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Chapter 1

Introduction

The main problem in the theory of approximation can be stated as follows:
Suppose that f(x) and F(x, Ai,...,A,) are two functions on certain point
set, where Aq,..., A, are parameters. It is required to determine the para-
maters that the deviation of the function F(z, Ay, ..., A,) from the function
f(x) shall be minimum.

Usually the function f to be approximated may have complicated struc-
ture and hard to handle, and the approximating function F(x, Aq,...,A;)
should have simple structure and be easily implemented, such as trigonomet-
ric polynomials, polynomials, splines, or finite linear combinations of some
“simple” functions.

Set

II,, .= {ao —i—Z(akcoskw—i—bksinkx) a9 € Ryap,bp e R for 1 <k Sn},

2 k=1
and
n
Pn::{Zakxk: akERforlngn}, n > 0.
k=0
We may take a trigonometric polynomial in IT,_; as the function F'(x, Ay, ..., A;)

to approximate a periodic function, a polynomial in P._; to approximate a
function on an interval.

For the set X of points xg,z1,...,x, in the interval [a,b] labeled as
a=x9 < x1 < -+ < x, = b and any positive integer m, we denote the
set of all C" ! functions on [a,b] which agree with polynomials of degree at
most m on each subinterval [z;_1,2;],1 < i < n, by S,,(X). The functions
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in S,,(X) is known as spline of degree m at the knots zg, ..., z,. Due to the
flexibility of knots and higher approximation order by splines, we may take a
spline as the function F'(z, Ay,..., A,) if we require that the approximating
function concoides with the original function f(x).

We may use different distance to measure the difference between the
function f(z) and the approximating function F(x, Aq,...,A,). For exam-
ple, if we consider the bounded contiuous functions f and g on a finite
interval [a,b], we can take the least upper bound of the absolute value of
their difference, i.e.,

If = glleo = sup [f(z) —g(z)],
z€la,b
as the distance between two functions. If you consider the approximation of
a vector in Euclidean space R",

R" ={(x1,...,2p): 7, €R, 1 <i<n},

by vectors in a linear subspace in R"™, we often use the standard distance
| — y| between two points x = (z1,...,z,) and y = (Y1,...,Yn)

1/2

o=yl = (o — wil?)
=1

to measure their distance. If the function f(z) represents an image and the
approximating function F'(z, Ay,..., A,) represents the compressed image,
due to the behaviour of our human vision, we may use

b
If = FloAvo Al = [ 1) = Fla, A, . Ayl do

to measure the difference between the original image and the compressed
image and hence to justify the effectiveness of the compression.

For many applications, it is quite important to the explicit construc-
tion of the best approximation for a given function f and the parameters
A, ..., A.. For the approximation problem by elements in a finite dimen-
sional subspace M of a Hilbert space H, for any given function in H, we can
construct the least approximating element in M explicitly, in fact, the least
approximating elment is the orthogonal project on M. It is proved that if
H is the space of all 27-periodic square integrable functions and if M is the



space of all trigonomotric polynomials of degree n, i.e., M = II,, then the
least square approximating function II, is jsut the partial sum of the corre-
sponding Fourier series of the given function in H. The situation to find the
best approximation becomes difficult when we consider the approximation
in a normed linear space instead of a Hilbert space. The process to find the
best approximation is nonlinear in general. For instance, it is known that
the best uniform approximating constant to a continuous function on the in-
terval [a, b] is (M +m)/2, where M and m are the maximam and minimum
of the function on [a, b] (see Section 2.2.1 and 5.2 for details). In general, we
do not have any linear /nonlinear algorithm to find the best uniform approxi-
mating function in a normed linear space, even for the case F'(z, Ay,..., A;)
is a polynomial. So in some situations, we use certain good linear approxi-
mations with explicit expression, such as Bernstein polynomials, instead of
best approximation.

In some applications, we restrict ourselves on the accurancy to approxi-
mate the original function, hence we have certain flexibility on parameters.
To this end, we need study the approximation order of certain type of ap-
proximations and determine how many paramaters is enough to meet our
requirement. For instance, the uniform approximation error of a Hélder con-
tinuous function of order av € (0,1] by polynomials of degree at most n is
dominated by e¢n~% for some positive constant ¢. Hence if we want to find
a polynomial p to approximate the Holder continuous function of order «
with accurancy € > 0, then from the above observation we see that we can
find the polynomial p of degree n to meet the requirement, where ng is the
minimal integer larger than (c/e)'/?.

The inverse problem in the theory of approximation is quite intersting.
In that situation, the problem is to study certain properties of the function
f through the approximating functions F(x, Aq,...,A,). It is known that
given a 2m-periodic continuous function f if the approximating error by
trigonometric polynomials of degree at most n is dominated by cn™¢, then
f is Holder continuous of order «, where a € (0,1) and where ¢ > 0 is
independent of n > 1.






Chapter 2

Approximation by
Trigonometric Polynomials

In this chapter, we study the uniform approximation problem to a continuous
2m-periodic function by trigonometric polynomials.

2.1 Trigonometric Polynomials and Modulus of Con-
tinuity

2.1.1 Fourier Series

Valaldaldlels

2.1.2 Bernstein Theorem

In this section, we prove the Bernstein’s theorem and consider the inverse
problem of approximation.

Theorem 2.1.1 Let p be trigonometric polynomial of degree n. Then

1P'llse < 7llploc- (2.1.1)

Proof. Suppose on the contrary that the theorem is not true. Then
there exists p € II,, so that

Iploe =1 and [|p[loc > n.
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Set L = ||p'||co/n. Without loss of generality we assume that p/(zg) = nL
for some xy € R, otherwise replacing p by —p instead. Define

S(z) = Lsinn(z — z9) — p(x).

Then the trigonometric polynomial S takes values of alternating signs at
xr = x0 + (2k — )7/(2n),k = 1,...,2n. Therefore between two of those
points, S has a zero, and hence S has 2n different zeros. By Rolle’s theorem,

S'(z) = nLcosn(x — xzg) — p'(x)
also has 2n different zeros. One of those zeros is xg, since S’(zg) = nL —
P (xg) = 0. Also,
S"(x) = —n*Lsinn(x — xo) — p’(2)

vanishes at g since p/(x) takes the maximam. Moreover, S” has, again by
Rolle’s theorem, 2n zeros between zeros of S’. Therefore S’ has at least
2n + 1 zeros, which yields that S” is identically zero. Hence S is a constant,
which a contradiction since S changes sign on the line. O

2.1.3 Modulus of Continuity

In this subsection, we introduce the concept of modulus of continuity, which
is a quantity to measure the smoothness of a continuous function. Also we
introduce the class of Holder continuous functions.

Given a continuous function f on a set K, we define the modulus of
continuity of f on a set K, to be denoted by w(f, K,J), or w(f,§),d > 0 for

short, by
w(f,8) = sup [f(z1) = f(22)].

z1,22€K,|x1—22|<d

Theorem 2.1.2 Let f be a continuous function on the interval [a,b], and
w(f,0),0 >0 be its modulus of continuity. Then

(i) w(f,61) < w(f,02) for any 0 < b1 < b2;

(i1) lims_ow(f, ) = 0 if f is uniform continuous;
(111) w(f,A0) < (14 Nw(f,d) for any \,6 > 0;
(iv) If f has bounded derivative f' on [a,b], then

w(f,0) < | f[|0d. (2.1.2)



Proof. The assertion (i) is obvious, the assertion (ii) follows easily from
the definition of uniform continuity, and the assertion (iv) is true by mean
value theorem.

Now we prove the third assertion. Let the integer n be so chosen that
n < XA <n+ 1. Using the first assertion, we obtain

W(fA0) < wlf, (n+1)9).
Therefore it suffices to prove
w(f,nd) < nw(f,9d) (2.1.3)

for any positive integer n and any § > 0. For any z1,x2 € [a,b] with
|z1 — 22| < nd, we insert n — 1 equally spaced knots z; = x1 + (z2 — x1)j/n,
0 < 5 < n, in the interval between x; and x9. Then 2y = x1,2, = o,
|2j+1 — 2j| = |2 —21|/n < d for all 0 < j < n, and

n—1
[f(z2) = flan)] = |f(z) = F(20)] < D | (z41) — [ ()]
7=0
n—1
< Y w(f.8) = nw(f.9).
7=0

Taking supremum on all points x1,z2 € [a,b] with |1 — 2] < nd in the
above estimate yields (2.1.3) and hence the third assertion follows. O

We say that a continuous function f satisfies the Lipschitz condition of
order a € (0, 1] with constant K if

w(f, [a,b],0) < K6 ¥ 6> 0. (2.1.4)

A continuous function satisfying Lipschitz condition is also called Holder
continuous function. The index « in (2.1.4) is known as Holder exponent of
f. The class of all continuous functions with Holder exponent « is denoted
by Lip, or C“ in some literatures. By Theorem 2.1.2, a continuous function
with bounded derivative belongs to Lip;.

Example 2.1.3 Show that the function f defined by f(x) = |z|* z €
[—1,1], belongs to Lip,, where 0 < a < 1.



Solution Let 1,9 € [—1, 1] satisfies |1 — 23| < 0. Then either z1, x5 €
[—20,26] or x1, 2z € [—1,1]\[-9, d]. For the first case that 1, xe € [—20,20],

[f@1) = flx2)] < [f(21)] + |f(22)] < 2(20) = 21+5°. (2.1.5)

For the second case that x1,22 € [—1,1]\[-0, ], by mean value theorem,
there exists £ between x1 and xo such that

|f(z1) — flz2)| = | (©)||z1 — 22| < @616 = ad®. (2.1.6)

Combining (2.1.5) and (2.1.6) proves f € Lip,. O

2.2 Least Square Approximation and Planchel For-
mula

Denote the space of all square integrable 27-periodic functions by L3 . One
may verify that L3 _is an inner product space with the inner product defined
by

21
(f.9)= | f@gle)de ¥ fgeLs,
Let IL,, be the space of all trigonometric polynomials of degree n,
n
ao .
I, = {2 + Z(akcoskx—i—bksmkx) :ag € Rand ai, b, e R,1 <k < n}
k=0

One may easily verify that II,, is a linear subspace of L3_, and

1 1 1 1 }
cos T, sin x, cosnx, — sinnx

{ Var’ \f RV o VT
is an orthonormal basis of II,,. Therefore by Theorems 6.1.3 and 6.2.1, we

have the following result about the least square approximation to a function
in L% _ by trigonometric polynomials of degree at most n.

Theorem 2.2.1 Let f € L2_. Then the least square approzimation to f
from 11, is

n
D = at + Z(ak cos kx + by sinkzx),
2 k=1

where

1 e
ap = —/ f(x)coskxdr, 0 <k <n (2.2.1)
™ Jo



and

1 ™
= —/ f(z)sinkzdz, 1 <k <n. (2.2.2)
0
For any function f € L3, we associate f with a Fourier series,

[~ + Z ay, cos kx + by sin kx), (2.2.3)
k=1

where ag and ag,bg, k > 1, are defined as in (2.2.1) and (2.2.2). Define the
partial sum S, f of degree n of the Fourier series (2.2.3) by

Snf = a0 + Z(ak cos kx + by sin kx).
2 O

Therefore as a consequence of Theorem 2.2.1, we have

Theorem 2.2.2 Let f € L3 . Then the partial sum S,f of degree n of its
corresponding Fourier series is the least square approximation to f out of
1I,.

