∈[a,b] f(x) − p∗n(x) and m2 = minx∈[a,b] f(x) −
p∗n(x). Define

q∗n(x) = p∗n(x) +
m1 +m2

2
.

Then q∗n(x) ∈ Pn and

∥f − q∗n∥∞ =
m1 −m2

2
≤ ∥f − p∗n∥∞ (3.5.3)

where we have used |m1|, |m2| ≤ ∥f−p∗n∥∞ to obtain the last inequality. On
the other hand, p∗n is the best approximation to f out of Pn, which implies
that

∥f − p∗n∥∞ ≤ ∥f − q∗n∥∞. (3.5.4)

Combining (3.5.3) and (3.5.4) leads to m1 = ∥f − p∗n∥∞ and m2 = −∥f −
p∗n∥∞. Therefore the set consisting of points x1 and x2 ∈ [a, b], which are so
chosen that f(x1)− p∗n(x1) = maxx∈[a,b] f(x)− p∗n(x) and f(x2)− p∗n(x2) =
minx∈[a,b] f(x)− p∗n(x), satisfies the required properties. 2

Now we start to prove Theorem 3.5.1.
Proof of Theorem 3.5.1. First the sufficiency. Suppose that pn ∈ Pn

and that the set of distinct points x0, . . . , xn+1 forms an alternating set for
f − pn. Now we show that p∗n is a best approximation. Suppose on the
contrary that there exists qn ∈ Pn such that

∥f − qn∥∞ < ∥f − pn∥∞. (3.5.5)

Recall that

p∗n(xj)− qn(xj) = [f(xj)− qn(xj)]− [f(xj)− p∗n(xj)].

Then it follows from (3.5.5) and the conditions (3.5.1) and (3.5.2) of an
alternating set that the function p∗n − qn alternates in sign as j runs from
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0 to n + 1. Hence the polynomial qn(x) − p∗n(x) has at least one zero in
each interval (xj , xj+1), j = 0, . . . , n for a total of at least n+1 zeros, which
contradicts to the assumption that qn−p∗n is a nonzero polynomial of degree
at most n.

The necessity. Suppose that p∗n is a best approximation to f . We may
assume that f ̸∈ Pn since otherwise p∗n = f and then the whole question is
trivial. Denote ρ = ∥f − p∗n∥∞. Then ρ > 0 by f ̸= p∗n. Let x0, . . . , xs be
points of [a, b] chosen so that a = x0 < x1 < . . . < xs = b and so that e(x) =
f(x)−p∗n(x) satisfies |e(y)−e(z)| ≤ ρ/2 for all y, z ∈ [xj , xj+1], 0 ≤ j ≤ s−1.
The existence of such a partition follows from the uniform continuity of
f − p∗n. Now we label every interval with a sign: positive, negative and
zero. If the interval [xj , xj+1] contains z such that e(z) = ρ, we label the
interval [xj , xj+1] by positive sign; If the interval [xj , xj+1] contains z such
that e(z) = −ρ, we label the interval by negative sign, otherwise we define
the sign of the interval as zero. From the above construction, we see that

−ρ < f(x)− p∗n(x) < ρ (3.5.6)

for all x in some intervals with zero sign. For the later applications, we need
relabel the sign of every interval. By Lemma 3.5.2, there exists at least one
interval with positive sign and one with negative sign. Now we relabel the
sign of every interval as follows: If the sign of the interval [x0, x1] is positive or
negative, then the new sign is the same as the old one. If the sign of [x0, x1]
is zero, then the new sign is labeled as positive (negative) if the closest
interval with nonzero sign is positive (negative). Inductively we assume that
all intervals [xj , xj+1], j ≤ l − 1, have been relabeled. Before we start to
label the sign of the interval [xl, xl+1], we observe that the sign of [xl, xl+1]
is either positive or negative if the sign of [xl−1, xl] is zero. Now we label the
sign of the interval of the interval [xl, xl+1] as positive (negative) if either the
sign of the interval is positive (negative), or the sign of the interval [xl−1, xl]
is positive (negative) and the signs of the intervals [xl, xl+1] and [xl+1, xl+2]
(if there exists) are zero, and label the sign as zero otherwise. Continue this
procedure until all intervals are labeled. Putting those connected intervals
with same sign together leads to the following partition of the interval [a, b],
a = y0 < y1 < · · · < yk = b so that either (i) the sign of [yl, yl+1] is positive
if l = 0 mod 3, zero if l = 1 mod 3, and negative if l = 2 mod 3, or (ii) the
sign of [yl, yl+1] is negative if l = 0 mod 3, zero if l = 1 mod 3, and positive
if l = 2 mod 3.

Denote the maximum and minimum of the function f(x)− p∗n(x) for all
x in the intervals with positive, zero and negative sign by m+

1 and m−
1 , m

+
0
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and m−
0 , and m+

−1 and m−
−1 respectively. Then by (3.5.6) and the above

construction of partition of the interval [a, b], we have
−ρ < m−

1 ≤ m+
1 = ρ,

−ρ < m−
0 ≤ m+

0 < ρ,
−ρ = m−

−1 ≤ m+
−1 < ρ.

(3.5.7)

From the construction of the above partition of the interval [a, b], we see
that the proof is done if the number of the intervals [yl, yl+1] with positive
or negative sign exceeds n+2. Therefore it suffices to prove that the number
of the intervals with zero sign exceeds n+ 1. Suppose on the contrary that
the number, say k0, of the intervals with zero sign is less than n. Choose
points zj , 0 ≤ j ≤ k0 in the intervals with zero sign such that only one
point is selected in each interval with zero sign. We label those points as
a < z1 < z2 < . . . < zk0 < b, and define

q∗n(x) = p∗n(x) + γ(z1 − x)(z2 − x) · · · (zk0 − x),

where 0 ̸= γ ∈ R is chosen later. Obviously q∗n ∈ Pn by k0 ≤ n and

f(x)− q∗n(x) = (f(x)− p∗n(x))− γ(z1 − x)(z2 − x) · · · (zk0 − x).

Choose the sign of γ be the same of the sign of the interval [y0, y1]. Then one
may verify that γ(z1 − z) · · · (zk0 − z) are positive (negative) on the interval
with positive (negative) sign. So any γ with sufficiently small magnitude,

−ρ < m−
1 − γ(z1 − x)(z2 − x) · · · (zk0 − x) ≤ f(x)− q∗n(x)

≤ ρ− γ(z1 − x)(z2 − x) · · · (zk0 − x) < ρ (3.5.8)

for any x in the interval with positive sign, where we have used (3.5.7).
Similarly it follows (3.5.7) and the construction of zj , 1 ≤ j ≤ k0, that for γ
with the same sign as the one of [y0, y1] and sufficiently small magnitude,

−ρ < −ρ− γ(z1 − x)(z2 − x) · · · (zk0 − x) ≤ f(x)− q∗n(x)

≤ m+
−1 − γ(z1 − x)(z2 − x) · · · (zk0 − x) < ρ (3.5.9)

for all x in the intervals with negative sign, and

−ρ < m−
0 − γ(z1 − x)(z2 − x) · · · (zk0 − x) ≤ f(x)− q∗n(x)

≤ m+
0 − γ(z1 − x)(z2 − x) · · · (zk0 − x) < ρ (3.5.10)
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for all x in the intervals with zero sign. Combining (3.5.8), (3.5.9) and
(3.5.10) leads to

∥f − q∗n∥∞ < ∥f − p∗n∥∞

for γ with the same sign as the one of [y0, y1] and sufficiently small magni-
tude, which is a contradiction since p∗n is a best uniform approximation to f
out of Pn. 2

An easy application of Theorem 3.5.1 leads to the explicit expression of
the best uniform approximating constant to a continuous function.

Corollary 3.5.3 Let f be a continuous on the finite interval [a, b]. Then
the best approximating constant p∗0 to f is

p∗0 =
1

2
[max f(x) + min f(x)] ,

and the approximation error En(f) by constant functions can be computed
by

En(f) =
1

2
[max f(x)−min f(x)] .

Another application of Theorem 3.5.1 is the uniqueness of the best ap-
proximation to a continuous function by polynomials. Here we emphasize
the L∞ norm is not a strictly convex norm (see Section 2.1.4), and hence the
uniqueness of the best approximation to a continuous function by a linear
subspace does not hold in general.

Theorem 3.5.4 Let f be a continuous function on [a, b]. Then for any
n ≥ 0 there exists unique polynomial p∗n ∈ Pn, which is a best uniform
approximating polynomial to f ∈ C([a, b]) in Pn.

Proof. Set En(f) = infp∈Pn ∥f − p∥∞ and let p∗n and q∗n ∈ Pn satisfy

∥f − p∗n∥∞ = ∥f − q∗n∥∞ = En(f). (3.5.11)

Then it suffices to prove that pn = p∗n. By the convexity of the set of all best
approximations (Theorem 5.3.5),

∥f − (p∗n + q∗n)/2∥∞ = En(f). (3.5.12)
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Set r∗n = (p∗n + q∗n)/2. By Theorem 3.5.1, there exists an alternating set
x0, . . . , xn+1 for f − r∗n, which is labeled so that x0 < x1 < . . . < xn+1. So

f(xj)− r∗n(xj) =
f(xj)− p∗n(xj)

2
+

f(xj)− q∗n(xj)

2
= (−1)l+jEn(f)

for l = 0 or 1. This together with (3.5.11) implies that

f(xj)− p∗n(xj) = f(xj)− q∗n(xj) = (−1)l+jEn(f) ∀ j = 0, . . . , n+ 1.

Thus
p∗n(xj) = q∗n(xj) ∀ j = 0, . . . , n+ 1.

Hence p∗n = q∗n since both are polynomials of degree at most n. 2

3.6 Approximation by Bernstein Polynomials

In Section 5.2, we characterize the best approximating polynomials of a
continuous function. Until now, there are few situations that the best ap-
proximating polynomials can be constructed explicitly. For instance, the
best approximating constant to a continuous function is determined by the
maximum and minimum of that function (see Corollary 3.5.3), and the best
approximation polynomial of degree at most n to the polynomial xn+1 on
[−1, 1] is the Chebyshev polynomial Tn(x) defined in Section 3.6 (see Theo-
rem 1.9 in the book “An Introduction to the Approximation of Functions”
by T. J. Rivlin). All those inspire us to consider explicit construction of
polynomials to approximate a continuous function. In this section, we intro-
duce the Bernstein polynomials and discuss the approximation power to a
continuous function on [0, 1] by corresponding Bernstein polynomials. Here
given any function h ∈ C([0, 1]), we define its Bernstein polynomial of degree
m, to be denoted by Bm(h, t), by

Bm(h, t) =
m∑
k=0

h

(
k

m

)(
m
k

)
tk(1− t)m−k, m ≥ 1.

We also write Bm(h, t) as Bmh(t).

Theorem 3.6.1 Let h be a continuous function on [0, 1], and Bmh be the
corresponding Bernstein polynomials of degree m. Then

∥h−Bmh∥∞ ≤ 3

2
ω
(
h,

1√
m

)
, m ≥ 1. (3.6.1)
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By Theorem 3.6.1, we have

Corollary 3.6.2 Let h satisfy the Lipschitz condition of order α with con-
stant K. Then

∥Bmh− h∥∞ ≤ 3

2
Km−α/2, m ≥ 1.

By Theorems 2.1.2 and 3.6.1, we show that for any continuous function
h, Bmh tends to h uniformly as m tends infinity.

Corollary 3.6.3 Let h be a continuous function on [0, 1]. Then

lim
m→∞

∥Bmh− h∥∞ = 0.

To prove Theorem 3.6.1, we need some basic properties of Bernstein
polynomials.

Theorem 3.6.4 Set h0(t) = 1, h1(t) = t and h2(t) = t2. Then

Bmh0 = h0, (3.6.2)

Bmh1 = h1, (3.6.3)

and

Bmh2 =
m− 1

m
h2 +

1

m
h1, m ≥ 2. (3.6.4)

Proof. By binomial formula,

Bmh0(t) =
m∑
k=0

(
m
k

)
tk(1− t)m−k = (t+ (1− t))m = 1,

which proves (3.6.2). Similarly,

Bm(h1, t) =
m∑
k=0

h1

(
k

m

)(
m
k

)
tk(1− t)m−k

=
m∑
k=0

k

m

(
m
k

)
tk(1− t)m−k

=
m∑
k=1

(
m− 1
k − 1

)
tk(1− t)m−k

= t(t+ (1− t))m−1 = t,
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which leads to (3.6.3). Note that

Bm(h2 − h1/m, t) =
m∑
k=0

(
k(k − 1)

m2

)(
m
k

)
tk(1− t)m−k

=
m− 1

m

m∑
k=2

(
m− 2
k − 2

)
tk(1− t)m−k

=
m− 1

m
t2(t+ (1− t))m−2 =

m− 1

m
t2.

This together with (3.6.3) implies

Bmh2 =
1

m
Bmh1 +

m− 1

m
h2 =

1

m
h1 +

m− 1

m
h2.

Hence (3.6.4) follows. 2

Now we start to prove Theorem 3.6.1.
Proof of Theorem 3.6.1. By (3.6.2),

Bmh(t)− h(t) =
m∑
k=0

(
h
( k

m

)
− h(t)

)(
m
k

)
tk(1− t)m−k.

Therefore

|Bmh(t)− h(t)|

≤
m∑
k=0

∣∣∣∣h( k

m

)
− h(t)

∣∣∣∣
(

m
k

)
tk(1− t)m−k

≤
m∑
k=0

ω
(
h,
∣∣∣ k
m

− t
∣∣∣)( m

k

)
tk(1− t)m−k

≤
m∑
k=0

(
1 +m1/2

∣∣∣ k
m

− t
∣∣∣)ω(h,m−1/2)

(
m
k

)
tk(1− t)m−k

≤ ω(h,m−1/2) +
√
mω(h,m−1/2)

m∑
k=0

∣∣∣ k
m

− t
∣∣∣ ( m

k

)
tk(1− t)m−k

where we have used the properties of modulus of continuity (Theorem 2.1.2).
Hence it suffices to show

m∑
k=0

∣∣∣ k
m

− t
∣∣∣ ( m

k

)
tk(1− t)m−k ≤ 1

2
√
m
. (3.6.5)
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By (3.6.2), (3.6.3) and (3.6.4), we get

m∑
k=0

∣∣∣ k
m

− t
∣∣∣ ( m

k

)
tk(1− t)m−k

≤
(

m∑
k=0

∣∣∣ k
m

− t
∣∣∣2( m

k

)
tk(1− t)m−k

)1/2( m∑
k=0

(
m
k

)
tk(1− t)m−k

)1/2

=
(
Bmh2(t)− 2tBmh1(t) + t2Bmh0(t)

)1/2
(Bmh0(t))

1/2

= (t2 + t(1− t)/m− 2t2 + t2)1/2 =

√
t(1− t)

m
.

This together with

t(1− t) =
1

4
−
(
t− 1

2

)2
≤ 1

4
∀ t ∈ [0, 1].

proves (3.6.5) and hence completes the proof of Theorem 3.6.1. 2

The estimate in Theorem 3.6.1 can not be improved in general. For
example, by Theorem 3.6.1, for the function h defined by h(t) = |t− 1/2| on
t ∈ [0, 1], we have

∥Bmh− h∥ ≤ 3

2
√
m
. (3.6.6)

But for even m,

Bmh
(1
2

)
− h

(1
2

)
=

m∑
k=0

(∣∣∣∣ km − 1

2

∣∣∣∣− 0

)(
m
k

)(
1

2

)k (
1− 1

2

)m−k

= 2−m+1
m/2∑
k=0

(
1

2
− k

m

)(
m
k

)

= 2−m−1

(
m∑
k=0

(
m
k

)
+

(
m
m/2

))

−2−m+1
m/2−1∑
k′=0

(
m− 1
k′

)

= 2−m−1

(
2m +

(
m

m/2

))
− 2−m2m−1

= 2−m−1

(
m
m/2

)
≥ 1

2
√
m
,
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where we have used the following Stirling formula

√
2πk

(k
e

)k
< k! <

√
2πk

(k
e

)k
(1 +

1

4k
).

Thus

∥Bmh− h∥ ≥ Bmh
(1
2

)
− h

(1
2

)
≥ 1

2
√
m
. (3.6.7)

Comparing (3.6.6) and (3.6.7), we see that the estimate of approximation
error by Bernstein polynomials can not be improved in general.

By Theorem 3.4.1, the uniform approximation error to h by polynomials
in Pm is dominated by 3m−1, which is much smaller than m−1/2 for suffi-
ciently large m. Due to the difficulty to give an explicit expression of best
uniform approximating polynomial to a continuous function, it is still a good
choice to use Bernstein polynomial to approximate a continuous function on
[0, 1] since Bernstein polynomial can be computed explicitly and easily.

3.7 Approximation by Interpolating Polynomials

In this section, we study the approximating power of interpolating polynomi-
als as the number of interpolation knots increases. For simplicity, we restrict
ourselves to consider the approximating property of interpolating polynomi-
als on the interval [−1, 1]. To this end, we consider an infinite triangular
array of knots

x
(1)
1

x
(2)
1 x

(2)
2

X : x
(3)
1 x

(3)
2 x

(3)
3

...

x
(n)
1 x

(n)
2 · · · x

(n)
n

...

(3.7.1)

where for n ≥ 1, −1 ≤ x
(n)
1 < x

(n)
2 < . . . < x

(n)
n ≤ 1. We denote ℓ

(n)
j , j =

1, . . . , n, the fundamental polynomials corresponding to the interpolation

problem at knots −1 ≤ x
(n)
1 < x

(n)
2 < . . . < x

(n)
n ≤ 1. We call the function

λn(X,x) =
n∑

j=1

|l(n)j (x)|, n = 1, . . . , (3.7.2)
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the Lebesgue function of order n of X, and the quantity

Λn(X) = sup
−1≤x≤1

λn(X,x) (3.7.3)

the Lebesgue constant of order n of X. Let Ln be the unique polynomial of
degrees at most n−1 solving the Lagrange interpolation problem of f at the

knots −1 ≤ x
(n)
1 < x

(n)
2 < . . . < x

(n)
n ≤ 1. Set

Gn = Gn(f,X) := ∥f − Ln∥∞. (3.7.4)

Then we have the following estimate to the approximating error by interpo-
lating polynomials Ln.

Theorem 3.7.1 Let X be the infinity triangular array of knots in (3.7.1).
Then

Gn(f,X) ≤ (1 + Λn(X))En−1(f), n = 1, . . . , (3.7.5)

where Gn is the approximating error by interpolating polynomials Ln in
(3.7.4), En−1(f) is the approximation error to f by the best uniform approx-
imation polynomial in Pn−1, and Λn(X) is the Lebesgue constant of order n
of X in (3.7.3).

Proof. Let p∗n−1 ∈ Pn−1 be the best uniform approximation to f on
[−1, 1] out of Pn−1, i.e.,

∥f − p∗n−1∥∞ = En−1(f). (3.7.6)

By the uniqueness of the Lagrange interpolation polynomial,

Ln(p
∗
n−1, X

(n), x) = p∗n−1(x), (3.7.7)

where X(n) is the set of knots x
(n)
1 , . . . , x

(n)
n . Therefore by (3.2.5), (3.7.6)

and (3.7.7), we obtain

|f(x)− Ln(x)| ≤ |f(x)− p∗n−1(x)|+ |p∗n−1(x)− Ln(x)|
≤ |f(x)− p∗n−1(x)|+ |Ln(p

∗
n−1 − f,X(n), x)|

≤ En−1(f) + ∥f − p∗n−1∥∞
n∑

l=1

|l(n)j (x)|

≤ En−1(f)
(
1 +

n∑
j=1

|l(n)j (x)|
)
.
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Hence the estimate follows by taking supremum at both sides of the above
inequality. 2

From Theorem 3.7.1, we see that the Lebesgue constant plays important
role for a good approximation by interpolating polynomials. For the case
that the zeros of Chebyshev polynomials of order n are chosen to be the knots
at level n, we have the following estimate to the corresponding Lebesgue
constant.

Theorem 3.7.2 Let T be the infinite triangular array of knots with x
(n)
i

being defined by

x
(n)
i = − cos

(2i− 1)π

2n
, 1 ≤ i ≤ n, n ≥ 1, (3.7.8)

and denote the corresponding Lebesgue constant of order n by Λn(T ). Then
we have

Λn(T ) ≤
2

π
lnn+ 4. (3.7.9)

Proof. For the knots in (3.7.8), one may easily verify that

li(x) =

∏
1≤j≤n,j ̸=i(cos θ + cos θj)∏

1≤j≤n,j ̸=i(− cos θi + cos θj)
=

(−1)n+i−1 sin θi cosnθ

cos θ + cos θi
, (3.7.10)

where x = cos θ and θi = (2i− 1)π/(2n), 1 ≤ i ≤ n. Denote the correspond-
ing Lebesgue function of order n of T by λn(x, T ). Then it follows from
(3.7.10) that

λn(x, T ) =
| cosnθ|

n

n∑
i=1

| sin θi|
| cos θ + cos θi|

=
| cosnθ|

2n

n∑
i=1

∣∣∣ cot θ + θi
2

− cot
θ − θi
2

∣∣∣, (3.7.11)

where x = cos θ and we denote cotx = cosx/ sinx as usual. Clearly,
λn(cos θ, T ) is an even function and has period π/n about θ. This implies
that

Λn(T ) = max
−1≤x≤1

λn(x, T ) = max
0≤θ≤π/2n

λn(cos θ, T ). (3.7.12)



47

Recall that |lj(cos θ)| is monotonously decreasing about θ on [0, π/(2n)] by
(3.7.10) and the monotonicity of cos θ. This together with (3.7.12) implies
that

Λn(T ) = λn(1, T ) =
1

n

n∑
i=1

cot
θi
2
.

One may show that cotx ≤ 1/x for all 0 ≤ x ≤ π/2 since h(x) = cotx− 1/x
satisfies h(0) = 0 and h′(x) ≤ 0 for all x ∈ [0, π/2]. Thus

Λn(T ) =
1

n

n∑
i=1

cot
θi
2

≤ 4

π

n∑
j=1

1

2j − 1

≤ 4

π
+

2

π

∫ 2n−1

1

dx

x
≤ 4 +

2 lnn

π

This proves (3.7.9) and completes the proof. 2

By Theorems 3.7.1 and 3.7.2, we see that

Gn(f, T ) ≤
(
5 +

2 lnn

π

)
En−1(f).

Therefore if the modulus of continuity of f satisfies limδ→0 ω(f, δ) ln
1
δ = 0,

then the Lagrange interpolating polynomial to f at the zeros of Chebyshev
polynomials converges to f uniformly.

We remark that for any infinite triangular arrays X, the corresponding
Lebesgue constant Λn(X) satisfies

Λn(X) ≥ 2 lnn

π2
− 1.

For the infinite triangular arrays E from equally spaced points on [−1, 1],
the corresponding Lebesgue constant Λn(E) as n tends to infinity increase
exponentially and hence much worse that the asymptotic behavior of the
Lebesgue constant corresponding to the zeros of Chebyshev polynomials
(see Section 4.2 of Rivlin’s book “An Introduction to the Approximation
of Functions” for details).

Exercises
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1. Show that cos kθ is a polynomial of degree k about cos θ with leading coeffi-
cients 2k−1 for k ≥ 1.

2. Find all alternating sets for the function sinx on [−2π, 2π].

3. Let f(x) = x2, x ∈ [0, 1] and p∗(x) = ax+b be the best uniform approximating
affine function to f . Compute ∥f−p∗∥∞ and find all alternating sets for f−p∗.

4. Suppose that q ∈ Pn, f ∈ C([a, b]), and

f(xj)− q(xj) = (−1)jAj

with Aj > 0, j = 0, . . . , n = 1. Prove that

En(f) ≥ min(A0, . . . , An+1).

5. Let f be a continuous function on [a, b]. Then p∗ ∈ Pn is a best approximation
to f if and only if for each polynomial q,

max
x∈A0

(f(x)− p∗(x))q(x) ≥ 0,

where A0 denotes the set of all points y ∈ [a, b] for which |f(y) − p∗(y)| =
∥f − p∗∥∞.

6. Let f(x) = |x− 1/2|, x ∈ [0, 1]. Compute the corresponding Berstein polyno-
mials Bmf of degree 0, 1, 2.

7. Let h3(x) = x3, x ∈ [0, 1]. Compute the corresponding Bernstein polynomials
Bmh3 of degree m, where m ≥ 3.

8. For k ≥ 2, show that the Bernstein polynomials Bmhk of the function hk(x) =
xk, x ∈ [0, 1] are polynomials of degree k for all m ≥ k, and also find the
leading coefficients of Bmhk.

9. Let h be bounded on [0, 1] and suppose that h has continuous second deriva-
tive h′′. Show that

lim
n→∞

m(Bmh(x)− h(x)) = −x(1− x)

2
f ′′(x).



Chapter 4

Spline Approximation

In this chapter, we study the Lagrange interpolation problem and its ap-
proximation power.

4.1 Piecewise Linear Interpolation

Polynomial interpolation has the drawback of producing approximations
that may be excessively oscillatory between knots. If we abandon the re-
quirement that the approximating functions are polynomials, a much more
general family of approximating functions that suggests itself is the set of
piecewise polynomials, i.e., functions that are polynomials, possibly different
at different subdomains of the domain which we are approximating. In this
section, we consider the interpolation problem by continuous piecewise linear
functions and its approximating property.

Given a set X = {x1, x2, . . . , xn} labeled so that x1 < x2 < · · · < xn. We
let S1(X) be the space of all continuous function which agrees with an affine
function on each subinterval [xi, xi+1], i = 1, . . . , n − 1. For any function
g ∈ S1(X), it has ”corner” where two linear pieces meets, and generally,
have no derivative at a corner. For example, the hat function h define by
h(x) = max(0, 1−|x|), x ∈ [−1, 1], is piecewise affine function and has corner
at the points −1, 0 and 1.

Define

l1(x) =

{
x2−x
x2−x1

if x ∈ [x1, x2]

0 otherwise,
(4.1.1)

ln(x) =

{
x−xn−1

x2−x1
if x ∈ [xn−1, xn]

0 otherwise,
(4.1.2)

49
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and

li(x) =


x−xi−1

xi−xi−1
if x ∈ [xi−1, xi]

xi+1−x
xi+1−xi

if x ∈ [xi, xi+1]

0 otherwise

(4.1.3)

for 2 ≤ i ≤ n− 1. One may easily verify that the functions li(x), 1 ≤ i ≤ n,
satisfy

li(xj) =

{
1 if i = j
0 if i ̸= j.

(4.1.4)

So the dimension of S1(X) is n.
To study the interpolation problem to a given continuous function f on

a finite interval [a, b], we need make some restrictions on the knots,

x1 = a and xn = b (4.1.5)

By (4.1.1), (4.1.2) and (4.1.3), for any given continuous function f , the
interpolating function g in S1(X) satisfying

f(xi) = g(xi), 1 ≤ i ≤ n,

is

g(x) =
n∑

i=1

f(xi)li(x). (4.1.6)

Because of (4.1.4), we call the functions li, 1 ≤ i ≤ n, the fundamental
piecewise linear functions at the knots x1, . . . , xn.

Let X be an infinite triangular array of knots in [a, b],

x
(2)
1 x

(2)
2

X : x
(3)
1 x

(3)
2 x

(3)
3

...

x
(n)
1 x

(n)
2 · · · x

(n)
n

...