Let p, be as in Theorem 2.2.1. By direct computation, we have

cos kx sin kx 2
+Z<a’“ )

2

- (“20 + Z(ag + bi)) . (2.2.4)

k=1

lpnll3

This together with the fact that p, is orthogonal projection onto II, (see
Theorem 6.2.1) leads to

0 < Hf_an%:Hf||g_<pmpn>

a? n
— - (B et (2.25)

Letting n — oo in (2.2.5) yields

7ra0

17115 > =2+ Z m(ag + b}). (2.2.6)

For the case that f is a trigonometric polynomial, the inequality (2.2.6)
becomes an equality since f = p, for sufficiently large n. Moreover, by
the density of trigonometric polynomials in L3_, the inequality (2.2.6) is an
identity for all f € LZ_, which is known as Planchel formula.
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Theorem 2.2.3 Let f € L3, and % + Y72 (ak coskx + by sinkz) be its
corresponding Fourier series. Then

1713 = "8 42 S + 1)
k=1
2.3 Approximation by Convolution Operators with

Nonnegative Kernel
Let Co; be the space of all 27-periodic continuous functions. We say that

an operator T on the space of Cor is a convolution operator if there exists a
continuous function k& € Cy,; such that

79(0) = [ 9(@)k(6 — 6)ds.

-7

The function k is said to be the kernel of the convolution operator T'. If

| k@)do =1,

then we say that T is a convolution operator with normalized kernel k. If
k > 0, then we say that the convolution operator T" has nonnegative kernel.
For a continuous function g, we associate g with its Fourier series

g~ @ + Z(ak COSk9+ bk Sinkg)a

2 k=1
where

1 ™

ap = —/ g(0)coskfdd, k=0,1,...,
™ J—7
1 ™

b, = —/ g(0)sink0dd, k=1,....
™ J—7

Denote the partial sum of the Fourier series of g by 5,9,

Sng(0) = 50 z:: ay, cos kB + by sin k6).

It is known that S, ¢ is the least square approximation to g out of 1I,, (see
Theorem 2.2.2 for details).
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To study the uniform approximation to g out of II,,, we need a weighted
version of partial sum of Fourier series. For an infinite triangulation py, ,, €
R, 1 <k <n,n=1,2,..., we define weighted partial sum of Fourier series

Qng by

ao

5 + Zpkm(akcoskﬁ—kbksinkﬁ), n > 1.

k=1

Qng(0) =

Obviously @, = S, when all entries in the infinite triangulation are identi-
cally one, and the weighted partial sum @),, of Fourier series is a convolution
operator with kernel u,(0)/m, where

1 n
un(0) = B + Z Pr,n COS kO, (2.3.1)

k=1
For the usual partial sum S, the corresponding kernel k,(x) is

sin(n +1/2)0

kul0) = =5 o 0/2

(2.3.2)

For the uniform approximation by convolution operator with nonnegative
kernel, we have the following result.

Theorem 2.3.1 Let T be a convolution operator with normalized nonnega-
tive kernel k. Then for any g € Cor and n > 1,

9(6) ~ Tg(6)] < |1+ M- e @39)
where i
o = /_ k(6) cos do, (2.3.4)

and w(g, ) is the modulus of continuity of the continuous function g on R.

Proof. By the normalization condition of the kernel k, we have

90)~T96) = [ (9(6) ~ 9(6))k(® ~ 6)ds

= [ (9(6) ~ 910 ~ 6)k(e)o.

—T
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Therefore,

96) = Tg@)] < [ l9(6) - (6 - B)lk(@)do

[ wlo.6Dk@)do < wlgn™) [ 1+ nléke)ds

< wlgn )+ [ 10lk()ds,

IN

where we have also used Theorem 2.1.2 and the assumption that k is a
nonnegative kernel. Hence it suffices to justify

™

[ lolk(@)do < =o' (2.3.5)

One may show that z~!sinx is monotonously decreasing on [0,7/2], and
hence

T ow
3 5]. (2.3.6)
By the Cauchy inequality and by the nonnegativeness and normalization
condition of the kernel k, we obtain

[ i glkons < (/_W’Si“(bfk(@dsb)m x(/_:k<¢>d¢)1/2

2] < gysinx|, ze |-

P 2
- (/_ ;OSgbk(gb)dqb) - < 2‘”) .(2.3.7)
Then the estimate in (2.3.5) follows from (2.3.6) and (2.3.7). O

2.4 Best Uniform Approximation by Trigonomet-
ric Polynomials

In this section, we estimate the approximation error FE,(g) between a func-
tion g € Cor and its best uniform approximating polynomial in II,,

E.(9) = pghf g —pll.

The main result of this section is stated as follows, which is known as Jack-
son’s theorem.
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Theorem 2.4.1 Let g € Cyr and w(g,d) denote the modulus of continuity
of the function g on R. Then

En(g) < 6w(g,n™), n>1. (2.4.1)

As a consequence of Theorem 2.4.1, we have the following result about
the uniform approximation of a Holder continuous function by trigonometric
polynomials.

Corollary 2.4.2 Let g be continuous and satisfy a Lipschitz condition of
order o with constant K, where 0 < o < 1. Then

Eu(9) <6Kn™ n> 1
By Theorems 2.1.2 and 2.4.1, we have

Corollary 2.4.3 The space of all trigonometric polynomials is dense in
Cor.

We shall use a convolution operator with nonnegative kernel to approxi-
mation the identity and then establish the estimate (2.4.1). To this end, we
construct a nonnegative kernel.

Lemma 2.4.4 Forn > 1, set

Ckpn = (n+ 2)~1/2sin (kn—:12)7r7 k=0,1...,n,
define
n 2
un(0) = Z Chkn€ iko )
k=0
and write

un(0) = pon + Z Pk.n cos k6
k=1

for some ppn,0 <k <n,n>1. Then

1

1—
nm/% <5. (2.4.3)

and
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Proof. By direct computation, we have

un chn"i_QZCknckJrlnCOSd)
k=0
n—2
+2 Z ChnCh42,n COS 20 + -+ - + 2¢0 nCp.pp COS ND.
k=0
Therefore

1 K., (k+)r

T2 2.4.4
Po,n T2 2 sin p—— ( )
and 1
2 . (ktDr (k+2)m
B . i : 2.4.5
P1n n+2kz:%]81n I sin — ( )
By direct computation, we get
St LTS (1o 2 )
k=0 2L n+ 2
_n +1 _ lRe 2w/ (n2) 1 — e2(n+1)mi/(n+2)
2 2 1 — e2mi/(n+1)
n+l 1 n+2
- 2 2.4.6
2 + 2 2 7 ( )
and
n—1 . (k+D)m . (E+2)7
Z sin sin
k=0 n+2 n+2
1> ( kw . (k+2)7r) . (k+Dr
- sin + sin sin
2 k=0 n+2 n+ 2 nto
kE+1 2
= Z COS ( + ) _ _n+ oS T ' (2.4'7)

Hence (2.4.2) follows from (2.4.4) and (2.4.6). By (2.4.5) and (2.4.7), we

obtain
/ P1 n 1 —cos 71
2

<5

7T
— < —
"WSln2n+4 2n+4— 2
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This proves (2.4.3). O

Now we start to prove Theorem 2.4.1.

Proof of Theorem 2.4.1. Let u,, be defined as in Lemma 2.4.4, and Q,,
be the convolution operator with kernel u, /7. By Lemma 2.4.4, the kernel
of the convolution operator @, is nonnegative and satisfies the normalization
condition. Therefore by Theorem 2.3.1,

llg — Qngll < [1 + nl(l — ,01)1/2} w(g,n™1), (2.4.8)

V2
where |
p1 = —/ Un(0) cos 6d6.

T™J—m

By Lemma 2.4.4, p; = p; . This together with (2.4.3) and (2.4.8) yields the
estimate (2.4.1). O

2.5 Comparison of Best Uniform Approximation
and Least Square Approximation

In this section, we compare the L error between a 2m-periodic function
g and its least square approximating polynomial in II,, and between the
function g and its best uniform approximating polynomial in IL,.

Theorem 2.5.1 Suppose that g € Cor and let g, € 11, be the least square
approzimation to g out of I1,,. Then

4Inn

lg = gnlloo < (4+ ) En(9), (2.5.1)

2
where En(g) = mingerr, lg — qllo-

By Theorems 2.4.1 and 2.5.1, the least square approximating polynomial
to a Holder continuous function converges uniformly.

Corollary 2.5.2 Let f be 2m-periodic and belong to Lip, for some a > 0.
Then the partial sum S, f of its corresponding Fourier series converges to f

uniformly as n tends to infinity.

To prove Theorem 2.5.1, we need the following lemma.
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Lemma 2.5.3

do
sin /2 <3 w2’

l/ |sin(n + 1/2)6 41nn 0>l (2.5.2)
0

T
Proof. Forn =1,
1 /™ |si 2 1 /7
7/ ]s1'n39/ ‘d@g/
mJo sinf/2 7 Jo

Hence the estimate (2.5.1) holds for n = 1.
Now we suppose that n > 2. Set

0
2(30525 + cosf|df < 3.

In:/ | cos nf|db
0

and

T | sinnf|
= do.
J /0 tan/2

For I,,, we have

s 1 nm
I, = / | cosnf|df = —/ | cos 0]df = 2. (2.5.3)
0 n Jo
Note that tanz > z for all 0 < z > 7/2 since the function h defined by
h(z) = tanx — x is monotonously increasing on [0, 7/2]. Therefore

5 < 2/ |smn9|d9:2/ \smt?]de
0 0 0 0
_ 2/W|Sin9‘d0+2/wsin6x§ o
I 0 =0+ kr
™ | sin 6| /7r , (|
< _
< 2/0 7 d0+20 Smgx,;kﬂde
™ | si 4441 -1
2/ [sinb] o 44 =1) (2.5.4)
o 0 7r

By numerical computation,

/ Slgede ~ 1.8524. (2.5.5)
0



17

Combining (2.5.3), (2.5.4) and (2.5.5), we obtain

™ 3 ™ o 1 ™
1/ Mdgg 1/ |s1nn9\d0+/ | cos nf|do
0 TJo

s sin6/2 mJo tanf/2
2 2 [T™sinf 4 41nn 41nn
< (242 P4 )4 200 .
< (W+7r/0 )+ =)+ <3+ —
Hence the estimate (2.5.2) follows for n > 2. O

Now we start to prove Theorem 2.5.1.