(4.1.7)

and satisfy

a = x
(n)
1 < x

(n)
2 < . . . < x(n)n = b, ∀ n ≥ 2. (4.1.8)

We define

△n = max
1≤i≤n−1

|x(n)i+1 − x
(n)
i |, n ≥ 1. (4.1.9)



51

For any continuous function f on [a, b], we denote the interpolating piecewise

linear function to f at the knots x
(n)
1 , . . . , x

(n)
n by gn(x). Then we have the

following estimate to the approximation error to f by interpolating piecewise
linear function gn.

Theorem 4.1.1 Let X be an infinite triangular array of knots in (4.1.7)
and satisfy (4.1.8), and let f, gn and △n, n ≥ 1, be defined by above. Then

∥f − gn∥∞ ≤ ω(f,△n). (4.1.10)

Proof. For x ∈ [x
(n)
i , x

(n)
i+1], 1 ≤ i ≤ n− 1, we have

gn(x) =
x
(n)
i+1 − x

x
(n)
i+1 − x

(n)
i

f(x
(n)
i ) +

x− x
(n)
i

x
(n)
i+1 − x

(n)
i

f(x
(n)
i+1),

which implies that

|f(x)− gn(x)| ≤
x
(n)
i+1 − x

x
(n)
i+1 − x

(n)
i

|f(x(n)i )− f(x)|+ x− x
(n)
i

x
(n)
i+1 − x

(n)
i

|f(x(n)i+1)− f(x)|

≤
x
(n)
i+1 − x

x
(n)
i+1 − x

(n)
i

ω(f,△n) +
x− x

(n)
i

x
(n)
i+1 − x

(n)
i

ω(f,△n) = ω(f,△n).

This completes the proof. 2

4.2 Quadratic Spline Interpolation

In this section, we introduce the quadratic spline and study its corresponding
interpolation and approximation problem.

4.2.1 Quadratic Spline

Suppose that X denotes the set of real numbers x0, . . . , xn labeled so that
a ≤ x0 < x1 < . . . < xn ≤ b. Let S2(X) be the set of all functions s(X,x) =
s(x) ∈ C1([a, b]) so that in each interval [xi, xi+1], 0 ≤ i ≤ n− 1, s(x) agrees
with a polynomial of degree at most 2. We call the function s ∈ S2(X)
a quadratic spline, and the points x0, . . . , xn knots. Obviously 1, x, x2 are
quadratic spline. One may easily verify that (x+2/3)2+ is a quadratic spline
with knots −1,−2/3, 2/3, 1, where we define x+ = max(x, 0).
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Theorem 4.2.1 Let X = {x0, x1, . . . , xn} be labeled so that a ≤ x0 < x1 <
. . . < xn ≤ b. Then both

{1, x, x2, (x− x1)
2
+, . . . , (x− xn−1)

2
+}

and

{1, x, x2, (x− x1)
2
−, . . . , (x− xn−1)

2
−}

are bases of S2(X), where x+ = max(0, x) and x− = min(0, x), x ∈ R.

Proof. First we prove that

{1, x, x2, (x− x1)
2
+, . . . , (x− xn−1)

2
+}

is a basis of S2(X). Obviously, 1, x, x2, (x − x1)
2
+, . . . , (x − xn−1)

2
+ be-

long to C1([a, b]) and agree with quadratic polynomials on every interval
[xi, xi+1], 0 ≤ i ≤ n− 1. Hence they are quadratic splines on the knots X.

For any given f ∈ S2(X), denote the jump of the second derivative f ′′

from the left hand side of xi, 1 ≤ i ≤ n− 1, to the right hand side by ai, and
define

g(x) =
1

2

n−1∑
i=1

ai(x− xi)
2
+.

Therefore h := f − g ∈ S2(X) and the jump of h′′ from the left hand side of
xi, 1 ≤ i ≤ n − 1, to the right hand side is always zero. This together with
the definition of a quadratic spline in S2(X) implies that h is a polynomial of
degree at most two, say h(x) = b0+b1x+b2x

2. Hence f is linear combination
of 1, x, x2, (x−x1)

2
+, . . . , (x−xn−1)

2
+. Moreover from the proof above, we see

that 1, x, x2, (x − x1)
2
+, . . . , (x − xn−1)

2
+ are linear independent. Therefore

they form a basis of S2(X).

We may similarly prove that {1, x, x2, (x − x1)
2
−, . . . , (x − xn−1)

2
−} is a

basis. We omit the detail here. 2

By Theorem 4.2.1, we have

Corollary 4.2.2 The dimension of the space S2(X) of quadratic splines is
n+ 2, and the dimension of S2(X) exceeds the number of knots by 1.
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4.2.2 Quadratic Spline Interpolation

In this section, we study the Lagrange interpolation problem by quadratic
splines. Given points a = x0 < x1 < · · · < xn = b, we see that the dimension
of quadratic spline is n+ 2, which exceeds the number n+ 1 of knots.

Theorem 4.2.3 Take points a = x0 < x1 < · · · < xn = b and set t0 =
x0, tn+1 = xn and ti = (xi−1 + xi)/2, 1 ≤ i ≤ n. Then for any given
fi ∈ R, 0 ≤ i ≤ n+1, there exists unique quadratic spline s ∈ S2(X) so that

s(ti) = fi, 0 ≤ i ≤ n+ 1. (4.2.1)

Proof. Let s ∈ S2(X) satisfy (4.2.1) and denote s(xi) by si, 0 ≤ i ≤ n.
From the values of s on xi−1, ti, xi, the quadratic spline s agrees with

pi(x) = 2si−1
(x− ti)(x− xi)

(xi − xi−1)2
−4fi

(x− xi−1)(x− xi)

(xi − xi−1)2
+2si

(x− ti)(x− xi−1)

(xi − xi−1)2

(4.2.2)
on [xi−1, xi]. By direct computation, we have

p′i(xi−1) =
−3si−1 + 4fi − si

xi − xi−1
(4.2.3)

and

p′i(xi) =
si−1 − 4fi + 3si

xi − xi−1
. (4.2.4)

Therefore it follows from s ∈ C1([a, b]) that p′i(xi) = p′i+1(xi), which together
with (4.2.3) and (4.2.4) leads to

δi+1si−1 +3(δi + δi+1)si + δisi+1 = 4δi+1fi + 4δifi+1, 1 ≤ i ≤ n− 1, (4.2.5)

where δi = xi − xi−1. Set s = (s1, . . . , sn−1),

v = 4(δ2f1 + δ1f2, . . . , δnfn−1 + δn−1fn)
T − (δ2f0, 0, . . . , 0, δn−1fn+1)

T ,

and

A =


3(δ2 + δ1) δ1 0 · · · 0 0

δ3 3(δ3 + δ2) δ2 · · · 0 0
...

. . .
. . .

. . .
...

...
0 0 · · · δn−2 3(δn−2 + δn−3) δn−3

0 0 · · · · · · δn−1 3(δn−1 + δn−2)

 .
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Then we may write the linear system (4.2.5) as

As = v. (4.2.6)

Note that A is a strictly diagonal dominated matrix. Here we say that a
matrix (aij)1≤i,j≤m is strictly diagonal dominated if |aii| >

∑
j ̸=i |aij | for all

1 ≤ i ≤ n. Then A is nonsingular. Therefore the linear system (4.2.1) is
solvable and the solution is unique by (4.2.6). 2

4.2.3 Quadratic Spline Approximation

Suppose that X = {x0, x1, . . . , xn} satisfies a = x0 < x1 < · · · < xn = b. We
define

δ = δ(X) = max
1≤i≤n

|xi − xi−1|.

Then we have the following estimate about the error between a continuous
function and its approximating quadratic interpolation spline.

Theorem 4.2.4 Suppose that f be a differentiable function on [a, b] and
s ∈ S2(X) satisfies

s(a) = f(a), s(b) = f(b) and s
(xi + xi−1

2

)
= f

(xi + xi−1

2

)
, 1 ≤ i ≤ n

(4.2.7)
Then

∥f − s∥∞ ≤ Cδω(f ′, δ), (4.2.8)

where C is a positive constant independent of X.

Proof. Set ai = (xi − xi−1)
−1|s(xi)− f(xi)|, 0 ≤ i ≤ n. Then it follows

from (4.2.7) that

a0 = an = 0. (4.2.9)

By Taylor’s expansion,{
|f(ti)− f(xi) +

δi
2 f

′(xi)| ≤ δ
2ω(f

′, δ)

|f(ti+1)− f(xi)− δi+1

2 f ′(xi)| ≤ δ
2ω(f

′, δ).
(4.2.10)

Combining (4.2.5) and (4.2.10), we obtain

3(δi + δi+1)δiai ≤ δiδi+1ai+1 + δi+1δi−1ai−1 + 4δiδi+1δω(f
′, δ),
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which implies that

3
(
1 +

δi
δi+1

)
ai ≤ ai+1 + 4δω(f ′, δ) +

δi−1

δi
ai−1. (4.2.11)

By (4.2.9) and (4.2.11), we may prove(
8

9
+

δi
δi+1

)
ai ≤

1

3
ai+1 + 2δω(f ′, δ) (4.2.12)

for 1 ≤ i ≤ n− 1 by induction. Thus

ai ≤
3

8
ai+1 +

9

4
δω(f ′, δ), 1 ≤ i ≤ n, (4.2.13)

which together with (4.2.9) that

ai ≤
18

5
δω(f ′, δ). (4.2.14)

Therefore

|f(xi)− s(xi)| ≤ 4|xi − xi−1|δω(f ′, δ). (4.2.15)

Let p∗i (x) be the quadratic polynomial in (4.2.2) with si−1, fi, si replaced
by f(xi−1), f(ti), f(xi). Then

p∗i (xi−1) = f(xi−1), p∗i (ti) = f(ti), p∗i (xi) = f(xi), (4.2.16)

and

∥p∗i − pi∥∞ ≤ 4δω(f ′, δ) (4.2.17)

by (4.2.15). By Taylor’s formula, we obtain∣∣∣∣(f − p∗i )(xi−1)− (f − p∗i )(ti) +
1

2
(f − p∗i )

′(ti)δi −
f(xi−1)− 2f(ti) + f(xi)

2

∣∣∣∣
+

∣∣∣∣(f − p∗i )(xi)− (f − p∗i )(ti)−
1

2
(f − p∗i )

′(ti)δi −
f(xi−1)− 2f(ti) + f(xi)

2

∣∣∣∣
≤ δiω(f

′, δ), (4.2.18)

where we have used (4.2.2) to compute the second derivative of p∗i . This
together with (4.2.15) leads to

|(f − p∗i )
′(ti)δi|+ |f(xi−1)− 2f(ti) + f(xi)| ≤ 4δω(f ′, δ). (4.2.19)
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Therefore the estimate (4.2.8) follows from (4.2.17) and (4.2.19), since for
x ∈ [xi−1, xi],

|f(x)− s(x)| ≤ |f(x)− p∗i (x)|+ |pi(x)− p∗i (x)|

≤ |(f − p∗i )
′(ti)||x− ti|+

2|f(xi)− 2f(ti) + f(xi)|
(xi − xi−1)2

(x− ti)
2

+δiω(f
′, δ) + 4δω(f ′, δ)

≤ 12δω(f ′, δ).

This proves (4.2.8). 2

4.3 Cubic Spline Interpolation

In this section, we introduce the cubic spline and study the corresponding
interpolation and approximation problem.

4.3.1 Cubic Spline Interpolation

Suppose that X denotes the set of real numbers x0, . . . , xn, where

a ≤ x0 < x1 < . . . < xn ≤ b.

Let S3(X) be the set of all functions s(X,x) = s(x) ∈ C2([a, b]) having the
property that in each interval [xi, xi+1], 0 ≤ i ≤ n − 1, s(x) agrees with a
polynomial of degree at most 3. We call the function s ∈ S3(X) a cubic
spline, and the points x0, . . . , xn knots. Obviously a polynomial of degree at
most 3 is a cubic spline. Also one may verify that max(0, (x + 2/3)3) is a
cubic spline with knots −1,−2/3, 2/3, 1. By similar procedure in the proof
of Theorem 4.2.1, we have

Theorem 4.3.1 Let X = {x0, x1, . . . , xn} be labeled so that a ≤ x0 < x1 <
. . . < xn ≤ b. Then both

{1, x, x2, x3, (x− x1)
3
+, . . . , (x− xn−1)

3
+}

and

{1, x, x2, x3, (x− x1)
3
−, . . . , (x− xn−1)

3
−}

are bases of S3(X), where x+ = max(0, x) and x− = min(0, x), x ∈ R. Also
the dimension of the space S3(X) of cubic spline is n+ 3.
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By Theorem 4.3.1, the dimension of S3(X) is n + 3, which exceeds the
number of the knots X by 2. To this end, we need two additional restrictions
before we start to consider the interpolating problem. We observe that the
unique polynomial p of degrees at most 3 that satisfies

p(α) = u1, p(β) = u2, p′(α) = v1, p′(β) = v2,

is

p(x) = u1

[
(x− β)2

(β − α)2
+ 2

(x− α)(x− β)2

(β − α)3

]

+u2

[
(x− α)2

(β − α)2
− 2

(x− β)(x− α)2

(β − α)3

]

+v1
(x− α)(x− β)2

(β − α)3
+ v2

(x− α)2(x− β)

(β − α)2
, (4.3.1)

where α < β. For the case α = 0 and β = 1, the above polynomial is

p(x) = u1(x− 1)2(1 + 2x) + u2x
2(3− 2x) + v1x(x− 1)2 + v2x

2(x− 1).

The above observation inspires us to consider the Lagrange interpolation by
cubic spline with restriction on the first derivative on the boundary knots.

Theorem 4.3.2 Let X = {x0, . . . , xn} be points on R labelled so that x0 <
x1 < · · · < xn. Fix numbers s′0 and s′n. Then for any given fi, 0 ≤ i ≤ n,
there exists a unique cubic spline s ∈ S3(X) satisfying

s(f,X, xi) = fi, 0 ≤ i ≤ n (4.3.2)

and
s′(f,X, xi) = s′i, i = 0, n. (4.3.3)

Proof. Let s ∈ S3(X) satisfies (4.3.2) and (4.3.3), and denote the
s′(xi) = s′i, 1 ≤ i ≤ n− 1. Then by (4.3.1), s(x) agree with

pi(x) = fi−1

[
(x− xi)

2

(xi − xi−1)2
+ 2

(x− xi−1)(x− xi)
2

(xi − xi−1)3

]

+fi

[
(x− xi−1)

2

(xi − xi−1)2
− 2

(x− xi)(x− xi−1)
2

(xi − xi−1)3

]

+s′i−1

(x− xi−1)(x− xi)
2

(xi − xi−1)3
+ s′i

(x− xi−1)
2(x− xi)

(xi − xi−1)2
(4.3.4)
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on [xi−1, xi], 1 ≤ i ≤ n. By direct computation, we obtain

p′′i (xi−1) = δ−2
i (−6fi−1 + 6fi − 4δis

′
i−1 − 2δis

′
i) (4.3.5)

and

p′′i (xi) = δ−2
i (6fi−1 − 6fi + 2δis

′
i−1 + 4δis

′
i) (4.3.6)

where we set δi = xi − xi−1 as usual. By s ∈ S3(X), we have

p′′i (xi) = p′′i+1(xi), 1 ≤ i ≤ n− 1. (4.3.7)

Combining (4.3.5), (4.3.6) and (4.3.7) leads to

δi+1s
′
i−1 + 2(δi + δi+1)s

′
i + δis

′
i+1 = 3

[
δi
δi+1

(fi+1 − fi) +
δi+1

δi
(fi − fi−1)

]
(4.3.8)

for 1 ≤ i ≤ n− 1. Set s′ = (s′1, . . . , s
′
n−1)

T ,

v′ = 3

(
δ2
δ1
(f1 − f0) +

δ1
δ2
(f2 − f1), . . . ,

δn
δn−1

(fn−1 − fn−2) +
δn−1

δn
(fn − fn−1)

)T

−(δ2s
′
1, 0, . . . , 0, δn−1s

′
n)

and

A =


2(δ2 + δ1) δ1 0 · · · 0 0

δ3 2(δ3 + δ2) δ2 · · · 0 0
...

. . .
. . .

. . .
...

...
0 0 · · · δn−2 2(δn−2 + δn−3) δn−3

0 0 · · · · · · δn−1 2(δn−1 + δn−2)

 .

Then we may write the equation (4.3.8) as

As′ = v′. (4.3.9)

Clearly, A is strictly diagonal dominated. Therefore A is nonsingular and
hence the linear system (4.3.9) is solvable and has a unique solution. 2

From the proof of Theorem 4.3.2, we see that we can solve the Lagrange
interpolation (4.3.2) and (4.3.3) with restriction on the derivative on the
boundary knot by solving the linear system (4.3.9) to get the values of the
first derivatives on all knots and then substituting them into (4.3.4) to find
the final interpolating cubic spline. An alternative to find the interpolating
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cubic spline is to find a basis e1, . . . , en+3 of S3(X), then to establish the
linear system to the solution s(x) =

∑n+3
i=1 aiei by

p(xi) = f(xi), i = 0, . . . , n
p′(x0) = s̃0
p′(xn) = s̃n.

(4.3.10)

The dimension of the above linear system is n+3, and hence is larger than the
dimension in the system (4.3.9). If the data fi, 0 ≤ i ≤ n, and s′0, s

′
n, and the

knots have certain symmetry, the dimension of the system (4.3.10) will be the
minimal integer larger than (n+3)/2, which is quite smaller than the one of
the system (4.3.9). For the cubic spline interpolating problem to the function
f(x) = x5, x ∈ [−1, 1] at the knots−1/2, 0, 1/2, the interpolating cubic spline
p satisfying (4.3.10) must be the linear combination of 1, x2, |x|3. Then we
need only solve a linear system of dimension 3. In fact for this particular
problem, the corresponding cubic interpolating spline p(x) is −2x2 + 3|x|3.

4.3.2 Extreme Property

In this section, we study the extreme property of interpolating cubic spline.

Theorem 4.3.3 Suppose that a = x0 < x1 < . . . < xn = b and f ∈ C2[a, b].
If we take fi = f(xi), 0 ≤ i ≤ n and consider the spline that satisfies{

s(xi) = fi, 0 ≤ i ≤ n
s′(x0) = f ′(x0), s′(xn) = f ′(xn).

Then we have∫ b

a
[f ′′(x)]2dx−

∫ b

a
[s′′(x)]2dx =

∫ b

a
[f ′′(x)− s′′(x)]2dx.

Proof. Clearly, we have∫ b

a
[f ′′(x)− s′′(x)]2dx

=

∫ b

a
[f ′′(x)]2 −

∫ b

a
[s′′(x)]2dx− 2

∫ b

a
s′′(x)[f ′′(x)− s′′(x)]dx.

Therefore it suffices to verify that∫ b

a
s′′(x)[f ′′(x)− s′′(x)]dx = 0.
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By partial integration formula, we obtain∫ b

a
s′′(x)[f ′′(x)− s′′(x)]dx

= s′′(x)[f ′(x)− s′(x)]
∣∣∣b
a
−
∫ b

a
s′′′(x)[f ′(x)− s′(x)]dx

=
n−1∑
i=0

αi

∫ xi+1

xi

[f ′(x)− s′(x)]dx = 0.

This completes the proof. 2

4.3.3 Cubic Spline Approximation

Now let consider the approximating power of cubic splines. Suppose now
that the set X of knots {x0, x1, . . . , xn} satisfies a = x0 < x1 < · · · < xn = b.
Given a continuous function f defined on [a, b]. Define the norm on X by

δ = δ(X) = max
1≤i≤n

|xi − xi−1|.

Then we have

Theorem 4.3.4 Suppose that f ∈ C2([a, b]) and s ∈ S3(X) satisfies

s(xi) = f(xi), 0 ≤ i ≤ n

and

s′(a) = f ′(a), s′(b) = f ′(b).

Then for all x ∈ [0, 1],

∥f − s∥∞ ≤ 5δ2ω(f ′′, δ).

The proof of Theorem 4.3.3 can be found in Rivlin’s book “An introduc-
tion to the Approximation of Functions”. We omit the detail here due to
the complexity of the proof.

Corollary 4.3.5 Given a function f in C2([a, b]), and take sets Xn, n ≥ 1
of knots. If δ(Xn) → 0 as n → ∞, then the interpolating cubic spline pn to
f at the knots of Xn converges uniformly to f .
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Exercises

1. Let G be an n-dimensional linear space of continuous functions on [a, b], and
let x1, . . . , xn be distincts points in [a, b]. Show that if

D

(
g1 g2 · gn
x1 x2 · · · xn

)
̸= 0

for a basis {g1, . . . , gn} of G, then it holds for any basis of G.

2. Find a trigonometric polynomial of degree at most one to solve the Lagrange
interpolation problem to the function f(x) = ex, x ∈ [−π, π] at the knots
−π/2, 0, π/2.

3. Find a quadratic polynomial to solve the Lagrange interpolation problem to
the function f(x) = cosπx, x ∈ [−1, 1] at knots −1/2, 0, 1.

4. Let G be the linear space spanned by 1, ex, e2x. Find a function in G to solve
the Lagrange interpolation problem to the function f(x) = x2, x ∈ [−1, 1] at
the knots −1, 0, 1.

5. Consider a polynomial p of degree at most n, and the knots x1 < x2 < . . . <
xn < xn+1. Show that the polynomial p is the only polynomial solving the
Lagrange interpolation problem to p at the above knots.

6. Consider the function f(x) = x5+1 and the knots −2,−1, 0, 1. Compute the
following divided differences,

f [−2,−1], f [−2,−1, 0], f [−1, 0, 1], f [−2,−1, 0], f [−2,−1, 0, 1],

and use Newton form to construct the Lagrange interpolation polynomial to
f at the above four knots.

7. Let f(x) = |x|, x ∈ [−1, 1], and let qn, 1 ≤ n ≤ 10, be the unique Lagrange
interpolating polynomials to f at the knots being roots of Chebeshev poly-
nomials,

x
(n)
i = − cos

(2i− 1)π

2n
, i = 1, . . . , n.

Compute the uniform norm of qn numerically and plot qn for all , 1 ≤ n ≤ 10.

8. Find the quadratic spline g at the knots −1,−1/2, 0, 1/2, 1, which interpolates
| sinπx| at −1,−3/4,−1/4, 1/4, 3/4, 1.

9. Find the quadratic spline g at the knots −1, 0, 1, which interpolates e|x| at
−1,−1/2, 1/2, 1.

10. Find the cubic spline g at the knots −1,−1/2, 0, 1/2, 1, which interpolates
sin2 πx/2, x ∈ [−1, 1] at −1,−1/2, 0, 1/2, 1 and has same dertivatives with
sin2 πx/2 at the boundary knots −1, 1.
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11. Consider the knot set X := {x0, x1, x2} = {−1/2, 0, 1/2}.

(i) Construct cubic splines pi, 0 ≤ i ≤ 2, and q0, q2 in S3(X) such that
pi(xi) = 1 and pi(xj) = 0 for all j ̸= i and p′i(x0) = p′i(x2) = 0;

(ii) Construct cubic splines q0, q2 in S3(X) so that qs(xi) = 0, 0 ≤ i ≤ 2,
q′s(xs) = 1 and q′s(xt) = 0 for t ∈ {0, 2}\{s}.

(iii) Use the results in part (i) and (ii) to construct a cubic spline p such
that p(xi) = f(xi), 0 ≤ i ≤ 2 and p′(xi) = f ′(xi), i = 0, 2, where
f(x) = cosπx+ sinπx, x ∈ [−1/2, 1/2].



Chapter 5

Approximation in Normed
Linear Spaces

In this chapter, we study the approximation problem in a normed linear
space. In particular, we consider the existence and uniqueness problem of
the best approximation to a given function in a normed linear space out of
a linear subspace.

5.1 Normed Linear Spaces

In this section, we introduce the concept of a normed linear space, and recall
some basic properties of a normed linear space.

5.1.1 Linear Spaces

A linear space V is a set of vectors that has the following properties:

(i) There is an operation of addition, and the addition of any two vectors
in the set produces another vector and satisfies:

– u+ (v + w) = (u+ v) + w for all u, v, w ∈ V .

– u+ v = v + u for all u, v ∈ V .

– There is a zero vector 0 such that u+ 0 = u for all u ∈ V .

– Every vector u has a negative correspondence −u such that u +
(−u) = 0.

63



64

(ii) There is an operation of multiplication, and the multiplication of a real
number gives another vector and satisfies:

– α(u+ v) = αu+ αv for all α ∈ R and u, v ∈ V .

– (α+ β)u = αu+ βu for all α, β ∈ R and u ∈ V .

– (αβ)u = α(βu) for all α, β ∈ R and u ∈ V .

– 1u = u for all u ∈ V .

One may verify that the following mathematical objects are linear spaces:

(a) The set R of all real numbers with usual addition and multiplication.

(b) The Euclidean space Rd = {(x1, . . . , xd) : xi ∈ R, 1 ≤ i ≤ d} with
coordinate addition and multiplication.

(c) The space Πr, r = 0, 1, . . ., of all trigonometric polynomials of degree
at most r,

Πr =
{
a0 +

r∑
k=1

(ak cos kπx+ bk sinnπx) :

a0 ∈ R, ak, bk ∈ R for k = 1, . . . , r
}
.

(d) The space Pr of all polynomials of degree at most r,

Pr =

{
r∑

k=0

akx
k : ak ∈ R, 0 ≤ k ≤ r

}
, r = 0, 1, . . . .

(e) The space L2([a, b]) of all square integrable functions on the interval
[a, b],

L2([a, b]) =

{
f :

∫ b

a
|f(x)|2dx < ∞

}
;

(f) The space C([a, b]) of all continuous functions on a finite interval [a, b].

(g) The shift-invariant space V 2(ϕ) spanned by the integer shifts of a com-
pactly supported L2 function ϕ on the real line R,

V 2(ϕ) =

∑
k∈Z

c(k)ϕ(x− k) :
∑
k∈Z

|c(k)|2 < +∞

 .
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5.1.2 Normed Linear Spaces

A normed linear space V is a linear space with a norm ∥ · ∥, a function from
V to R that has the following properties:

(i) ∥v∥ ≥ 0 for all v ∈ V , and ∥v∥ = 0 if and only if v = 0.

(ii) ∥αv∥ = |α|∥v∥ for all α ∈ R and v ∈ V .

(iii) (Triangle inequality) ∥u+ v∥ ≤ ∥u∥+ ∥v∥ for all u, v ∈ V .

The following are some examples of normed linear spaces:

(a) The space R of all real numbers with magnitude as the norm on R.

(b) The d-dimensional Euclidean space Rd with the norm | · |p, 1 ≤ p ≤ ∞,
defined by

|x|p =
(

d∑
i=1

|xi|p
)1/p

for x = (x1, . . . , xd) ∈ Rd.

(The norm | · |2 is usual norm on Rd and is commonly denoted by |x|.)

(c) The space Pr of all polynomials of degree r with the norm ∥ · ∥ defined
by

∥p∥ =
r∑

k=0

|ak| for p(x) =
r∑

k=0

akx
k.

(d) The space L2([a, b]) of square-integrable functions on the interval [a, b]
with the norm ∥ · ∥2 defined by

∥f∥2 =
(∫ b

a
|f(x)|2dx

)1/2

.