Proof of Theorem 2.5.1. Let p} € II,, be so chosen that E,(g) =
lg— Pk llco- By Theorem 2.2.2, g, —p}; is the partial sum S, (g —p};) of degree
n of the corresponding Fourier series of ¢ — p}. By (2.3.1) and (2.3.2), we

have in 1/2)6
" " - _\sm(n +
(@ =) 0) = [ (0-pi)0 )75
Therefore
™ |sin(n 4+ 1/2)¢| 4Inn
n - . oo< — Dy [e’¢) . do < En .
Hq pn“ — Hg an X /—77 27T|SIH¢)/2| ¢— (3+ 7T2 ) (g)
(2.5.6)
Hence
* * * * 4lnn
lg = gilloe < llgs = Phlloo + llg = Dl < (4+ —5-) Eulg)
This completes the proof of Theorem 2.5.1. O

2.6 Bernstein’s Theorem

In this section, we prove the Bernstein’s theorem and consider the inverse
problem of approximation.

Theorem 2.6.1 Let p be trigonometric polynomial of degree n. Then

17'lls0 < 7llploc- (2.6.1)

Proof. Suppose on the contrary that the theorem is not true. Then
there exists p € II,, so that

Iplloe =1 and [|p]loc > n.
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Set L = ||p'||co/n. Without loss of generality we assume that p/(zg) = nL
for some xy € R, otherwise replacing p by —p instead. Define

S(z) = Lsinn(z — z9) — p(x).

Then the trigonometric polynomial S takes values of alternating signs at
xp = xo + (2k — 1)w/(2n),k = 1,...,2n. Therefore between two of those
points, S has a zero, and hence S has 2n different zeros. By Rolle’s theorem,

S'(z) = nLcosn(x — xg) — p'(x)

also has 2n different zeros. One of those zeros is x¢, since S'(x¢) = nL —
P/ (zg) = 0. Also,

S"(x) = —n2Lsinn(z — zo) — p’(z)

vanishes at ¢ since p’(x) takes the maximam. Moreover, S” has, again by
Rolle’s theorem, 2n zeros between zeros of S’. Therefore S’ has at least
2n + 1 zeros, which yields that S” is identically zero. Hence S is a constant,
which a contradiction since S changes sign on the line. O

Theorem 2.6.2 Let f be a 2m-periodic continuous function and E,(f),n >
0, be the best approximation error to f from 1l,. Then there exist a positive
constant C independent of 6 > 0 so that

w(f,6) <Cs Y En(f) Vd>0. (2.6.2)

0<n<§—1

By Corollary 2.4.2 and Theorem 2.6.2, we have the following result due
to Bernstein.

Corollary 2.6.3 A 2w-periodic continuous function f satisfies the Lipschitz
condition of order « if and only if the corresponding approximation error
E,(f) from I1,, satisfies

E.(f) <Cn™ %,

where 0 < o < 1.

Now we prove Theorem 2.6.2.
Proof of Theorem 2.6.2. Let p, € I, be the best approximating
trigonometric polynomial to f in II,,. Then

If = Pnllee = En(f)- (2.6.3)
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For § > 1, we have

w(f,8) =w(f —po,d) < |If = pollo-

Hence the estimate (2.6.2) follows from § > 1.
Recall that E,(f) is monotonuously decreasing. Then it suffices to prove

k—1
w(f,27F) < Cc277 Y 2'En(f), (2.6.4)
=0

where we have also used the first and third assertions of Theorem 2.1.2. Write
f = f—por +Dpor. By (2.6.3) and the definition of modulus of continuity, we
have

w(f,27%) = w(f —po,27%) < 2|If — porlloo + 27" IPhs — Phllco.  (2:6.5)
Write
Dok — Po = (Pok — Pok—1) + (Pok—1 — Por—2) + -+ + (p2 — p1) + (P1 — Po)-

By Bernstein’s theorem (Theorem 2.6.1) and the monotonicity of E,(f), it
follows that

k
P = Phlloe < D (pot = por1)lloo + (1 = p0) [l oo

=1
k

< > 2 Ipy — par-illso + lp1 — polls
=1
k

< D 2 Eya(f) + 2B0(f) (2.6.6)
=1

Combining (2.6.5) and (2.6.6) leads to the estimate (2.6.2) for § < 1. O

Exercises

1. Let h be the hat function defined by h(z) = max(0,1 — |z|),z € [-1,1].
Compute w(h,[—1,1],4) for all 0 < § < 2.
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. Let f be a continuous function on [a,b], and [c,d] be a subinterval of [a, b].

Show that
w(f, [c» d]v 9) <w(f, [a7 b]vé)'

. Let f be a 2m-periodic continuous function. Show that

w(f,la,a +2m],6) < 2w(f, [b,b+ 2], 6), 6 >0,

where a,b € R.

. Let f be a continuous function on [a, b], and let g be a continuous funftion from

[¢,d] to [a,b] and satisfy the Lipschitz condition of order one with constant
K. Show that the composition of f and g, to be denoted by h, satisfies

w(h,[e,d],d) < w(f,[a,b], Kd), 6§ >0,

. Show that |z[*In |z|,z € [0,1] belongs to Lipg for all 8 with 0 < 8 < «, but

does not belong to Lip,, where 0 < a < 1.

. Show that

1 sin(n + 5)0
§+Zcosk9:.77, 1<neZ.

. Show that E,(f,[a,b]) = E.(f — pn, [a,b]) for any p, € P,, where P, is the

space of all polynomial of degree at most n, and where E,, (f) = inf,ep, ||f —
pll-

. Let n > 1 and pg,, € R,1 <k < n. For 2m-periodic function g, define Qg

by
a - .
Qng(0) = 30 + k;: Pr.n(ax cos kO + by sin k6),

where ag and ag, by, 1 < k < n are the Fouries coefficents of g. Show that @,
is a convolution operator with kernel u,,(6)/7, where

1 n
un(0) = 5t Z Pk,n cOs k0.
k=1

. Let

sinna/2\°
sinz/2 )

kn(z) = (2nm)~! (

Denote the convolution operator with kernel k,, by o,,. Show that if f is 27-
periodic and satisfies the Lipschitz condition of order « for some 0 < a < 1,
then there exists a positive constant C' such that

||Unf - f”oc <Cn %, n>1.
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Let the Fourier series of a 2m-periodic continuous function f be ag/2 +
>onej agcoskz, and let E,(f) be the best approximation error to f from
II,,. Prove that

o0

1
Slans] < Bn(f) < > laxl-

k=n-+1

. Find all least square approximations to | cosz| out of I,,,n = 1,2, 3.

. Compute the L? norm of the least square approximation to |cosx| out of

I1,,,n > 1, and justify whether it converges to the L? norm of | cos x| or not.
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Chapter 3

Approximation by
Polynomials

In this chapter, we consider the uniform polynomial approximation problem.

3.1 Lagrange Interpolation

In the approximation to a given continuous function by functions with simple
structure, it is natural to require that the approximating function coincides
with the given function at certain points of the interval.

Theorem 3.1.1 Let f € C([a,b]), a < 1 < 29 < ... < x, < b be given,

and G be an n-dimensional subspace of C([a,b]) with g1,. .., gn being a basis.
If
gi(z1) - gn(z1)
det : : #0,
gl<xn) T gn(xn)
then there exists unique g € G so that
g(@i) = f(x;), 1<i<n. (3.1.1)

Moreover the coefficients in the solution g = > 1 a;g; satisfies the linear
system

gi(xz1) -+ gn(x1) ai f(z1)
: : : : = : . (3.1.2)

0w o galan) )\ ay £ (o)

23
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Proof. Write g = 7" | a;g;. Substituting the above expression into the
condition (3.1.1) leads to

n
> aigi(zy) = f(xj), 1<j<n,
=1

which can be written as the matrix form (3.1.2). Hence the result follows
from standard result of linear algebra. |

To problem to find a function g € G to satisfy (3.1.1) is known as La-
grange interpolation problem, and the points xz1,...,xz, are known as the
knots of the interpolation. For the simplicity, we denote the following deter-
minant

gi(z1) -+ gnlz1)
det| + .

g1 (xn) o gn(xn)

by
pl 9 0 9n
x]_ DY £n ’

where ¢1,..., g, are continuous functions and x1,...,x, are points on the
real line.

From the proof of Theorem 3.1.1, we see that the Lagrange interpolation
problem is solvable if and only if the linear system (3.1.2) is solvable. For
instance, for the space spanned by ¢1(z) = 1 and go(z) = sinz,z € [0, 7],

one may verify that
g1 92
D

for all x1, zo € [0, 7] with x1 + 22 # 7, and hence the corresponding Lagrange
interpolation is solvable and the solution is unique for any given continuous
function f on [0, ], in fact,

sinxy f(z1) — sinxy f(z2) N f(x1) — f(x2)

- : - - sin x.
sin zo — sin z1 sin xo — sin a1

g(z) =

For the case that 1 = m — x9, the corresponding Lagrange interpolation
problem is solvable for a given continuous function f if and only if f(z1) =

f(x2).
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3.2 Polynomial Interpolation

In this section, we consider the Lagrange interpolation problem with the
interpolating functions being polynomials of degree at most n — 1.

3.2.1 Explicit Formula

It is known that {1,z,...,2" 1} is a basis of P, 1, and
]_ . e 1.7’1—1
D z 2 = H (l’j—l‘i)#o
1 n 1<i<j<n

for any interpolating knots a < 1 < ... < x, < b, since the determinant is
a Vandermonde determinant. Therefore by Theorem 3.1.1, we have

Theorem 3.2.1 Let f € C([a,b]), a < 1 < 22 < ... < xy < b be given.
Then there exists unique g € Pp_1 so that

g(@i) = f(x;), 1<i<n. (3.2.1)

Moreover the coefficients in the solution g = Z?:_ol a;xt satisfies the linear
system
1 - 2t ao f(@1)
= : . (3.2.2)

1o apt (n—1 f(@n)

By Theorem 3.2.1, the construction of the interpolating polynomial re-
duces to solving a linear system (3.2.2). Unlike the linear system (3.1.2) not
having explicit solution in general, the linear system (3.2.2) can be solved
explicitly.

Given distinct points z1,...,2, € [a,b], one may easily verify that the
polynomials [;,1 < i < n,

(@—a1) - (@ —21)(@ — @) - (z — @)
(zi — 1) (25 — 1) (@ — Tig1) - (25 — 20)

li(z) = (3.2.3)

are of degree at most n — 1, and satisfy

li(xj):{é ;: fori,j=1,...,n. (3.2.4)
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In the case n = 1, we set l;(x) = 1. Therefore for any given continuous
function f on [a,b], the polynomial L,_1 € P,_1 defined by

n

Ln_l(x) = Zf(xz)lz(x) (3.2.5)

i=1
satisfies
Ly_1(z;) = f(z), i=1,...,n.

Hence L,,_1(x) is the interpolating polynomial of degree at most n—1 to f at
the knots x1, ..., x, by Theorem 3.2.1. The polynomial L,,_1(x) is called the
Lagrange interpolating polynomials to f at x1,...,x,, and the polynomials
li(x),1 < i < mn,in (3.2.3) are called the fundamental polynomials for the
interpolation at xq,...,x,.