(e) The space C([a, b]) of all continuous function on the interval [a, b] with
the uniform norm ∥ · ∥∞ defined by

∥f∥∞ = sup
x∈[a,b]

|f(x)|.
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Remark 5.1.1 We remark that a nonegative function on a linear space may
not be a norm. For instance, the function | · |p on Euclidean space Rd,

|x|p =
(

n∑
i=1

|xi|p
)1/p

for x = (x1, . . . , xd) ∈ Rd,

is not a norm when 0 < p < 1, because since the triangle inequality in the
definition of a norm does not hold in general. For instance, for x = (1, 0)
and y = (0, 1), we have

|x+ y|p = 21/p > 2 = |x|p + |y|p.

5.1.3 Strictly Convex Norms

In this section, we show that the Lp norm on the space of all p-integrable
functions on the interval [a, b] is a strictly convex norm, where 1 < p < ∞.
Here a norm ∥·∥ on a linear space V is said to be a strictly convex norm if the
unit sphere S of V , S = {v ∈ V : ∥v∥ = 1}, contains no open line segment,
i.e., if v1, v2 are two distinct element in V and satisfy ∥v1∥ = ∥v2∥ = 1, then
∥tv1 + (1− t)v2∥ < 1 for all t ∈ (0, 1).

Theorem 5.1.2 Let Lp([a, b]), 1 < p < ∞, be the space of all p-integrable
functions f on the interval [a, b] with finite ∥f∥p, where

∥f∥p =
( ∫ b

a
|f(x)|pdx

)1/p
.

Then ∥ · ∥p is a strictly convex norm on Lp([a, b]).

Remark 5.1.3 For 1 ≤ p ≤ ∞, we define the Lp norm ∥f∥p of a measurable
function f by

∥f∥p =


(∫ b

a |f(x)|pdx
)1/p

, 1 ≤ p < ∞,

esssupx∈[a,b]|f(x)|, p = ∞.

and let Lp([a, b]) be the space of all measurabele functions f on the interval
[a, b] with finite Lp norm ∥f∥p. In Theorem 5.1.2, it is shown that the Lp

norm is a strictly convex norm when p ∈ (1,∞). The above strict convexity
property is no longer true for p = 1,∞. In particular, we notice that if f1, f2
are nonnegative functions on the interval [a, b] with ∥f1∥1 = ∥f2∥1 = 1, then

∥tf1 + (1− t)f2∥1 = t∥f1∥1 + (1− t)∥f2∥1 = 1
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for all t ∈ [0, 1]. Therefore the L1 norm on L1([a, b]) is not a strictly con-
vex norm. Similarly, the L∞ norm on the space L∞([a, b]) of all bounded
functions on [a, b] is not a strictly convex norm too because for nonnegative
monotonously-increasing functions f3 and f4 on [a, b] with f3(b) = f4(b) =
1, we obtain from the nonnegativeness and monotonicity of the function
tf3 + (1− t)f4 that

∥tf3 + (1− t)f4∥∞ = tf3(b) + (1− t)f4(b) = 1

for all t ∈ [0, 1].

To prove Theorem 5.1.2, we need the following two lemmas.

Lemma 5.1.4 If A and B are positive and 0 ≤ t ≤ 1, then

AtB1−t ≤ tA+ (1− t)B,

and the equality holds only if t = 0, 1 or A = B.

Proof. Take h(x) = − lnx. Then h′(x) = −1/x and h′′(x) = 1/x2 > 0.
Therefore by Taylor expansion, we have

h(A) = h(tA+ (1− t)B) + (1− t)(A−B)h′(tA+ (1− t)B)

+
h′′(ξ)

2
(1− t)2(A−B)2

≥ h(tA+ (1− t)B) + (1− t)(A−B)h′(tA+ (1− t)B)

and

h(B) = h(tA+ (1− t)B)− t(A−B)h′(tA+ (1− t)B))

+
h′′(η)

2
t2(A−B)2

≥ h(tA+ (1− t)B)− t(A−B)h′(tA+ (1− t)B)

for some ξ, η between A and B. Multiplying t and 1 − t to the above two
estimates respectively, then summing up and subsitituting h(x) by − lnx,
we obtain

ln
1

tA+ (1− t)B
≤ t ln

1

A
+ (1− t) ln

1

B
.

Moreover, we see that the above inequality becomes an equality holds only
when t = 0, 1, or A = B. Then the lemma follows. 2
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Lemma 5.1.5 Let 1 < p < ∞, 0 < λ < 1 and f1, f2 ∈ Lp([a, b]). Then∫ b

a
|λf1(x) + (1− λ)f2(x)|pdx

≤ λ

∫ b

a
|f1(x)|pdx+ (1− λ)

∫ b

a
|f2(x)|pdx, (5.1.1)

and the above equality holds only if f1 = f2.

Proof. Set h = λf1 + (1− λ)f2. By Lemma 5.1.4, we have

|f1||h|p−1 ≤ 1

p
|f1|p +

p− 1

p
|h|p

and

|f2||h|p−1 ≤ 1

p
|f2|p +

p− 1

p
|h|p.

Combining the above two estimates with

|h| ≤ λ|f1|+ (1− λ)|f2|,

we obtain ∫ b

a
|h(x)|pdx

≤ λ

∫ b

a
|f1(x)||h(x)|p−1dx+ (1− λ)

∫ b

a
|f2(x)||h(x)|p−1dx

≤ λ

p

∫ b

a
|f1(x)|pdx+

λ(p− 1)

p

∫ b

a
|h(x)|pdx

+
1− λ

p

∫ b

a
|f2(x)|pdx+

(1− λ)(p− 1)

p

∫ b

a
|h(x)|pdx

=
λ

p

∫ b

a
|f1(x)|pdx+

1− λ

p

∫ b

a
|f2(x)|pdx

+
p− 1

p

∫ b

a
|h(x)|pdx.

This proves (5.1.1). Moreover, we see from the above proof that the in-
equality in (5.1.1) becomes an equality only if f1(x)f2(x) ≥ 0, |f1(x)| =
|λf1(x) + (1− λ)f2(x)| and |f2(x)| = |λf1(x) + (1− λ)f2(x)|, x ∈ R. There-
fore f1 = f2. 2
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Now we start to prove Theorem 5.1.2.
Proof of Theorem 5.1.2. The strictly convexity property of the norm

∥ · ∥p follows easily from Lemma 5.1.5. Therefore it suffices to prove that
∥ · ∥p is a norm. Clearly for any α ∈ R and f ∈ Lp([a, b]), we have that
∥αf∥p = |α|∥f∥p, ∥f∥p ≥ 0, and the above inequality becomes an equality
only if f = 0. Then it remains to prove

∥f + g∥p ≤ ∥f∥p + ∥g∥p

for any nonzero functions f, g in Lp([a, b]). Applying Lemma 5.1.5 with
f1 = f/∥f∥p, f2 = g/∥g∥p and λ = ∥f∥p/(∥f∥p + ∥g∥p), we obtain,∫ b

a

(
|f(x) + g(x)|
∥f∥p + ∥g∥p

)p

dx

≤ ∥f∥p
∥f∥p + ∥g∥p

∫ b

a

(
|f(x)|
∥f∥p

)p

dx+
∥g∥p

∥f∥p + ∥g∥p

∫ b

a

(
|g(x)|
∥g∥p

)p

dx

=
∥f∥p

∥f∥p + ∥g∥p
+

∥g∥p
∥f∥p + ∥g∥p

= 1.

This proves that ∥f + g∥p ≤ ∥f∥p + ∥g∥p for any nonzero functions f, g ∈
Lp([a, b]), and hence that ∥ · ∥p is a norm. 2

5.2 Existence of Best Approximation

In this section, we consider the existence problem of best approximations
out of a finite-dimensional linear subspace.

We start this section with the best approximation problem of the hat
function h(x) = max(1−|x|, 0), x ∈ [−1, 1], out of the linear space of constant
functions.

Example 5.2.1 Let h be the hat function. Find all best uniform approxi-
mating constants C0, i.e., ∥h− C0∥∞ = minC∈R ∥h− C∥∞.

Solution. Noting that 0 ≤ h(x) ≤ 1, we have

|h(x)− C| ≥ |h(x)| ∀ x ∈ [−1, 1]

for C < 0 and
|h(x)− C| ≥ |h(x)− 1| ∀ x ∈ [−1, 1]
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for C > 1. Thus,

min
C∈R

∥h− C∥∞ = min
C∈[−1,1]

∥h− C∥∞.

Also noting that h(x) − C is affine on [−1, 0] and [0, 1] for any C ∈ R, we
then obtain

∥h− C∥∞ = max(|h(−1)− C|, |h(0)− C|, |h(1)− C|) = max(C, 1− C)

for 0 ≤ C ≤ 1. On the other hand,

min
C∈[0,1]

max(C, 1− C) =
1

2
.

Therefore,

min
C∈R

∥h− C∥∞ =
1

2
,

and C0 = 1/2 is the unique real number such that ∥h− C0∥∞ = 1/2. 2

Remark 5.2.2 A general problem to find the best uniform approximating
constant of a continuous function will be discussed in Chapter 5. In fact, it
is shown that for a continuous function f on [a, b], the best approximating
constant is (M +m)/2, where M and m are the maximum and minimum of
the function f on [a, b] (see Corollary 3.5.3 for details).

From the above example, we see that there is a unique best uniform
approximating constant to the hat function. In general, we have the following
theorem about the existence of best approximation, which is also known as
the fundamental theorem in approximation theory.

Theorem 5.2.3 Let V be a normed linear space, and W be a finite dimen-
sional linear subspace of V . Then, given any v ∈ V , there exists w∗ ∈ W
such that

∥v − w∗∥ = inf
w∈W

∥v − w∥.

Remark 5.2.4 The requirement that the approximating space W is finite
dimensional in Theorem 5.2.3 is essential. For example, let V be the space
of all continuous functions on [0, 1/2], and W be the space of all polynomials
(without any restriction on their degrees). By Taylor’s expansion,∣∣∣∣∣ex −

n∑
k=0

xk

k!

∣∣∣∣∣ ≤ exn+1

(n+ 1)!
∀ x ∈ [0, 1],
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which implies

sup
x∈[0,1]

∣∣∣∣∣ex −
n∑

k=0

xk

k!

∣∣∣∣∣ ≤ e

(n+ 1)!
→ 0 as n → ∞.

Therefore infw∈W ∥f−w∥∞ = 0, while ex is obviously not a polynomial. This
shows that there does not exist w∗ ∈ W such that supx∈[0,1] |ex−w∗(x)| = 0.

To prove Theorem 5.2.3, we need two lemmas.

Lemma 5.2.5 Let V be a finite dimensional linear space, and x1, . . . , xn ∈
V . Then the function f on Rn defined by

f(λ1, . . . , λn) = ∥λ1x1 + · · ·+ λxn∥

is uniformly continuous.

Proof. By the triangle inequality of the norm ∥ · ∥ on V ,

−∥x− y∥ ≤ ∥x∥ − ∥y∥ ≤ ∥x− y∥ ∀ x, y ∈ V.

Therefore for any vectors λ = (λ1, . . . , λn) and λ0 = (λ0
1, . . . , λ

0
n) ∈ Rn,

|f(λ1, . . . , λn)− f(λ0
1, . . . , λ

0
n)|

≤
∣∣∣∥λ1x1 + · · ·+ λnxn∥ − ∥λ0

1x1 + · · ·+ λ0
nxn∥

∣∣∣
≤ ∥(λ1 − λ0

1)x1 + · · ·+ (λn − λ0
n)xn∥

≤ |λ1 − λ0
1|∥x1∥+ · · ·+ |λn − λ0

n|∥xn∥

≤
( n∑

i=1

|λi − λ0
i |2
)1/2

×
( n∑

i=1

∥xi∥2
)1/2

(5.2.1)

This implies that for any given ϵ > 0,

|f(λ1, . . . , λn)− f(λ0
1, . . . , λ

0
n)| ≤ ϵ

holds for all vectors (λ1, . . . , λn) and (λ0
1, . . . , λ

0
n) ∈ Rn that satisfy( n∑

i=1

|λi − λ0
i |2
)1/2

≤
(
1 +

n∑
i=1

∥xi∥2
)−1/2

ϵ.

Then the uniform continuity of f is proved. 2

We say that x1, . . . , xn in a linear space V is linearly independent if
λ1x1 + . . .+ λnxn = 0 for some λ1, . . . , λn ∈ R implies λ1 = · · · = λn = 0..
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Lemma 5.2.6 Let V be a finite-dimensional linear space, and ∥ · ∥ be a
norm on V . If x1, . . . , xn ∈ V are linear independent, then there exist two
positive constants A and B such that

A

(
n∑

i=1

|λi|2
)1/2

≤ ∥λ1x1 + · · ·+ λnxn∥ ≤ B

(
n∑

i=1

|λi|2
)1/2

. (5.2.2)

Proof. For any (λ1, . . . , λn) ∈ Rn, by the definition of a norm, we have

∥λ1x1 + · · ·+ λnxn∥ ≤ ∥λ1x1∥+ · · ·+ ∥λnxn∥

= |λ1|∥x1∥+ · · ·+ |λn|∥xn∥ ≤
( n∑

i=1

|λi|2
)1/2

×
( n∑

i=1

∥xi∥2
)1/2

.

Therefore the right estimate of (5.2.2) follows by lettingB = (
∑n

i=1 ∥xi∥2)1/2.
Now we prove the estimate on the left-hand side of (5.2.2). Clearly it

holds for the trivial case λ1 = · · · = λn = 0. So we may assume that
(λ1, . . . , λn) ̸= 0 hereafter. Let

Sn−1 =

{
(λ1, . . . , λn) ∈ Rn :

n∑
i=1

|λi|2 = 1

}

be the unit sphere in Rn, and define a function f on the unit sphere Sn−1

by

f(λ1, . . . , λn) = ∥λ1x1 + · · ·+ λnxn∥.