3.2.2 Divided Difference

Let f € C([a,b]) and points x; < x2 < ... < Zp41 be given. We define
divided difference of order n of f with respect to the points x1,...,xp1 by
f[xh v axn-‘rl] = Qn,

where p(t) = S ,a;z’ is the unique interpolating polynomial in P, to
the corresponding Lagrange problem from P,,_;. By (3.2.2), we have

D( 1 .o gn7l o f )

xry e In Tn+1

flzi, -y xng] = ( T )
D
T1 - Tp4l

From the above expression, we can compute the divided difference by com-
puting two determinants. Having the following property about the divided
difference, we can compute the divided difference recursively.

(3.2.6)

Theorem 3.2.2 Let f € C([a,b]) and points x1 < 3 < ... < z, be given.

Then
Fot, . aa] = LE2e @l 2 Sl ] (3.2.7)

Tp — 1

Proof. For any f € C([a,b]), define

L(f)zf[m,...,q:n]ff[@""’xn]—f[ﬂﬁl,...,a:n,l].

Tp — 1
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By (3.2.6), there exist coefficients b;,1 < j < n, such that
L(f) =Y bif()).
j=1

Therefore it suffices to prove that
by =0, j=1,2,--,n. (3.2.8)
For f(t) = 2%,0 <i <n— 3, it follows from (3.2.6) that

flei, ..o xn] = flre, ... xn] = fle1,. ., 2pn-1] =0,
which leads to '
L(z')=0 V0<i<n-3. (3.2.9)

For f(x) = 2" 2,
f[:nl,...,xn] =0
by (3.2.6), and

flza, .. xn] = flr1, .oy @xn—1] =1
since the Lagrange interpolating polynomials to 2”2 at the knots 1, . .., Zp_1
and at the knots xo, ..., x, are the same, 2" 2 itself. This shows that
L(z"%) = 0. (3.2.10)

For the polynomial w(x) = (z—x1) ... (x —xy,), the interpolating polynomial
at the knots x1, ..., x, is zero since the values of the function w on x1,...,x,

are zero. Write
n

w(z) =" — (Zwi)xn_l —r(x)

i=1
for some polynomial r of degree at most n — 2. Note that the interpolating
polynomial to (31 ; z;)2" ' +r(x) at the knots 21, . .., z,, is the polynomial
itself. Therefore

0=wlxy,...,zp] = hplz1,. .., 2p] —in.

where h,(z) = 2", which yields

S — Y

Lz H=1-
(") p—

= 0. (3.2.11)
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Combining (3.2.9), (3.2.10) and (3.2.11), we obtain

n
D bzt =0,0<i<n-—1
j=1

Hence (3.2.8) follows. O

The above theorem shows that the divided differences can be easily com-
puted according to the following scheme:

fla]
flz1, w2
f[9€2]
f[:L’l, .. ,:cn_l]
f[xlv'” 71'71]
flza, ... xy]
flzn-1]
f[lin—laxn]

By Theorem 3.2.2, for a differentiable function f, we have

lim flz1,z2] = f'(x1).

Tro2—T1

So the divided difference is widely used as a replacement of the derivative in
numerical computation of solutions of differential equations.

3.2.3 Newton Form of Interpolating Polynomials

In this section, we give another explicit expression of Lagrange interpolating
polynomials. The advantage for such a formula is at least that we need only
add one term when we add one knot.

Theorem 3.2.3 Let f € C([a,b]) and a < x1 < ... <z, < b be given. The
unique polynomial p of degree at most n — 1 which solves the corresponding
Lagrange interpolation problem can be written as

p(z) = flza] + flon, zal(z — 21) + - + flon, o znl(z —21) - (2 — 2001).
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Proof. For 1 < j < n, let p; be the unique polynomial of degree at most
j—1 which solves the Lagrange interpolation problem for z1 < 2 < ... < ;.
It is obvious that p;(z) = f[z1]. Inductively, we assume that

pj(z) = flza] + flo, w2](z — 21) + -+ + flo1, .. z5)( — 1) - (2 — 25-1).

Therefore it suffices to prove that

pi+1(z) = pj(z) + flre, ... zjl(z —x1) - - (x — ).

Denote the polynomial at the right hand side by pj;+1. Then pj 1 —pj41is a
polynomial of degree at most j — 1 by the definition of the divided difference.
On the other hand,

pir1(zi) = pj(zi) = f(zi) = pjy1(xi), 1 <i <.

This shows that p;ii(x) — pj11(x) has at least j roots, which together with
the degree property of the polynomial pj11 — pjy1 proves pji1 = pjr1. O

3.3 Least Square Approximation

In this section, we consider the least square polynomial approximation of a
function in weighted L? space.

A weight w on the interval [a, b] is a positive measurable function w on
[a,b]. For instance, the functions w; and we defined by wi(z) := 1 and
wy(z) == (1 — 22)~Y2,2 € [~1,1], are weight functions on [—1,1], and the
Gaussian function ws defined by ws(z) = (2r)~1/2e~7"/2 is a weight on
(—00, 0).

For a weight w on [a, b], we define the weighted L? space by

L2 ([a, b)) := {f : f is measurable on [a,b] and || |2, < oo},
where

b 1/2
\Vhw:=<AfWM%www> .

One may verify that L2 ([a,b]) is an inner product space with the inner
product (-,-),, on L2 ([a,b]) defined by

b
<ﬁmw=Lf@M@W@M% ¥ f,9 € L2 ([a,b)).
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Let P, be the space of all polynomials of degree at most n. If the interval
[a, b] is a finite interval and the weight w is integrable, then for any p € P,

b b
Pl = [ @) Pu)ds < ol [ w@)de < oc
a a
and hence P,, C L2 ([a,b]), where we have used the fact that a polynomial
is bounded on any finite interval. So in this section, we restrict ourselves
to consider the weighted L? space on a finite interval and the weight being
integrable.

By Theorems 6.1.2 and 6.2.1, we have the following result about the least
square approximation to a weighted L? function by polynomials.

Theorem 3.3.1 Let w be an integrable weight on the finite interval, and let
f € L2([a,b]). Then p € 1, is a least square approzimation to f if and
only if

(f =DpP)w=0 Vpell,.

Moreover, pi(x) = Sp_o ajz®, where

<171>w <xn71>w O[S <f71>w
: - : : = : . (3.3.1)
(Lx™yy o (™ 2™y o (f, 2™)w

Example 3.3.2 Let the function f and the weight on [—1,1] be defined by
f(z)=¢€" and w(x) =1,z € [-1,1]. Find the least square approzimation in
Ps.

Solution Let p3 be the least square approximation to f in P», and write
ps(t) = af + ajt + ait?. Then by Theorem 3.3.1, the coefficients af, o, o
satisfy the following linear system:

(1,1 A{x,1)  (22,1) ag (e, 1)
<17$> <$,l’> <:‘C23$> O‘T = <ex7x>
(1,22) (x,22) (22, 2?) fo% (e, x?)

Simplifying the above system leads to
1 0 1/3 ag e—1/e
2 0 1/3 0 of | = 2/e
1/3 0 1/5 ad e—>5/e
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x
P,and P Error between e” and P, P
3 2
25
1}
2
1.5 o
1
_af
0.5
o -2
-1 -0.5 o 0.5 1 -1 -0.5 (o} 0.5 1

Error between e* and P, P,

Figure 3.1: Figure 3.1: The least square approximating polynomials of degree
0,1,2,3 to the exponential function on [—1,1] and the errors.

Therefore

p3(w) = _(% - %) + Z + (% — %)x?

is the least square approximation to e® on [—1,1] out of P;.

From the figure 6.1.5, the approximation errors between e on [—1, 1] and
the least square approximating polynomials of degree 0,1, 2, 3 have the oscil-
latory properties. This inspires us to consider the oscillatory property of the
approximation error between a function and its least square approximating
polynomials.

To this end, we introduce a concept called simple zero. A point xg on the
real line is said to be a simple zero of a continuous function f if f changes
sign at xp, that is, there exist intervals so that f # 0 on [a, z¢] and [z, b],
and that either (i) f(z) > 0 on [z, b] and f(z) < 0 on [a, zo], or (ii) f(x) <0
on [xo,b] and f(x) > 0 on [a,xo]. For the later applications, for two simple
zeros xog and x; of a continuous function f, we consider them as distinct
simple zeros when f(z) Z 0 on the interval between zy and 7.

For instance, zop = 0 is a simple zero of the function f defined by f(x) =
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x,x € [—m, 7], and of the piecewise linear function g defined by

r+1 fz< -1
glx)=4¢ 0 if —1<z<1
r—1 ifz>1

But xp = 0 is not a simple of the function x2? on [—1,1] and of the function
max(|z|—1,0) as well. For the function g defined above, —1, 1,0 are thought
as identical simple zeros.

Theorem 3.3.3 Let f be a continuous function on the finite interval [a, b],
and let the weight function w(x) is strictly positive and continuous. Suppose
p} is the least square approzimation to f out of P,, and that e, (z) = f(x) —
pi(x) is not identically zero. Then en(x) has at least n + 1 distinct simple
zeros in (a,b).

Proof. Suppose on the contrary that f(z) — p}(z) has only k distinct
simple zeros in [a, b], where k < n. Let these zeros be labeled as follows

a<xr <x9 < ...<x) <b.
First we claim that £ > 1. By Theorem 3.3.1,

/ab en(z)w(z)dr =0,

which implies that e, (z) must take both positive and negative values in [a, b],
and then there is at least one simple zero by intermediate value theorem.
This proves our claim k£ > 1.
Define
q(x) = (x —z1) - (2 — ).

Then ¢ € P, by the assumption that k¥ < n. By the assumption on the
simple zeros f(z) — p}(z) changes sign at intervals [z;,z;+1],0 < i < k,
where we set z9p = a and zpy1 = b, since otherwise there are more than
k simple zeros for f — p}. Also note that ¢(z) changes sign at intervals
[zi,zi11],0 < i < k too. Therefore either (f(x) — p}(z))q(x) > 0 for all
x € [a,b] or (f(z) —pk(x))g(x) <0 for all x € [a,b]. On the other hand,

b
[ (@) - ph@ateyuts =0
by Theorem 3.3.1. Therefore

(f (@) = pp(2)g(z)w(z) =0 V€ [a,b].
Thus p} (z) = f(z), which is a contradiction. O



33

3.4 Best Approximation by Polynomials

For a continuous function f on [a, b], denote the uniform approximation error
between f and the best uniform approximating polynomial of degree at most
n by E,(f,[a,b]), or E,(f) for short,

Eu(f.lab) = inf I =Pl

In this section, we establish the following estimate to the uniform approxi-
mation error E,(f,[a,b]).

Theorem 3.4.1 Let f be continuous function on the finite interval [a,b).
Then

b—a
En(f) < 6w(f, W) n>1. (3.4.1)
As a consequence of Theorem 3.4.1, we have

Corollary 3.4.2 If f is continuous on the finite interval [a,b] and satisfies
the Lipschitz condition of order o with constant K, then

E.(f) < 6K (bz_na)a, n>1.

By Theorem 2.1.2 and 3.4.1, the density of the space of all polynomials
in C([a,b]) follows.