Denote the minimum of f on the unit sphere Sn−1 by

m = inf
(λ1,...,λn)∈Sn−1

f(λ1, . . . , λn).

Now we claim that m > 0. By the fact that f(λ1, . . . , λn) ≥ 0 for all
(λ1, . . . , λn) ∈ Sn−1, we have m ≥ 0. Therefore it suffices to prove that m ̸=
0. Suppose, on the contrary, that m = 0. Then there exists (λ0

1, . . . , λ
0
n) ∈

Sn−1 by Lemma 5.2.5 so that

0 = m = f(λ0
1, . . . , λ

0
n) =

∥∥∥λ0
1x1 + · · ·+ λ0

nxn
∥∥∥ ,

which implies that λ0
1x1 + · · · + λ0

nxn = 0 by the norm property. This
together with the linear independent assumption yields λ0

1 = · · · = λ0
n = 0,

which contradicts (λ0
1, . . . , λ

0
n) ∈ Sn−1. The claim m > 0 is proved.
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By the above claim m > 0,

∥λ1x1 + · · ·+ λnxn∥ ≥ m (5.2.3)

for any (λ1, . . . , λn) ∈ Sn−1. For any 0 ̸= (λ1, . . . , λn), we have that
(λ′

1, . . . , λ
′
n) ∈ Sn−1 where λ′

i = λi/Λ, 1 ≤ i ≤ n and Λ = (
∑n

i=1 |λi|2)1/2.
Thus,

∥λ1x1 + · · ·+ λnxn∥ = ∥Λ(λ′
1x1 + · · ·+ λ′

nxn)∥
= Λ∥λ′

1x1 + · · ·+ λ′
nxn∥ ≥ Λm

≥ m
( n∑

i=1

|λi|2
)1/2

.

Hence the left estimate of (5.2.2) follows by letting A = m. 2

Now we start to prove Theorem 5.2.3.

Proof of Theorem 5.2.3. Set M = ∥v∥ and let m = infw∈W ∥v−w∥.
By 0 ∈ W and the triangle inequality of the norm ∥ · ∥, we have

m ≤ ∥v − 0∥ = M,

and

∥v − w∥ ≥ ∥w∥ − ∥v∥ > 2M −M ≥ m

for any w ∈ W with ∥w∥ > 2M . Therefore it suffices to find the best
approximation w∗ in the set {w : ∥w∥ ≤ 2M}, i.e.,

m = inf
w∈W,∥w∥≤2M

∥v − w∥. (5.2.4)

Select a basis e1, . . . , en of the space W , where n is the dimension of W .
By Lemma 5.2.6, there exists two positive constants A and B independent
of (λ1, . . . , λn) ∈ Rn so that

A
( n∑

i=1

|λi|2
)1/2

≤ ∥λ1e1 + · · ·+ λnen∥ ≤ B
( n∑

i=1

|λi|2
)1/2

.

Note that every element w ∈ W can uniquely be written as

w = λ1e1 + . . .+ λnen.
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Therefore for any w ∈ W with ∥w∥ ≤ 2M , the corresponding vector (λ1, . . . , λn) ∈
Rn satisfies (

∑n
i=1 |λi|2)1/2 ≤ 2A−1M . This leads to the following inclusion,

{w ∈ W : ∥w∥ ≤ 2M} ⊂
{
λ1e1 + · · ·+ λnen :

( n∑
i=1

|λi|2
)1/2

≤ 2A−1M

}
.

(5.2.5)
By (5.2.4) and (5.2.5), we have

m = inf
(
∑n

i=1
|λi|2)1/2≤2A−1M

f(λ1, . . . , λn),

where we set
f(λ1, . . . , λn) = ∥v − λ1e1 − . . .− λnen∥.

By Lemma 5.2.5, f is a continuous function onRn. Hencem = f(λ∗
1, . . . , λ

∗
n)

for some vector (λ∗
1, . . . , λ

∗
n) ∈ Rn with (

∑n
i=1 |λ∗

i |2)1/2 ≤ 2A−1M , which
proves that the element w∗ :=

∑n
i=1 λ

∗
i ei ∈ W is a best approximation to v

out of W . 2

5.3 Uniqueness of Best Approximation

In this section, we consider the uniqueness problem of best approximations,
and establish the following result.

Theorem 5.3.1 Let V be a normed linear space with a norm ∥ · ∥, and W
be a linear subspace of V . If the norm ∥ · ∥ is strictly convex, then for any
given v ∈ V there exists at most one best approximation out of W .

Clearly, combining Theorems 5.2.3 and 5.3.1, we obtain

Corollary 5.3.2 Let V be a norm linear space with a norm ∥·∥ and W be a
finite-dimensional linear subspace of V . If the norm ∥ · ∥ is a strictly convex
norm on V , then for any given v ∈ V there is a unique best approximation
w∗ to v out of W .

Remark 5.3.3 The assumption on the strict convexity of the norm ∥ · ∥
in Theorem 5.3.1 cannot be dropped in general. For instance, let V :=
L1([−1, 1]), the space of all integrable functions on [−1, 1], and let W :=
{c sinπx : c ∈ R}, an one-dimensional subspace of L1([−1, 1]). It is known
that the L1 norm on the space L1([−1, 1]) is not a strictly convex norm(see
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Section 2.1.4). For the constant function f = 1 ∈ L1([−1, 1]), we claim that
functions c sinπx are best approximations to f out of W for any c ∈ [−1, 1],
i.e.,

∥1− c sinπx/2∥1 = inf
w∈W

∥v − w∥1 ∀ c ∈ [−1, 1]. (5.3.1)

Now we prove the claim (5.3.1). For c ∈ [−1, 1],

∥1− c sinπx/2∥1 =
∫ 1

−1

(
1− c sin

πx

2

)
dx = 2, (5.3.2)

since c sinπx/2 ≤ 1 for all x ∈ [−1, 1]. For c ≥ 1, let ξ0 ∈ [0, 1] be so chosen
that c sinπξ0/2 = 1. Then

∥1− c sinπx/2∥1 =
∫ ξ0

−1

(
1− c sin

πx

2

)
dx+

∫ 1

ξ0

(
c sin

πx

2
− 1

)
dx

= 2 + 2

∫ 1

ξ0

(
c sin

πx

2
− 1

)
dx ≥ 2. (5.3.3)

Similarly for c ≤ −1, we have

∥1− c sinπx/2∥1 ≥ 2. (5.3.4)

Hence the claim (5.3.1) follows from (5.3.2), (5.3.3) and (5.3.4).

Remark 5.3.4 On the other hand, the strict convexity of the norm in The-
orem 5.3.1 is not necessary to gurantee the uniqueness of the best approx-
imation. In Section 2.2.1, the best uniform approximating constant to the
hat function is unique even though the L∞ is not strictly convex. In general,
it will be shown later that the best uniform approximation to a continuous
function on a finite interval out of Pr, the space of all polynomials of degree
at most r, is unique, where r ≥ 0 (see Theorem 3.5.4 for details).

We say a set E is convex if for any w1, w2 ∈ E, all elements on the line
segment tw1 + (1 − t)w2, t ∈ [0, 1], belong to E. For instance, the unit ball
B := {v ∈ V : ∥v∥ ≤ 1} of a normed linear space V is a convex set. To
prove Theorem 5.3.1, we consider the convext property of the set of all best
approximations out of a linear space.

Lemma 5.3.5 Let V be a normed linear space, and W be a linear subspace
of V . Suppose that v ∈ V , and denote the set of all best approximations to
v out of W by W ∗. Then W ∗ is a convex set.
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Proof. Take any w∗
0, w

∗
1 ∈ W ∗, we have

∥v − w∗
0∥ = ∥v − w∗

1∥ = inf
w∈W

∥v − w∥. (5.3.5)

Set wt = tw∗
1 + (1− t)w∗

0, t ∈ [0, 1]. Then wt ∈ W and

∥v − wt∥ ≥ inf
w∈W

∥v − w∥. (5.3.6)

By (5.3.5) and the triangle inequality of the norm ∥ · ∥, we obtain

∥v − wt∥ = ∥t(v − w∗
1) + (1− t)(v − w∗

0)∥
≤ t∥v − w∗

1∥+ (1− t)∥v − w∗
0∥ = inf

w∈W
∥v − w∥. (5.3.7)

Combining (5.3.6) and (5.3.7) leads to ∥v−wt∥ = infw∈W ∥v−w∥. Thus wt

is also a best approximation to v out of W , and hence belongs to W ∗. 2

An easy application of Lemma 5.3.5 leads to the following interesting
result.

Corollary 5.3.6 Let V be a normed linear space, and W be a linear sub-
space of V . Suppose that v ∈ V . Then either there is only one best approxi-
mation to v out of W , or there are infinitely many best approximation to v
out of W .

Now we start to prove Theorem 5.3.1.
Proof of Theorem 5.3.1. Suppose, on the contrary, that w∗

0 and
w∗
1 are two distinct best approximations to v out of W . By Lemma 5.3.5,

w∗ = (w∗
0 + w∗

1)/2 is also a best approximation to v out of W . Therefore

∥v − w∗
0∥ = ∥v − w∗

1∥ = ∥v − w∗∥ = ρ, (5.3.8)

where we set ρ = infw∈W ∥v − w∥. In the case ρ = 0, it follows from (5.3.8)
that v = w∗

0 and v = w∗
1, which contradicts w∗

0 ̸= w∗
1. So we may assume

ρ ̸= 0 hereafter. Still by (5.3.8), we obtain

∥ρ−1(v − w∗
0)∥ = ∥ρ−1(v − w∗

1)∥ = 1 and ∥ρ−1(v − w∗)∥ = 1,

which is a contradiction since

∥ρ−1(v − w∗)∥ =

∥∥∥∥12
(
ρ−1(v − w∗

1) + ρ−1(v − w∗
1)
)∥∥∥∥ < 1
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by the strict convexity property of the norm ∥ · ∥. 2

Exercises

1. Define ∥f∥1 =
∫ b

a
|f(x)|dx for any measurable function f on [a, b] and let

L1([a, b]) be the space of all measurable functions f with finite ∥f∥1. Prove
that ∥ · ∥1 is a norm on L1([a, b]).

2. Let C([a, b]) be the space of all continuous functions f on a finite interval
[a, b] with ∥f∥∞ < ∞, where ∥f∥∞ = supx∈[a,b] |f(x)|. Prove that ∥ · ∥∞ is a
norm.

3. Let Pr be the space of all polynomials of degree at most r, r ≥ 0. Define

|||p||| =
r∑

k=0

|ak| for p(x) =

r∑
k=0

akx
k ∈ Pr.

Prove that ||| · ||| is a norm but not a strictly convex norm.

4. Let Rd be the d-dimensional Euclidean space, and define

|x|p =
( d∑

i=1

|xi|p
)1/p

, x = (x1, . . . , xd) ∈ Rd,

where 1 ≤ p < ∞. Prove that | · |p is a strictly convex norm on Rd for
1 < p < ∞.

5. Let V be a finite-dimensional linear space, and ∥ · ∥ and ||| · ||| be two norms
on V . Prove that there exist two positive constants A,B such that

A∥x∥ ≤ |||x||| ≤ B∥x∥ ∀ x ∈ V.

6. Let f(x) = x, x ∈ [0, 1], and 1 ≤ p < ∞. Find all constants c0 so that

∥f − c0∥p = min
c∈R

∥f − c∥p

and evaluate ∥f − c0∥p, where we define

∥g∥p =
(∫ 1

0

|g(x)|pdx
)1/p

, g ∈ Lp([0, 1]).
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7. Let f(x) = ex, x ∈ [0, 1]. Find all affine functions p∗ so that

∥f − p∗∥2 = min
p∈P1

∥f − p∗∥2,

where ∥ · ∥2 is the usual L2 norm on L2([0, 1]) and P1 is the space of all affine
functions.

8. Let f be the sign function on [−1, 1], that is,

f(x) =

 1 if x > 0
0 if x = 0
−1 if x < 0,

and W be the space spanned by f(x) + 1. Find all best uniform approxima-
tions g0 to f out of W , i.e.,

∥f − g0∥∞ = inf
g∈W

∥f − g∥∞.

9. Construct a finitely-dimensional subspace W of C([−1, 1]) and find a contin-
uous function f on [−1, 1] so that the set of all best approximation to f out
of W has more than one elements.

10. Let V be a normed linear space, and W be a closed linear subspace of V . For
any given v ∈ V , denote the set of all best approximations to v out of W by
W ∗. Show that W ∗ is closed and bounded.

11. Let V be a normed linear space of functions on [−a, a] so that ∥f∥ = ∥f(−·)∥
for all f ∈ V , and W be a finite dimensional linear subspace of V . Prove that
for any given even function f ∈ V , there exists a even function g∗ ∈ W such
that

∥f − g∗∥ = inf
g∈V

∥f − g∥.

(Hint: To show that g(−·) is also a best approximation to the even function
f when g is).



Chapter 6

Approximation in Hilbert
Spaces

In this chapter, we consider the approximation problem in a Hilbert space.
We start from recalling some basic properties of Hilbert spaces, then estab-
lish the existence and uniqueness of the best approximation of a function in
a Hilbert space out of its finite-dimensional subspace, and finally apply the
above existence and uniqueness result to the least square approximation of
finite points on the plane by functions on the line.

6.1 Hilbert Spaces

In this section, we recall the definition of an inner product, introduce a
strictly convex norm associated with an inner product, establish the Cauchy-
Schwartz inequality, construct orthogonal projection, recall the Gram-Schmidt
orthogonalization procedure and apply the procedure to construct orthogo-
nal polynomials explicitly.

6.1.1 Inner Product

Let H be a linear space. An inner product on H is a function ⟨·, ·⟩ : H ×
H 7−→ R, that has the following properties:

(i) ⟨u, u⟩ ≥ 0 for all u ∈ H, and the equality holds only if u = 0.

(ii) ⟨u, v⟩ = ⟨v, u⟩ for all u, v ∈ H.

(iii) ⟨αu+ βv,w⟩ = α⟨u,w⟩+ β⟨v, w⟩ for all α, β ∈ R and u, v, w ∈ H.

79
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An inner product space is a linear space H with an inner product ⟨·, ·⟩, to
be denoted by (H, ⟨·, ·⟩). A Hilbert space is a complete inner product space,
that is, an inner product space such that every Cauchy sequence in H has a
limit in H.

The following are some examples of inner product spaces:

(a) The Euclidean space Rd with inner product ⟨·, ·⟩ defined by

⟨x, y⟩ =
d∑

i=1

xiyi ∀ x = (x1, . . . , xd) and y = (y1, . . . , yd) ∈ Rd.

(b) The space ℓ2 of all square-summable sequence (xk)k∈Z with inner prod-
uct defined by

⟨x, y⟩ =
∑
k∈Z

xkyk ∀ x = (xk)k∈Z and y = (yk)k∈Z ∈ ℓ2.

(c) The space

L2
w([a, b]) :=

{
f :

∫ b

a
|f(x)|2w(x)dx < ∞

}

of all weighted L2 functions on the interval [a, b] with inner product
defined by

⟨f, g⟩ =
∫ b

a
f(x)g(x)w(x)dx ∀ f, g ∈ L2

w([a, b]),

where w is a weight function on [a, b], i.e., 0 < w(x) < ∞ for almost
all x ∈ [a, b].

6.1.2 Cauchy-Schwartz Inequality

For any inner product on a linear space, we have the following Cauchy-
Schwartz inequality.

Theorem 6.1.1 Let (H, ⟨·, ·⟩) be an inner product space. Then

|⟨u, v⟩|2 ≤ ⟨u, u⟩⟨v, v⟩ ∀ u, v ∈ H. (6.1.1)

Moreover the inequality in (6.1.1) becomes an equality if and only if either
v = 0 or u = λv for some λ ∈ R.
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Proof. Take any nonzero vector u, v ∈ R. We may assume that both
u, v are nonzero vector since (6.1.1) is trivial if either u or v is a zero vector.
By the definition of an inner product, ⟨u+ tv, u+ tv⟩ ≥ 0 for all t ∈ R, i.e.,

⟨u, u⟩+ 2t⟨u, v⟩+ t2⟨v, v⟩ ≥ 0 ∀ t ∈ R. (6.1.2)

Hence the inequality (6.1.1) follows by taking t = −⟨u, v⟩/⟨v, v⟩ in the above
inequality (6.1.2).

For v = 0 or u = λv, one may easily verify that the Cauchy-Schwartz
inequality (6.1.1) becomes an equality. Conversely if the Cauchy-Schwartz
inequality (6.1.1) becomes an equality, then it follows from (6.1.2) that either
v = 0 or ⟨u+ tv, u+ tv⟩ = 0 for some t ∈ R. For the late case, u+ tv = 0 by
the first property of an inner product, and hence u = λv for some λ ∈ R. 2

For an inner product ⟨·, ·⟩ on a linear space H, we define ∥ · ∥ on H by

∥u∥ =
√
⟨u, u⟩, u ∈ H. (6.1.3)

In the following theorem, we show that ∥ · ∥ is a strictly convex norm on H.

Theorem 6.1.2 Let (H, ⟨·, ·⟩) be an inner product space. Then the function
∥ · ∥ defined in (6.1.3) is a strictly convex norm.

Proof. Clearly ∥u∥ ≥ 0 for all u ∈ V , ∥u∥ = 0 only if u = 0, and
∥αu∥ = |α|∥u∥ for all α ∈ R and u ∈ V . By Cauchy-Schwartz inequality, we
have

∥u+ v∥2 = ⟨u+ v, u+ v⟩ ≤ ⟨u, u⟩+ ⟨v, v⟩+ 2∥u∥∥v∥ = (∥u∥+ ∥v∥)2

for all u, v ∈ V . This concludes that the map ∥ · ∥ from H to R is a norm.
Now we prove that the norm ∥·∥ is a strictly convex norm. Take two distinct
elements u, v ∈ H with ∥u∥ = ∥v∥ = 1, and take t ∈ (0, 1). Then it suffices
to prove that

∥tu+ (1− t)v∥ < 1. (6.1.4)

Suppose, on the contrary, that ∥tu+ (1− t)v∥ ≥ 1. Recalling that

∥tu+ (1− t)v∥ ≤ t∥u∥+ (1− t)∥v∥ = 1

by the triangle inequality of a norm, we then have that ∥tu+ (1− t)v∥ = 1.
By direct computation,

⟨tu+ (1− t)v, tu+ (1− t)v⟩ = t2∥u∥2 + (1− t)2∥v∥2 + 2t(1− t)⟨u, v⟩,
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which together with

∥u∥ = ∥v∥ = ∥tu+ (1− t)v∥ = 1 (6.1.5)

implies that
⟨u, v⟩ = 1 = ∥u∥∥v∥.

Therefore u = λv by Theorem 6.1.2. Substituting the above relation into
(6.1.5) leads to λ = 1, which contradicts u ̸= v. 2

6.1.3 Orthogonal Projection

Let H be an inner product space with inner product ⟨·, ·⟩ and M be a linear
subspace of H. For u ∈ H, we say that u is perpendicular to M , to be
denoted by u⊥M , if ⟨u, v⟩ = 0 for all v ∈ M .

For every u ∈ H, the orthogonal projection of u onto M is the vector u∗

in M such that u− u∗ is perpendicular to M .
Recalling that the only element in M perpendicular to M is zero ele-

ment, we see that the orthogonal projection of u must be unique if there
exists. Moreover, the map from u to the orthogonal projection u∗ is a linear
operator, to be denoted by P and to be called orthogonal projector, from H
to M . For the orthogonal operator P , we have

P 2 = P and (I − P )2 = I − P. (6.1.6)

For the case that M is a finite-dimensional linear space, the orthogonal
projection onto M always exists and can be constructed explicitly.

Theorem 6.1.3 Let H be an inner product space and M be a finite-dimensional
linear subspace of H. Then for any u ∈ H there exists an orthogonal pro-
jection Pu onto M . Moreover if e1, . . . , en is a basis of the linear space M ,
then the orthogonal projection Pu is given by

Pu =
n∑

k=1

αiei, (6.1.7)

where α1, . . . , αn satisfies the following linear system: ⟨e1, e1⟩ · · · ⟨en, e1⟩
...

. . .
...

⟨e1, en⟩ · · · ⟨en, en⟩


 α1

...
αn

 =

 ⟨u, e1⟩
...

⟨u, en⟩

 . (6.1.8)



83

Remark 6.1.4 The n × n square matrix in (6.1.8) is known as the Gram
matrix of {e1, . . . , en}. We say that {e1, . . . , en} is an orthonormal basis of
a linear space M if {e1, . . . , en} is a basis of the linear space W and if the
corresponding Gram matrix is the identity matrix. By Theorem 6.1.3, we
conclude that if {e1, . . . , en} is an orthonormal basis of the linear space M ,
then the orthogonal projection Pu of u onto M is given by

Pu =
n∑

i=1

⟨u, ei⟩ei. (6.1.9)

Now we prove Theorem 6.1.3.

Proof of Theorem 6.1.3. First we prove that the n×n square matrix
A with ⟨ei, ej⟩ as entries is nonsingular. Suppose, on the contrary, that A is
singular. Then its rows are linearly dependent, which implies that

n∑
i=1

βi⟨ei, ej⟩ = 0 ∀ j = 1, . . . , n

for some nonzero vector (β1, . . . , βn) ∈ Rn. Hence for w :=
∑n

i=1 βiei, we
have

⟨w,w⟩ =
n∑

j=1

βj⟨w, ej⟩ = 0,

which implies that w = 0. This contradicts to (β1, . . . , βn) ̸= 0, and hence
proves that A is nonsingular. Therefore the linear system (6.1.8) is solvable
and has a unique solution.

Then we prove that Pu defined by (6.1.7) is perpendicular to M . Recall
that e1, . . . , en is a basis of M . Then it suffices to prove that

⟨Pu, ej⟩ = ⟨u, ej⟩ j = 1, . . . , n,

which follows from easily from (6.1.7) and (6.1.8). 2

6.1.4 Gram-Schmidt Orthonormalization Procedure

From Remark 6.1.4, we see that the orthogonal projection has simple rep-
resentation when an orthonormal basis of M is constructed. This inspires
us to consider the orthogonalization of any given basis, that is, given a lin-
ear independent set {u1, . . . , un} of an inner product space H, construct an
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orthonormal set {v1, . . . , vn} such that the space generated by u1, . . . , un is
the same as the space generated by v1, . . . , vn.

Gram-Schmidt orthonormalization procedure.
At first, we set

v1 =
u1

∥u1∥
.

Clearly the space spanned by v1 is the same as the one spanned by u1.
Secondly we subtract away the orthogonal projection of u2 onto the space

spanned by v1,
v̂2 = u2 − ⟨u2, v1⟩v1,

and set

v2 =
v̂2

∥v̂2∥
.

The above procedure works because v̂2 ̸= 0, since otherwise u1 and u2 would
be linearly dependent, which contradicts the linearly independent assump-
tion on u1, u2, . . . , un. From the above construction we also see that the
space spanned by v1, v2 is the same as the one spanned by u1, u2.

Inductively, we assume that we have constructed orthonormal basis v1, . . . , vk
from u1, . . . , uk such that the space Vk spanned by v1, . . . , vk is the same as
the one spanned by u1, · · · , uk, and such that v1, . . . , vk is an orthonormal
basis of Vk. Now we define

v̂k+1 = uk+1 − ⟨uk+1, v1⟩v1 − · · · − ⟨uk+1, vk⟩vk

and set

vk+1 =
v̂k+1

∥v̂k+1∥
.

Here we have used the observation that v̂k+1 ̸= 0, since otherwise u1, . . . , uk+1

are linearly dependent which is a contradiction. Also one may easily verify
that the space Vk+1 spanned by v1, . . . , vk+1 is the same as the one spanned
by u1, · · · , uk+1, and such that v1, . . . , vk+1 is an orthonormal basis of Vk+1.

We continue the above process until k = n.

6.1.5 Orthogonal Polynomials

Given a finite interval [a, b] and an integrable weight w, we may use the
Gram-Schmidt orthonormalization procedure to construct an orthonormal
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basis {p0, . . . , pn} from the natural basis {1, . . . , xr} of Pr under the inner
product ⟨·, ·⟩w:

p̂0 = 1, p0 = p̂0/∥p̂0∥
and inductively we define

p̂k := xk −
k−1∑
j=0

⟨xk, pj⟩wpj (6.1.10)

and
pk := p̂k/∥p̂k∥ (6.1.11)

until k = r.

For the case that the interval is the unit interval I = [−1, 1] and the
weight is defined by wα,β(x) = (1 − x)α(1 + x)β, where α, β > −1, the
associated set of orthogonal polynomials obtained from Gram-Schmidt or-
thonormalization procedure of the polynomials {1, x, x2, . . .} under the inner

product ⟨·, ·⟩wα,β
, is denoted by {P (α,β)

n (x)}∞n=0, and usually called the Jacobi
polynomials.

If we specify the indices α and β and consider the case α = β = 0,

the resulting Jacobi polynomials P
(0,0)
n after renormalization at 1 are called

Legendre polynomials Pn, Pn = cnP
(0,0)
n for some cn ∈ R and Pn(1) = 1. In

this case, the expression of Legendre polynomials up to degree 4:

P0(x) = 1,

P1(x) = x,

P2(x) =
3

2
x2 − 1

2
,

P3(x) =
5

2
x3 − 3

2
x,

P4(x) =
35

8
x4 − 15

4
x2 +

3

8
,

while for n ≥ 2, Pn is defined by

nPn(x) = (2n− 1)xPn−1(x)− (n− 1)Pn−2.

If we consider the case that α = β = −1/2, the resulting Jacobi poly-

nomials P
(−1/2,−1/2)
n after renormalization at 1 are Chebyshev polynomials

Tn,
Tn(x) = cosnθ,
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Legendre Polynomials of degree 0, 1, 2, 3, 4

Figure 3.1: Legendre Polynomials of degrees 0, 1, 2, 3, 4

where x = cos θ. Here we give the explicit expression of Chebyshev polyno-
mials with degrees up to 4.

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1.

If we consider the case that α = β = 1/2, the resulting Jacobi polyno-

mials P
(−1/2,−1/2)
n after renormalization at 1 are the Chebyshev polynomials

of second kind Un, n ≥ 0, by

Un(x) =
sin(n+ 1)θ

sin θ
,

where x = cos θ. The following are the explicit expression of Chebyshev
polynomials of second kind of degree up to 4 and their figures.

U0(x) = 1,
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Figure 3.2: Chebyshev polynomials of degrees 0, 1, 2, 3, 4

U1(x) = 2x,

U2(x) = 4x2 − 1,

U3(x) = 8x3 − 4x,

U4(x) = 16x4 − 12x2 + 1.

6.2 Existence and Uniqueness of Best Approxima-
tions

In this section, we establish the following result about existence, uniqueness,
and explicit construction of best approximations in Hilbert space.

Theorem 6.2.1 Let H be an inner product space and M be a finite-dimensional
subspace of H. Then for any u ∈ H there exists a unique u∗ ∈ M such that

∥u− u∗∥ = min
v∈M

∥u− v∥.