Corollary 3.4.3 The space of all polynomials is dense in C([a,b]).

Proof of Theorem 3.4.1. Let f € C([a,b]), and define a 27-periodic

function g by

b+a b—a

90) = (5 +

Then g is continuous and even. Also one may verify that

cos 9) .

w(g,d) <w(f,(b—a)d/2). (3.4.2)

Let ¢ be the best uniform approximation to g out of II,,, the space of all
trigonometric polynomials of degree at most n. Therefore ¢ (—-) is a best
uniform approximation to g as well since g is even. By the convexity of the set
of all best approximations, (¢’ + ¢ (—-))/2 is a best uniform approximation
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to g out of II,,. So without loss of generality we may assume that g, is an
even function. Therefore ¢} is a polynomial of cos#, i.e.,

qn(0) =do+dicost+ ...+ dy(cosf)"

for some di € R,0 < k < n, where we have used the fact that cos k@ is a
polynomial of cos @ of degree k. Putting

2r —b—a 2z —b—a\"
n(2)=dy+di————m8M + ... +d, | ——
Pn () o+ di A +... 4+ ( —_ >

and using Theorem 2.4.1 leads to

a+b b—a
sup |f(z) —pn(z)|= sup |g(cos®) —pn(7 + 5 cos 9)‘
z€[a,b] cos0e[—1,1]
1 b—a
= 0) —q:(0)] < - < .
S 1900) = . (0)] < 6w (9. ) < 6w(f. 75 ~)
This completes the proof. 0.

For the approximation problem of a differentiable function f, we have
the following estimate about the approximation error E,(f).

Theorem 3.4.4 If f has l-th continuous derivatives on [a,b] for all 0 <1 <
k, then

En(f) < en~Fuw (f(k), Q(bn__ak)) (3.4.3)

for all n > k, where ¢ is a positive constant independent of n (but depends

on k).
Proof. At first we claim that
En(f) <6n E,_1(f") (3.4.4)

for a differentiable function f on [a,b]. Suppose p}_; be a polynomial of
degree at most n — 1 so that

1" = Pp_illoo = En-1(f"). (3.4.5)

Then setting

palw) = | Cpi ()t
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and using (2.1.2), (3.4.5) and Theorem 3.4.1, we obtain

En(f) = En(f _pn)
< 67 = phlloo = 607 = ph_illeo < 607 Ena(f).

This proves our claim (3.4.4).
Repeatedly using the claim (3.4.4), we get

En(f) < 6n71En—1(fl) < 62(”(” - 1))71En—2(f”)
< S —1) (0= K) T B ()
< 6"lnn-1)---(n—k+1))"lw (f(k), ! k:)
n —
b—a
< —k (k) >
< cn w(f =k
where c is a constant independent of n, but dependent on k. O

By the proof of Theorem 3.4.1, we see that the constant ¢ in the estimate
(3.4.3) is dominated by 128+1 for all k < n/2.

3.5 Characterization of Best Approximation

In this section, we characterize the best uniform approximating polynomials
to a continuous function f on a finite interval [a, b] in P,.

A set of distinct points xg,x1,...,x, satisfying a < zp < 1 < ... <
Trp_1 < x < b is called an alternating set for a continuous function g on
[a,b] if

9(z5)] = llgllocs 7=0,...,k (3.5.1)
and
9(zj) = —g(xjs1), 7=0,...,k—1. (3.5.2)

For example, the set consisting of —m/2,7/2 is an alternating set for the sine
function on [—m, 7.

Theorem 3.5.1 Suppose f € C([a,b]). Then p is a best uniform approxi-
mation on [a,b] to f out of P, if and only if there exists an alternating set
for f —p} consisting of n + 2 points.

To prove Theorem 3.5.1, we need a lemma.
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Lemma 3.5.2 Suppose f € C([a,b]) and p}; is a best uniform approzimation
on [a,b] to f out of P,. Then there exist (at least) two distinct points x1,xo €
[a,b] such that

[f(x1) = pp(@1)] = [f(22) = po(z2)] = |If = palleo

and
f(@1) = pp(@1) = —f(22) + pp(22).
Proof. Set m; := mMaXye|q,b] f(a;‘) — p;’;(x) and my = minze[a,b} f(x) —
pl(x). Define
* * mi+m
i) = o) + T
Then ¢ (z) € P, and
* mip —ma %
1f = @illc = —=— < If = Pnlle (3.5.3)

2

where we have used |m1], |ma| < ||f —p}||c to obtain the last inequality. On
the other hand, p; is the best approximation to f out of P,, which implies
that

1f = prllee < 1f = dnlloo- (3.5.4)
Combining (3.5.3) and (3.5.4) leads to m1 = ||f — p}llec and mo = —||f —
D} |loo- Therefore the set consisting of points x; and x2 € [a, b], which are so

chosen that f(21) — piy (1) = maxseiay £(z) — ph(z) and f(z2) — p}(z2) =
ming¢(qp) f(2) — p;,(7), satisfies the required properties. O

Now we start to prove Theorem 3.5.1.

Proof of Theorem 3.5.1. First the sufficiency. Suppose that p,, € P,
and that the set of distinct points xg, ..., z,41 forms an alternating set for
f — pn. Now we show that p; is a best approximation. Suppose on the
contrary that there exists ¢, € P, such that

”f - QnHoo < Hf_anoo- (3.5.5)
Recall that
Pr(@5) — an(x5) = [f () — an(z))] = [f (25) — ()]

Then it follows from (3.5.5) and the conditions (3.5.1) and (3.5.2) of an
alternating set that the function p} — ¢, alternates in sign as j runs from
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0 to n + 1. Hence the polynomial ¢,(x) — p}(z) has at least one zero in
each interval (z;,2;41),j =0,...,n for a total of at least n 4 1 zeros, which
contradicts to the assumption that ¢, —p;, is a nonzero polynomial of degree
at most n.

The necessity. Suppose that p} is a best approximation to f. We may
assume that f ¢ P, since otherwise p; = f and then the whole question is
trivial. Denote p = ||f — p}|looc- Then p > 0 by f # pj. Let zg,...,xs be
points of [a, b] chosen so that a = 29 < 21 < ... < 2, = b and so that e(x) =
f(z)—p} (z) satisfies |e(y) —e(z)| < p/2forally, z € [zj,241],0 < j < s—1.
The existence of such a partition follows from the uniform continuity of
f —p;. Now we label every interval with a sign: positive, negative and
zero. If the interval [z, ;1] contains z such that e(z) = p, we label the
interval [xj,xj41] by positive sign; If the interval [z;,2;41] contains z such

that e(z) = —p, we label the interval by negative sign, otherwise we define
the sign of the interval as zero. From the above construction, we see that
—p < f(x) —pp(z) <p (3.5.6)

for all x in some intervals with zero sign. For the later applications, we need
relabel the sign of every interval. By Lemma 3.5.2, there exists at least one
interval with positive sign and one with negative sign. Now we relabel the
sign of every interval as follows: If the sign of the interval [xg, z1] is positive or
negative, then the new sign is the same as the old one. If the sign of [zg, 1]
is zero, then the new sign is labeled as positive (negative) if the closest
interval with nonzero sign is positive (negative). Inductively we assume that
all intervals [z, z;41],7 < | — 1, have been relabeled. Before we start to
label the sign of the interval [z, z;11], we observe that the sign of [z, zj41]
is either positive or negative if the sign of [z;_1, x;] is zero. Now we label the
sign of the interval of the interval [z}, x;41] as positive (negative) if either the
sign of the interval is positive (negative), or the sign of the interval [z;_q, 2]
is positive (negative) and the signs of the intervals [z, z;41] and [zi11, j42]
(if there exists) are zero, and label the sign as zero otherwise. Continue this
procedure until all intervals are labeled. Putting those connected intervals
with same sign together leads to the following partition of the interval [a, b],
a=1yp <y <--- <y =>bso that either (i) the sign of [y, y;+1] is positive
if | =0 mod 3, zero if | = 1 mod 3, and negative if [ = 2 mod 3, or (ii) the
sign of [y, y1+1] is negative if [ = 0 mod 3, zero if [ = 1 mod 3, and positive
if I =2 mod 3.

Denote the maximum and minimum of the function f(x) — p}(z) for all
7 in the intervals with positive, zero and negative sign by m{ and my, mg
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and mg, and m7T, and m~ respectively. Then by (3.5.6) and the above
construction of partition of the interval [a, b], we have

—p<my <mj =p,
—p<mg <mg < p, (3.5.7)
—p=mZy <ml <p.

From the construction of the above partition of the interval [a,b], we see
that the proof is done if the number of the intervals [y;, y;41] with positive
or negative sign exceeds n+2. Therefore it suffices to prove that the number
of the intervals with zero sign exceeds n + 1. Suppose on the contrary that
the number, say kg, of the intervals with zero sign is less than n. Choose
points z;,0 < j < ko in the intervals with zero sign such that only one
point is selected in each interval with zero sign. We label those points as
a<z <z <...<2z <b, and define

@ () = pp(x) + (21 — @) (22 — ) -~ (2o — ),

where 0 # v € R is chosen later. Obviously ¢ € P, by ko < n and

f(@) = qu(z) = (f(2) = pp (@) —v(z1 — @)(22 — @) -+~ (2 — ).

Choose the sign of v be the same of the sign of the interval [yg, y1]. Then one
may verify that (21 — z) - - - (2, — 2) are positive (negative) on the interval
with positive (negative) sign. So any « with sufficiently small magnitude,

—p < my =z —@)(z2 =) (2h — @) < f(@) — 4 (2)
< (a1 — @)z — 1) (g — 1) < p (3.58)
for any x in the interval with positive sign, where we have used (3.5.7).

Similarly it follows (3.5.7) and the construction of z;,1 < j < ko, that for
with the same sign as the one of [yg, y1] and sufficiently small magnitude,

—p < —p—y(z—x)(z2—x) (2 —2) < f2) = gu(2)
< mIy =z —a) (2 — @) (2 —2) <p (3.5.9)
for all  in the intervals with negative sign, and
—p < my =z —x) (=) (2k — @) < f2) = gp(2)
< mf =z —2) (22— ) (21 — ) < p (3.5.10)
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for all x in the intervals with zero sign. Combining (3.5.8), (3.5.9) and
(3.5.10) leads to

If = alloe < IIf = Prll
for v with the same sign as the one of [y, y:1] and sufficiently small magni-

tude, which is a contradiction since pj, is a best uniform approximation to f
out of P,. O

An easy application of Theorem 3.5.1 leads to the explicit expression of
the best uniform approximating constant to a continuous function.

Corollary 3.5.3 Let f be a continuous on the finite interval [a,b]. Then
the best approzimating constant py to f s

b = 5 [max f(2) + min £(2)],

and the approximation error E,(f) by constant functions can be computed
by

Ea(f) = § [max f(x) — min f(2)]

Another application of Theorem 3.5.1 is the uniqueness of the best ap-
proximation to a continuous function by polynomials. Here we emphasize
the L*° norm is not a strictly convex norm (see Section 2.1.4), and hence the
uniqueness of the best approximation to a continuous function by a linear
subspace does not hold in general.

Theorem 3.5.4 Let f be a continuous function on [a,b]. Then for any
n > 0 there exists unique polynomial p} € P,, which is a best uniform
approzimating polynomial to f € C(la,b]) in P,.

Proof. Set E,(f) =inf,cp, ||f — pll~ and let p} and g}, € P, satisty

1f = plleo = If = illoe = En(f). (3.5.11)

Then it suffices to prove that p, = p;,. By the convexity of the set of all best
approximations (Theorem 5.3.5),

1f = Ph + 4n)/2lloc = En(f)- (3.5.12)
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Set r* = (p} + ¢:)/2. By Theorem 3.5.1, there exists an alternating set
x0, ..., &Tnt1 for f—ry, which is labeled so that g < z1 < ... < zp4+1. So

Flay) — () = L) —Qp;é(wj) L (@) —2q:§(:vj)

for = 0 or 1. This together with (3.5.11) implies that
) = wn(z) = flag) = ap(ay) = (DM EL(f) Vji=0,....n+1

Thus

= (—1)™En(f)

pp(zj) = qp(z;) Viji=0,...,n+1

Hence p}, = g, since both are polynomials of degree at most n. O

3.6 Approximation by Bernstein Polynomials

In Section 5.2, we characterize the best approximating polynomials of a
continuous function. Until now, there are few situations that the best ap-
proximating polynomials can be constructed explicitly. For instance, the
best approximating constant to a continuous function is determined by the
maximum and minimum of that function (see Corollary 3.5.3), and the best
approximation polynomial of degree at most n to the polynomial z"*! on
[—1,1] is the Chebyshev polynomial T}, (z) defined in Section 3.6 (see Theo-
rem 1.9 in the book “An Introduction to the Approximation of Functions”
by T. J. Rivlin). All those inspire us to consider explicit construction of
polynomials to approximate a continuous function. In this section, we intro-
duce the Bernstein polynomials and discuss the approximation power to a
continuous function on [0, 1] by corresponding Bernstein polynomials. Here
given any function h € C([0,1]), we define its Bernstein polynomial of degree
m, to be denoted by By, (h,t), by

“ k m
(B, t) = Zh() ( )tk(l—t)m_k, m > 1.
o \m k
We also write B, (h,t) as By, h(t).

Theorem 3.6.1 Let h be a continuous function on [0,1], and B,,h be the
corresponding Bernstein polynomials of degree m. Then

3
lh — Bmhlloo < -—w

. (h, \/‘%) m> 1. (3.6.1)
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By Theorem 3.6.1, we have

Corollary 3.6.2 Let h satisfy the Lipschitz condition of order o with con-
stant K. Then

3
| Bih — hllo < 5Km—a/Q, m > 1.

By Theorems 2.1.2 and 3.6.1, we show that for any continuous function
h, B,,h tends to h uniformly as m tends infinity.

Corollary 3.6.3 Let h be a continuous function on [0,1]. Then
n%gnoo | Brh — hllcc = 0.

To prove Theorem 3.6.1, we need some basic properties of Bernstein
polynomials.

Theorem 3.6.4 Set hyo(t) = 1,h1(t) =t and ha(t) = t>. Then

Bumho = ho, (3.6.2)
Byhy = hy, (3.6.3)

and ) .
Bhy = 2" Zho+ —hy, m > 2. (3.6.4)

m m

Proof. By binomial formula,

Buho(t) = f: ( 7;; ) Fl—t)"F =+ 1 —t)" =1,

k=0

which proves (3.6.2). Similarly,

Bm(hl,t) = ihl (T]:L) ( 7]:? )tk(l —t)m—k



42

which leads to (3.6.3). Note that

Bm(h2 — hl/m,t) = i <k(ljn_21)) ( TZ ) tk(l —t)m—k

k=0
-1 —
mo= B
= Pl o= Ly
. om o om

This together with (3.6.3) implies

1 1 1
Biha = —Bmhi + - hg = —hy +
m ™m

Hence (3.6.4) follows. O

Now we start to prove Theorem 3.6.1.
Proof of Theorem 3.6.1. By (3.6.2),

- _ - f o m ki1 pym—k
Bumh(t) — h(t) g_%(h(m) h(t)><k>t(1 £)

Therefore

‘Bmh(t) - h(t)|

<y h(%) —h(t)‘ ( " )tk(l—t)m_k
k=0

< Su(uli-) () Ha-om
=0

o

< i (1+m1/2‘— —t’)w (h, m*1/2) ( Tl? )tk(l —t)m*k

k=0

< w(h, *1/2)+\thm1/221 —t‘( )tkl—t)

where we have used the properties of modulus of continuity (Theorem 2.1.2).
Hence it suffices to show

Z\ﬂ( )tklt) _2\%. (3.6.5)
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By (3.6.2), (3.6.3) and (3.6.4), we get

i‘ﬁ—t ( "]; >tk(1—t)m_k
k=0 "
moor 1/2 s/ m 1/2
(R (2o (R (o)
k=0 k=0
= (Buho(t) = 2Buhi (t) + Buho(t)) ' (Buuho()"?

= B+t(1—t)/m—22+*)/? =
This together with

1 e 1
1— = — — —_ = < — .
-1 =7 (t 2) <7 Vite1]

proves (3.6.5) and hence completes the proof of Theorem 3.6.1. O

The estimate in Theorem 3.6.1 can not be improved in general. For
example, by Theorem 3.6.1, for the function h defined by h(t) = |t —1/2| on
t € [0,1], we have

|Buh— B < s—— (3.6.6)

But for even m,

)13 - E(5-3)
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where we have used the following Stirling formula

2k (5)" < k< varR(2) + )
Thus ) ) )
| Bh — hl| > Bmh(§) - h(§) > 5= (3.6.7)

Comparing (3.6.6) and (3.6.7), we see that the estimate of approximation
error by Bernstein polynomials can not be improved in general.

By Theorem 3.4.1, the uniform approximation error to h by polynomials
in P, is dominated by 3m~', which is much smaller than m~'/2 for suffi-
ciently large m. Due to the difficulty to give an explicit expression of best
uniform approximating polynomial to a continuous function, it is still a good
choice to use Bernstein polynomial to approximate a continuous function on
[0, 1] since Bernstein polynomial can be computed explicitly and easily.

3.7 Approximation by Interpolating Polynomials

In this section, we study the approximating power of interpolating polynomi-
als as the number of interpolation knots increases. For simplicity, we restrict
ourselves to consider the approximating property of interpolating polynomi-
als on the interval [—1,1]. To this end, we consider an infinite triangular
array of knots

L1
x§2) $é2)
X xgs) :Ug?’) xg?’)

(3.7.1)

where for n > 1, -1 < xgn) < xé") < ... < x,(ln) < 1. We denote Eg."),j =
1,...,n, the fundamental polynomials corresponding to the interpolation

problem at knots —1 < mﬁ”) < xé") <. < ﬂ:%n) < 1. We call the function

M(X,2) =3 1M @), n=1,..., (3.7.2)
j=1
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the Lebesgue function of order n of X, and the quantity

A (X) = —1S;1p<1>\n(X’x) (3.7.3)

the Lebesgue constant of order n of X. Let L, be the unique polynomial of
degrees at most n — 1 solving the Lagrange interpolation problem of f at the
knots —1 < xgn) < a:gn) <.<ai <1 Set

G = Gn(f, X) = ||f — Ln]|oo. (3.7.4)

Then we have the following estimate to the approximating error by interpo-
lating polynomials L,,.

Theorem 3.7.1 Let X be the infinity triangular array of knots in (3.7.1).
Then
Gulf, X) < (14 A (X)) Ena(f), n=1,.... (3.7.5)

where G, is the approximating error by interpolating polynomials L, in
(8.7.4), En—1(f) is the approximation error to f by the best uniform approx-
imation polynomial in P,_1, and A, (X) is the Lebesque constant of order n
of X in (3.7.3).

Proof. Let p}_; € P,_1 be the best uniform approximation to f on
[—1,1] out of P,_1, i.e.,

If = Pr—illoc = En-1(f). (3.7.6)
By the uniqueness of the Lagrange interpolation polynomial,
Ln(p} 1, X", 2) = p; (), (3.7.7)

where X (") is the set of knots xgn), . .,x&”). Therefore by (3.2.5), (3.7.6)
and (3.7.7), we obtain

[f(x) = Ln()|

IA

[f (@) = pr1 ()] + [pr -1 (2) — L ()]
< @) = pha @)+ | Ln(pog — £, X, 2)|

Bt () +I1f = phoilloe S 11 ()]
=1

IN

IN

Bua(£)(1+ 311 ))).
j=1
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Hence the estimate follows by taking supremum at both sides of the above
inequality. O

From Theorem 3.7.1, we see that the Lebesgue constant plays important
role for a good approximation by interpolating polynomials. For the case
that the zeros of Chebyshev polynomials of order n are chosen to be the knots
at level n, we have the following estimate to the corresponding Lebesgue
constant.

(n)

i

Theorem 3.7.2 Let T be the infinite triangular array of knots with x
being defined by

2i—1
xl(n):—cosu, 1<i<n, n>1, (3.7.8)
2n
and denote the corresponding Lebesgue constant of order n by A, (T). Then
we have

2
A (T) < - Inn+ 4. (3.7.9)

Proof. For the knots in (3.7.8), one may easily verify that

i(z) = [Ti<j<n,jzi(cos @ + cos ;) _ (—=1)""=1sin §; cos n9’ (3.7.10)
ngjsnvj#(—cosei + cos 0;) cos 6 + cos 6;

where x = cos6 and 6; = (2i — 1)7/(2n),1 < i < n. Denote the correspond-
ing Lebesgue function of order n of T" by A,(x,T). Then it follows from
(3.7.10) that

(2. T) | cos nf)| i | sin 6; |
€T =
e n ‘= |cosf + cos b
_ |cosnb| & 0+6; 0 —0;
= = Z‘c gy —cot— |, (37.11)
i=1
where x = cosf and we denote cotz = cosz/sinx as usual. Clearly,

An(cos@,T) is an even function and has period 7/n about 6. This implies
that

A (T) = maxl)\n(a;,T): max  Ap(cosf,T). (3.7.12)

—1<z< 0<0<7/2n
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Recall that |l;(cos )| is monotonously decreasing about  on [0, 7/(2n)] by
(3.7.10) and the monotonicity of cosf. This together with (3.7.12) implies
that

1 0;
Ap(T) =X, (1,T) = = t —.
(T) = A(L,T) = ~ 3" cot 5

One may show that cotz < 1/z for all 0 < 2 < 7/2 since h(x) = cotz —1/x
satisfies h(0) = 0 and h/(z) < 0 for all z € [0,7/2]. Thus

An(T) =

IA

This proves (3.7.9) and completes the proof. O

By Theorems 3.7.1 and 3.7.2, we see that

2lnn

Gn(fvT) < (5+ )En—l(f>

Therefore if the modulus of continuity of f satisfies lims_,ow(f, ) 111% =0,
then the Lagrange interpolating polynomial to f at the zeros of Chebyshev
polynomials converges to f uniformly.