Moreover, u∗ is a best approximation to u out of M if and only if u−u∗⊥M ,
that is, u∗ = Pu, where P is the orthogonal projection onto M .
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Figure 3.3: Chebyshev polynomials of second kind of degrees 0, 1, 2, 3, 4

Proof. The existence of the best approximation follows from Theo-
rem 5.2.3, while the uniqueness of best approximations is true because of
Theorems 5.3.1 and 6.1.2.

Now we show that the best approximation is just the projection of u onto
M . Let u∗ be a best approximation and set d = ∥u − u∗∥. Then for any
λ ∈ R and v ∈ M ,

d2 ≤ ∥u− u∗ − λv∥2 = d2 − 2λ⟨u− u∗, v⟩+ λ2∥v∥2,

which yields

2λ⟨u− u∗, v⟩ ≤ λ2∥v∥2. (6.2.1)

Letting λ → 0+ and λ → 0− in (6.2.1) respectively, we obtain

2⟨u− u∗, v⟩ ≤ 0 and 2⟨u− u∗, v⟩ ≥ 0

for all v ∈ W . Thus ⟨u − u∗, v⟩ = 0 for all v ∈ M . This proves that u − u∗

is perpendicular to M .

Conversely if w ∈ M is so chosen that u− w⊥M , then for any v ∈ M ,

∥u− v∥2 − ∥u− w∥2 = ∥v − w∥2 − 2⟨u− w, v − w⟩ = ∥v − w∥2 ≥ 0,

which implies that w is a best approximation of u out of M . 2
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6.3 Least Square Approximation in Rd

In this section, we give an application of Theorem 6.2.1. More applications
will be given in later chapters. By Theorems 6.1.3 and 6.2.1, we have the
following result about the least square approximation of a vector in Rd out
of a linear subspace W of Rd.

Theorem 6.3.1 Let W be a linear subspace of Rd. Then for any given
u ∈ Rd there exists unique u∗ ∈ W so that

∥u− u∗∥ = inf
v∈W

∥u− v∥.

Moreover if e1, . . . , em is a basis of W , then u∗ =
∑m

i=1 αiei satisfies ⟨e1, e1⟩ · · · ⟨em, e1⟩
...

. . .
...

⟨e1, em⟩ · · · ⟨em, em⟩


 α1

...
αm

 =

 ⟨u, e1⟩
...

⟨u, em⟩

 . (6.3.1)

Now we apply the above theorem to solve the following least square
approximation of certain points on plane by functions in a finite-demensional
space.

Example 6.3.2 Let X := {(xk, yk) ∈ R2, 1 ≤ k ≤ n} be some points in R2

and W be a finite-dimensional space of continuous functions. Find the least
square approximation f∗ ∈ W to the points X, that is,( n∑

k=1

|yk − f∗(xk)|2
)1/2

= min
f∈W

( n∑
k=1

|yk − f(xk)|2
)1/2

.

Solution. Let m denote the dimension of the space W , and f1, . . . , fm
be a basis of W . Then every function f ∈ W can be written as f =∑m

i=1 αifi for some (α1, . . . , αm) ∈ Rm. Thus the problem reduces to finding
(α∗

1, · · · , α∗
m) ∈ Rm so that( n∑

k=1

∣∣∣yk − m∑
i=1

α∗
i fi(xk)

∣∣∣2)1/2 = min
(α1,...,αm)∈Rm

( n∑
k=1

∣∣∣yk − m∑
i=1

αifi(xk)
∣∣∣2)1/2.

In other words, it suffices to find u∗ so that

∥u− u∗∥ = inf
v∈W

∥u− v∥,
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where ∥ · ∥ is usual Euclidean norm on Rn, u = (y1, . . . , yn), and the linear
space W is spanned by vectors

ei := (fi(x1), . . . , fi(xn)), 1 ≤ i ≤ m. (6.3.2)

Let {u1, . . . , ut} be an orthonormal basis of the linear space, and write

uj =
m∑
i=1

αjiei, 1 ≤ j ≤ m.

By Theorem 6.3.1, the function f =
∑m

i=1

(∑t
j=1⟨y, uj⟩αji

)
fi is a solution.

2

For the case that W = Pm−1, the space of all polynomials of degree at
most m−1, the vectors e1, . . . , em in (6.3.2) are linear independent if m < n
because any nonzero polynomial of degree at most m− 1 has no more than
n roots. Therefore there is a unique polynomial p∗ of degree at most m− 1
so that ( n∑

k=1

|yk − p∗(xk)|2
)1/2

= min
p∈Pm−1

( n∑
k=1

|yk − p(xk)|2
)1/2

.

If we further specify that m = 2, we have

p∗(x) = α∗
0x+ α∗

1,

where

α∗
0 =

n
∑n

k=1 xkyk − (
∑n

k=1 xk)(
∑n

k=1 yk)

n
∑n

k=1 x
2
k − (

∑n
k=1 xk)

2
,

α∗
1 =

(
∑n

k=1 yk)(
∑n

k=1 x
2
k)− (

∑n
k=1 ykxk)(

∑n
k=1 xk)

n
∑n

k=1 x
2
k − (

∑n
k=1 xk)

2
.

Exercises

1. Use Gram-Schmidt orthogonal process to orthonormalize the following two
bases of the 3-dimensional Euclidean space with standard inner product:

(i) e1 = (1, 1, 1), e2 = (2, 0, 3), e3 = (4, 2, 0);
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(ii) e1 = (4, 2, 0), e2 = (1, 1, 1), e3 = (2, 0, 3).

2. Let M be the space spanned by 1, x, x2. Use Gram-Schmidt orthogonal pro-
cess to construct an orthonormal basis of M under the inner product⟨·, ·⟩
defined by

⟨f, g⟩ =
∫ ∞

0

f(x)g(x)exdx for f, g ∈ M.

3. Let M be the space spanned by 1, sinx, cosx. Use Gram-Schmidt orthogonal
process to construct an orthonormal basis of M under the inner product⟨·, ·⟩
defined by

⟨f, g⟩ =
∫ π

−π

f(x)g(x) sin2 xdx for f, g ∈ M.

4. Let M be the space spanned by 1, ex, sinπx. Use Gram-Schmidt process to
construct an orthonormal basis of M under the inner product⟨·, ·⟩ defined by

⟨f, g⟩ =
∫ 1

0

f(x)g(x)dx for f, g ∈ M.

5. Justify that the Chebyshev polynomials Tn are even functions for even n and
odd functions for odd n.

6. Justify that the Chebyshev polynomials Tn satisfy the following relation:

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1.

7. Let X = {(−2,−1), (−1, 1), (0,−2), (1, 3), (2,−1)}. Find the quadratic
polynomial p with least square approximation error to the points in X.

8. Let (xk, yk) = (sin kπ/100, cos kπ/200), 0 ≤ k ≤ 50. Find the best approxi-
mating polynomial of the form l∗(x) = a∗ + b∗ sinx+ b∗x3 numerically such
that

50∑
k=0

|yk − l∗(xk)|2 = min
l(x)=a+b sin x+cx3,a,b,c∈R

|yk − l(xk)|2,

and compute the error
∑50

k=0 |yk − l∗(xk)|2.

9. Find the least square approximating affine function p(x) to x2 on [−1, 1], and
find out all simple zeros of x2 − p(x).

10. Find the best approximating affine function p to the function ex on [0,∞)
under the norm ∥ · ∥ defined by ∥f∥ =

∫∞
0

|f(x)|2e−3xdx.
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Chapter 7

Multiresolution
Approximation

In this chapter, we introduce the cubic spline on any knots and B-spline on
equally spaced knots, and study their approximation properties.

7.1 Cubic Spline Interpolation

In this section, we consider the approximating properties of the ”smooth”
piecewise cubic function. Such a function is called cubic spline.

Suppose that Xn denotes the set of real numbers {x0, . . . , xn}, where

a ≤ x0 < x1 < . . . < xn ≤ b.

Let S(Xn) be the set of all functions s(Xn, x) = s(x) ∈ C2([a, b]) having
the property that in each interval [xi, xi+1], 0 ≤ i ≤ n− 1, s(x) agrees with
a polynomial of degree at most 3. We call the function s ∈ S(Xn) a cubic
spline, and the points x0, . . . , xn knots.

Claim: A polynomial of degree at most 3 is a cubic polynomial.
Example: Let a = −1, b = 1 and xi = −1 + i/3, 0 ≤ i ≤ 5. Construct a

cubic polynomial not in P3.
Basis of S(Xn) Both the families

1, x, x2, x3, (x− x1)
3
+, . . . , (x− xn−1)

3
+,

and

1, x, x2, x3, (x− x1)
3
−, . . . , (x− xn−1)

3
−,
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are basis of S(Xn).
Hint: (i) Show all those functions are cubic spline; (ii) show that any

cubic spline is a linear combination of those basis.
Dimension of S(Xn): 4 + (n− 1) = n+ 3.
Interpolating Problem Under what circumstances does there exist an

interpolating spline?
First let us verify that: If α < β, then the unique polynomial p of degrees

at most 3 that satisfies

p(α) = u1, p(β) = u2, p
′(α) = v1, p

′(β) = v2

is

p(x) = u1

[
(x− β)2

(β − α)2
+ 2

(x− α)(x− β)2

(β − α)3

]

+u2

[
(x− α)2

(β − α)2
− 2

(x− β)(x− α)2

(β − α)3

]

+v1
(x− α)(x− β)2

(β − α)3
+ v2

(x− α)2(x− β)

(β − α)2
.

For the case that α = 0 and β = 1,

p(x) = u1(x− 1)2(1 + 2x) + u2x
2(3− 2x) + v1x(x− 1)2 + v2x

2(x− 1).

Theorem Given numbers s̃0 and s̃n, there exists a unique spline sat-
isfying

s(f,Xn, xi) = fi, 0 ≤ i ≤ n

and
s′(f,Xn, xi) = s̃i, i = 0, n.

How to solve the interpolation problem:

• Find a basis e1, . . . , en+3;

• Set p(x) =
∑n+3

i=1 aiei;

• Solve the linear system

p(xi) = f(xi), i = 0, . . . , n

and
p′(x0) = s̃0 and p′(xn) = s̃n.
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Examples

• Consider f(x) = x5, x ∈ [−1, 1] and the knots −1/2, 0, 1/2. Find
a cubic spline p such that p(xi) = f(xi), 0 ≤ i ≤ 2 and p′(xi) =
f ′(xi), i = 0, 2.

• Consider f(x) = cosπx/2, x ∈ [−1, 1] and the knots −1/2, 0, 1/2. Find
a cubic spline p such that p(xi) = f(xi), 0 ≤ i ≤ 2 and p′(xi) =
f ′(xi), i = 0, 2.

• Consider f(x) = x4 + sinπx, x ∈ [−1, 1] and the knots −1/2, 0, 1/2.
Find a cubic spline p such that p(xi) = f(xi), 0 ≤ i ≤ 2 and p′(xi) =
f ′(xi), i = 0, 2.

7.1.1 Extreme Property

Theorem 7.1.1 Suppose that a = x0 < x1 < . . . < xn = b and f ∈ C2[a, b].
If we take fi = f(xi), 0 ≤ i ≤ n and consider the spline that satisfies

s(xi) = fi, 0 ≤ i ≤ n

s′(x0) = f ′(x0), s
′(xn) = f ′(xn).

Then we have∫ b

a
[f ′′(x)]2dx−

∫ b

a
[s′′(x)]2dx =

∫ b

a
[f ′′(x)− s′′(x)]2dx.

Proof. ∫ b

a
[f ′′(x)− s′′(x)]2dx

=

∫ b

a
[f ′′(x)]2 −

∫ b

a
[s′′(x)]2dx

−2

∫ b

a
s′′(x)[f ′′(x)− s′′(x)]dx.

Therefore it suffices to verify that∫ b

a
s′′(x)[f ′′(x)− s′′(x)]dx = 0.
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By partial integration formula, we have∫ b

a
s′′(x)[f ′′(x)− s′′(x)]dx

= s′′(x)[f ′(x)− s′(x)]
∣∣∣b
a

−
∫ b

a
s′′′(x)[f ′(x)− s′(x)]dx

= −
∫ b

a
s′′′(x)[f ′(x)− s′(x)]dx

=
n−1∑
i=0

αi

∫ xi+1

xi

[f ′(x)− s′(x)]dx

= 0.

2

The minimizing property shown above helps us to explain the origin of
the name spline for interpolating piecewise cubics. Engineers have for a long
time used this rods to fair curves through given points.

Exercise Consider f(x) = sinπx, x ∈ [−1, 1] and the knots {−1/2, 0, 1/2}.
Find the cubic spline that satisfies the condition in the above theorem, and
compute

∫ b
a |f ′′(x)|2dx,

∫ b
a |s′′(x)|2dx and

∫ b
a |f ′′(x)− s′′(x)|2dx.

7.1.2 Approximation Property

Now let consider the approximating power of cubic spline.
Suppose now that a = 0, b = 1 and the knots {x0, x1, . . . , xn} satisfies

0 = x0 < x1 < · · · < xn = 1. Given a continuous function f defined on [0, 1].
Put △xi = xi+1 − xi amd define the norm on Xn by

δ = δ(Xn) = max
0≤i≤n−1

△xi.

Theorem 7.1.2 Suppose that f ∈ C2(I) and s ∈ S(Xn) satisfies

s(xi) = f(xi), 0 ≤ i ≤ n

and
s′(0) = f ′(0), s′(1) = f ′(1).

Then for all x ∈ [0, 1],

|f (r)(x)− s(r)(x)| ≤ 5δ2−rω(f ′′, [0, 1], δ).
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The above theorem shows that, if δ(Xn) → 0 as n → ∞, the interpolating
spline and its first derivatives converge uniformly to a given function in
C2(I).

Similar result can be established for f ∈ C1(I), C3(I).

Exercise Let f = sinπx. By using Jackson’s theorem and the above
theorem, derive an upper bound for the estimate

min
s∈S(Xn)

∥f − s∥.

7.2 B-splines
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