We remark that for any infinite triangular arrays X, the corresponding
Lebesgue constant A, (X) satisfies

Ap(X) > 2Ilnn

— 1.

2

For the infinite triangular arrays E from equally spaced points on [—1,1],
the corresponding Lebesgue constant A, (E) as n tends to infinity increase
exponentially and hence much worse that the asymptotic behavior of the
Lebesgue constant corresponding to the zeros of Chebyshev polynomials
(see Section 4.2 of Rivlin’s book “An Introduction to the Approximation
of Functions” for details).

Exercises
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. Show that cos k6 is a polynomial of degree k about cos 6 with leading coeffi-

cients 25— for k > 1.

. Find all alternating sets for the function sinz on [—2m, 27].

. Let f(z) = 2%, € [0,1] and p*(x) = az+b be the best uniform approximating

affine function to f. Compute || f—p*||o and find all alternating sets for f—p*.

. Suppose that ¢ € P,,, f € C([a,b]), and

Flag) = alay) = (-1 4;
with A; > 0,5 =0,...,n = 1. Prove that

En(f) > miH(Ao, N ,AnJr]).

. Let f be a continuous function on [a, b]. Then p* € P, is a best approximation

to f if and only if for each polynomial ¢,

ngfg;(f(w) —p*(z))q(z) >0,

where Ay denotes the set of all points y € [a,b] for which |f(y) — p*(y)| =
1f = P*lloo-

. Let f(z) = |z —1/2|,z € [0,1]. Compute the corresponding Berstein polyno-

mials B,, f of degree 0,1, 2.

. Let h3(x) = 23,2 € [0,1]. Compute the corresponding Bernstein polynomials

B, hs of degree m, where m > 3.

. For k > 2, show that the Bernstein polynomials B, hj of the function hy(z) =

2% x € [0,1] are polynomials of degree k for all m > k, and also find the
leading coefficients of B, hy.

. Let h be bounded on [0, 1] and suppose that h has continuous second deriva-

tive . Show that

lim m(Bph(z) — hiz) = — 2E=2) gy

n—roo 2



Chapter 4

Spline Approximation

In this chapter, we study the Lagrange interpolation problem and its ap-
proximation power.

4.1 Piecewise Linear Interpolation

Polynomial interpolation has the drawback of producing approximations
that may be excessively oscillatory between knots. If we abandon the re-
quirement that the approximating functions are polynomials, a much more
general family of approximating functions that suggests itself is the set of
piecewise polynomials, i.e., functions that are polynomials, possibly different
at different subdomains of the domain which we are approximating. In this
section, we consider the interpolation problem by continuous piecewise linear
functions and its approximating property.

Given a set X = {x1,x9,...,2,} labeled so that z1 < z9 < -+ < x,,. We
let S1(X) be the space of all continuous function which agrees with an affine
function on each subinterval [x;,z;11],9 = 1,...,n — 1. For any function
g € S1(X), it has "corner” where two linear pieces meets, and generally,
have no derivative at a corner. For example, the hat function h define by
h(z) = max(0,1—|z|),z € [-1, 1], is piecewise affine function and has corner
at the points —1,0 and 1.

Define
L= if € [11, x9)
= T2—x1 4.1.1
h(@) { 0 otherwise, ( )

T2—x]

In(xz) =
(@) 0 otherwise,

{ Tt f g € a1, T (4.1.2)

49
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and
% if z € [mi_l,xi]
lz(m) = ﬁ if x € [xi,xﬂ_l] (4.1.3)
0 otherwise

for 2 <7 <n—1. One may easily verify that the functions l;(z),1 <i <mn,

satisfy
1 ifi=y
li(z5) { 0 ifij (4.1.4)
So the dimension of S;(X) is n.
To study the interpolation problem to a given continuous function f on

a finite interval [a, b], we need make some restrictions on the knots,

z1=a and x, =0 (4.1.5)

By (4.1.1), (4.1.2) and (4.1.3), for any given continuous function f, the
interpolating function g in S7(X) satisfying
flxi) = g(zi), 1 <i<n,

g(@) = fzli(2). (4.1.6)

=1

Because of (4.1.4), we call the functions /;,1 < i < n, the fundamental
piecewise linear functions at the knots z1,...,z,.

Let X be an infinite triangular array of knots in [a, b],

.’EgQ) 1‘%2)
X 3:53) :Eé?)) x;(;g)
: (4.1.7)
and satisfy
a:a:gn) <x§n) <...<z™=b Vn>2 (4.1.8)
We define
A, = max |x£i)1 - $1(;n)|’ n > 1. (4.1.9)

T 1<i<n—1
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For any continuous function f on [a, b], we denote the interpolating piecewise
linear function to f at the knots mgn), e ,x%n) by gn(x). Then we have the
following estimate to the approximation error to f by interpolating piecewise

linear function g,.

Theorem 4.1.1 Let X be an infinite triangular array of knots in (4.1.7)
and satisfy (4.1.8), and let f, g, and Ap,n > 1, be defined by above. Then

1f = gnlloo < w(f, Dn). (4.1.10)

Proof. For x € [:E(n),xl(-i)l], 1 <i<n-—1, we have

i

(n) (n)

n
T Z;

Z; -z n n
gn(T) = ﬁf(ﬂfg )) + mf(x§+)1),
Tiy1 — T4 Tit1 — T4
which implies that
(n) (n)
xi — X n X — f]}i n
F@) = gu(@)] € —HE—sIF @) = f@)] + i @) — (@)
Tiyy — &4 Tiyy — %4
(n) (n)
< ﬁw(f, An) + mw(f, Ap) =w(f, ).
Tiy1 — %4 Tiv1 — %4
This completes the proof. O

4.2 Quadratic Spline Interpolation

In this section, we introduce the quadratic spline and study its corresponding
interpolation and approximation problem.

4.2.1 Quadratic Spline

Suppose that X denotes the set of real numbers xg, ..., z, labeled so that
a<xg<x]<...<xHy <b Let So(X) be the set of all functions s(X,z) =
s(x) € C'([a,b]) so that in each interval [z;,7;11],0 <i < n— 1, s(x) agrees
with a polynomial of degree at most 2. We call the function s € S3(X)
a quadratic spline, and the points xg,...,z, knots. Obviously 1,z,z? are
quadratic spline. One may easily verify that (z +2/3)2 is a quadratic spline

with knots —1,—2/3,2/3,1, where we define z; = max(z,0).
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Theorem 4.2.1 Let X = {xg,x1,...,2,} be labeled so that a < x¢g < x1 <
< xp <b. Then both

{1, z, 22, (x — xl)i, ooy (= xn_l)i}

and

{1,2,2%, (x —z1)?, ..., (x —2p1)%}

are bases of So(X), where x4 = max(0,z) and z_ = min(0,z),z € R.
Proof. First we prove that

{1, z, 22, (x — xl)i, vy (= acn,l)i}

is a basis of So(X). Obviously, 1,2, 22 (z — 21)%,...,(z — xp_1)2 be-
long to C([a,b]) and agree with quadratic polynomials on every interval
[z, 2i1+1],0 < i < n — 1. Hence they are quadratic splines on the knots X.

For any given f € S3(X), denote the jump of the second derivative f”
from the left hand side of z;,1 < i < n—1, to the right hand side by a;, and
define

l\D}—‘

-3 S ate it

Therefore h := f — g € S3(X) and the jump of A” from the left hand side of
z;, 1 <1 <n—1, to the right hand side is always zero. This together with
the definition of a quadratic spline in So(X) implies that h is a polynomial of
degree at most two, say h(x) = bg+byz+bax?. Hence f is linear combination
of 1, x, 22, (x—x1)2+, N xn_1)+. Moreover from the proof above, we see
that 1,z,2%, (z — z1)2,...,(x — xp—1)% are linear independent. Therefore
they form a basis of S2(X).

We may similarly prove that {1,z,2%, (z — x1)%,...,(x —2,1)%} is a
basis. We omit the detail here. O

By Theorem 4.2.1, we have

Corollary 4.2.2 The dimension of the space So(X) of quadratic splines is
n+ 2, and the dimension of S2(X) exceeds the number of knots by 1.
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4.2.2 Quadratic Spline Interpolation

In this section, we study the Lagrange interpolation problem by quadratic
splines. Given pointsa = zg < 1 < --- < z, = b, we see that the dimension
of quadratic spline is n + 2, which exceeds the number n + 1 of knots.

Theorem 4.2.3 Take points a = g < 1 < --- < x, = b and set tg =
Zoytny1 = Tp and t; = (vi—1 + 24)/2,1 < i < n. Then for any given
fi € R,0<i<n+1, there exists unique quadratic spline s € Sa(X) so that

S(ti) =fi, 0<i<n+1. (4.2.1)

Proof. Let s € Sy(X) satisfy (4.2.1) and denote s(z;) by s;,0 < i < n.
From the values of s on x;_1,t;, x;, the quadratic spline s agrees with

(z — ti)(z — i) (z —t;)(x — zi_1)

i(x) = 2s;— —4f; ' +2s;
p’L( ) i—1 (xl _ ,fL'i_l)2 fl (xz _ xl_1)2 1 (,Q:'Z o ,f[}i_l)2
(4.2.2)
on [z;_1,z;]. By direct computation, we have
_33,71 +4f — 5
H(zim1) = —— = 4.2.3
plloir) = oL (1.2.3
and A 5
Py = SmL i 38 (4.2.4)

Ti — Ti—1

Therefore it follows from s € C*'([a, b]) that p}(z;) = p}, (x;), which together
with (4.2.3) and (4.2.4) leads to

52‘_,_18@'_1 + 3(52 + 51’4—1)31' + (5¢Si+1 = 4(5¢+1f2‘ + 45ifi+17 1<1<n-1, (4.2.5)
where §; = x; — x;_1. Set s = (81, ... ;Sn—l),

v = 4((52f1 =+ (51f2, - 75nfn—1 + (5n_1fn)T — ((52f0, 0, - ,0, 5n_1fn+1)T,

and
362 46) & 0 .. 0 0
55 3(05+6) b oo 0 0
A= : . : :
0 0 o Op—2 3(0n—2+0n—3) On—3

0 0 . e 577,—1 3(5n—1 + 571,—2)
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Then we may write the linear system (4.2.5) as
As =w. (4.2.6)

Note that A is a strictly diagonal dominated matrix. Here we say that a
matrix (a;;)1<ij<m is strictly diagonal dominated if [a;;| > >7;; [a;;| for all
1 < i < n. Then A is nonsingular. Therefore the linear system (4.2.1) is
solvable and the solution is unique by (4.2.6). O

4.2.3 Quadratic Spline Approximation

Suppose that X = {zg,x1,...,2,} satisfiesa =29 <z1 < --- < x, =b. We
define

d=0(X) = 121?3}%’% —zi_1|.

Then we have the following estimate about the error between a continuous
function and its approximating quadratic interpolation spline.

Theorem 4.2.4 Suppose that f be a differentiable function on [a,b] and
s € So(X) satisfies

s(@) = fla), s(b) = fb) and s(TEE) = p(TEE) 1< <
(4.2.7)

Then
1f = sllee < Cow(f',9), (4.2.8)

where C' is a positive constant independent of X .

Proof. Set a; = (v; — xi—1)"|s(x;) — f(4)],0 < i < n. Then it follows
from (4.2.7) that
ap = a, =0. (4.2.9)

By Taylor’s expansion,

{\ﬂm—f®0+%f@mS§Mﬂﬁ)
|f(tie1) — fla:) — 22 f(23)] < Sw(f, ).

Combining (4.2.5) and (4.2.10), we obtain

(4.2.10)

3(0; + it1)dia; < 6;i0it1ai41 + ir10i—1ai—1 + 48;8; 10w ([, ),
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which implies that

(51' 51'—
3(1+ - )ai < a1 +40w(f,6) + “ai 1. (4.2.11)
dit1 0;
y (4.2.9) and (4.2.11), we may prove
5 1
(8 + ) a; < —ait1 + 26w(f',9) (4.2.12)
9 din1 3
for 1 <i <n—1 by induction. Thus
3 9 )
a; < 8az+1 + 5w(f 9), 1<i<nmn, (4.2.13)
which together with (4.2.9) that
1
a; < —8(5w(f J). (4.2.14)
Therefore
|f(zi) = s(x)| < 4l — zia|dw(f',9). (4.2.15)

Let p}(z) be the quadratic polynomial in (4.2.2) with s;_1, fi, s; replaced
by f(zi-1), f(ti), f(z:). Then

pi(wim1) = f(wim1), pi(t:) = f(t), p; (@) = f(za), (4.2.16)
and
19} = pilloe < 4dw(f',9) (4.2.17)
by (4.2.15). By Taylor’s formula, we obtain

flwia) = 2f(t:) + fl:)
2

L R L
<

Si(f',5), (4.2.18)

7 = 90)wi0) = (£ = D)0) + 3~ 90 (005 -

where we have used (4.2.2) to compute the second derivative of p;. This
together with (4.2.15) leads to

[(f = p7) (t)dil 4+ | f (wim1) — 2f (t:) + f(2:)] < 4ow(f',0). (4.2.19)
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Therefore the estimate (4.2.8) follows from (4.2.17) and (4.2.19), since for
T € [zi1, 2],

[f(2) = s(@)] < |f(z) = pi (@) + |pi(z) = p; ()]
< 17— p)wlle — o+ 2L 2O LT e
+éiw(f’,8) + 4ow(f,0) S
< 125w(f,6).
This proves (4.2.8). O

4.3 Cubic Spline Interpolation

In this section, we introduce the cubic spline and study the corresponding
interpolation and approximation problem.

4.3.1 Cubic Spline Interpolation

Suppose that X denotes the set of real numbers xy, ..., z,, where
a<zo<a1<...<x/ <0h

Let S3(X) be the set of all functions s(X,x) = s(z) € C%([a,b]) having the
property that in each interval [x;,z;11],0 < i < n — 1, s(x) agrees with a
polynomial of degree at most 3. We call the function s € S3(X) a cubic
spline, and the points xg, ..., z, knots. Obviously a polynomial of degree at
most 3 is a cubic spline. Also one may verify that max(0, (z + 2/3)3) is a
cubic spline with knots —1,—2/3,2/3,1. By similar procedure in the proof
of Theorem 4.2.1, we have

Theorem 4.3.1 Let X = {xg,x1,...,2,} be labeled so that a < xg < x1 <
... < xp <b. Then both

{1,222, 23, (z — xl)i, ey (= wn_l)i}

and

{1z, 2% (x —21)%,...,(x — 20 1)}

are bases of S3(X), where x4 = max(0,z) and x— = min(0,z),z € R. Also
the dimension of the space S3(X) of cubic spline is n + 3.
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By Theorem 4.3.1, the dimension of S3(X) is n + 3, which exceeds the
number of the knots X by 2. To this end, we need two additional restrictions
before we start to consider the interpolating problem. We observe that the
unique polynomial p of degrees at most 3 that satisfies

p(a) = u1, p(B) = ug, p'(a) =v1, p'(B) = v,
is

(z—B)?
(8 —)? (8 — )

p(z) = ul[

(z—a) (z—B)z—a)
T2l Y Boap ]
BB @—aPa=p)

(B—a)? B—a)
where a < . For the case « = 0 and 8 = 1, the above polynomial is
p(z) = uy(x — 1)%(1 + 22) + ugx?(3 — 22) + viz(z — 1) + vpa?(z — 1).

The above observation inspires us to consider the Lagrange interpolation by
cubic spline with restriction on the first derivative on the boundary knots.

Theorem 4.3.2 Let X = {zo,...,z,} be points on R labelled so that xo <
x1 < -+ < xyn. Fiz numbers s and s},. Then for any given f;,0 < i < n,
there exists a unique cubic spline s € S3(X) satisfying

and
S,(f7 X7 332) = 5/

79

i=0,n. (4.3.3)

Proof. Let s € S3(X) satisfies (4.3.2) and (4.3.3), and denote the
§'(z;) = s},1 <i<n—1. Then by (4.3.1), s(z) agree with

P T T
pz(ZL‘) - fzfl |ﬁ~%, — $i—1)2 + 2 (l'z — .%'i—l)g ]
N —wi)? (@ — @) (r—2i)’

+fi (zi — 2i-1)2 2 (x; —wi—q)3 ]

r — T;— 37—1:,‘2 )\ — Tj— 2.%—
+3;_1( (24 _11(1,_1)3 ) ( ou
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on [x;—1,x;],1 <i < n. By direct computation, we obtain
p;'(xz;l) = 5;2(—6](‘@'71 + 6fi - 4(51'82_1 — 251'82) (4.3.5)

and
pg/(ﬂfi) = (5;2(6]2,1 —6f; + 251'82_1 + 45152) (436)

where we set §; = x; — x;—1 as usual. By s € S3(X), we have
pi(xi) = pipi(xi), 1<i<n—1. (4.3.7)

Combining (4.3.5), (4.3.6) and (4.3.7) leads to

i i
di+18i—1 +2(0i + 0i1)s] + disiyy =3 rl(fiﬂ —fi) + (;1 (fi — fi—l)}
i+ 7
(4.3.8)
for1<i<n-—1.Sets =(s,...,s,_ )%,
/ b2 o1 On, On—1 4
vo= 3 7(f1_f0)+7(f2_f1)7"'7 (fn—l_fn—2)+ (fn_fn—l)
01 02 On—1 S,
—(528’1, 0, NN ,O, (5n_1S%)
and
2((52 + (51) o1 0 S 0 0
03 2(63 + (52) 0o cee 0 0
A= : : ;
0 0 U 5n72 2(5n72 + 67173) 6n73
0 O P e 677,—1 2(671,—1 +6n_2)
Then we may write the equation (4.3.8) as
As' =, (4.3.9)

Clearly, A is strictly diagonal dominated. Therefore A is nonsingular and
hence the linear system (4.3.9) is solvable and has a unique solution. O

From the proof of Theorem 4.3.2, we see that we can solve the Lagrange
interpolation (4.3.2) and (4.3.3) with restriction on the derivative on the
boundary knot by solving the linear system (4.3.9) to get the values of the
first derivatives on all knots and then substituting them into (4.3.4) to find
the final interpolating cubic spline. An alternative to find the interpolating
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cubic spline is to find a basis eq,...,e,43 of S3(X), then to establish the

linear system to the solution s(x) = 3172 a;e; by

p(z;) = f(x;), i=0,...,n
P'(z0) = 50 (4.3.10)

The dimension of the above linear system is n+3, and hence is larger than the
dimension in the system (4.3.9). If the data f;,0 < i <n, and s, s},, and the
knots have certain symmetry, the dimension of the system (4.3.10) will be the
minimal integer larger than (n+ 3)/2, which is quite smaller than the one of
the system (4.3.9). For the cubic spline interpolating problem to the function
f(x) = 2% 2 € [~1,1] at the knots —1/2,0,1/2, the interpolating cubic spline
p satisfying (4.3.10) must be the linear combination of 1,22, |z|3. Then we
need only solve a linear system of dimension 3. In fact for this particular
problem, the corresponding cubic interpolating spline p(z) is —2x2 + 3|z|3.

4.3.2 Extreme Property

In this section, we study the extreme property of interpolating cubic spline.

Theorem 4.3.3 Suppose that a = x9 < 1 < ... < x, = b and f € C?[a,b].
If we take f; = f(x;),0 < i <n and consider the spline that satisfies

{ s(e)=fi, 0<i<n
s'(z0) = f'(w0), 8'(xn) = ['(wn).

Then we have

/ab[f”(x)]2dx - /ab[s”(x)Pd;g = /b[f”(x) — §"(2)]2dx.

a

Proof. Clearly, we have

[ 1@ - P
b b b
= [1@r - s @l -2 [ @) - o @)de.

Therefore it suffices to verify that

[ @@ - '@ =o
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By partial integration formula, we obtain
b
| @U@ - o @)
b b
= Y@@ -S@), - [ @l @ - @)
n—1 Tit1
= o f(z) — §'(x)]dx = 0.
Sai [ @) - s

This completes the proof. O

4.3.3 Cubic Spline Approximation

Now let consider the approximating power of cubic splines. Suppose now
that the set X of knots {z¢, z1,...,x,} satisfiesa = xg < x1 < -+ <z, =b.
Given a continuous function f defined on [a,b]. Define the norm on X by

d =0(X) = max |z; — zi_1].

1<i<n
Then we have
Theorem 4.3.4 Suppose that f € C?([a,b]) and s € S3(X) satisfies
s(xi) = f(zi), 0<i<n

and

Then for all x € [0,1],
1f = slloo < 502w (f",9).

The proof of Theorem 4.3.3 can be found in Rivlin’s book “An introduc-
tion to the Approximation of Functions”. We omit the detail here due to
the complexity of the proof.

Corollary 4.3.5 Given a function f in C*([a,b]), and take sets X,,n > 1
of knots. If 6(X,,) — 0 as n — oo, then the interpolating cubic spline p, to
f at the knots of X,, converges uniformly to f.
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Exercises

1.

10.

Let G be an n-dimensional linear space of continuous functions on [a, b], and
let x1,...,x, be distincts points in [a,b]. Show that if

g1 92 : 9n
D(:Cl T e xn)#o

for a basis {g1,...,9n} of G, then it holds for any basis of G.

. Find a trigonometric polynomial of degree at most one to solve the Lagrange

interpolation problem to the function f(z) = e, € [—m, x| at the knots
—m/2,0,7/2.

. Find a quadratic polynomial to solve the Lagrange interpolation problem to

the function f(x) = cosma,x € [—1,1] at knots —1/2,0, 1.

. Let G be the linear space spanned by 1, e, e?*. Find a function in G to solve

the Lagrange interpolation problem to the function f(z) = 2%, 2 € [-1,1] at
the knots —1,0, 1.

. Consider a polynomial p of degree at most n, and the knots z1 < x5 < ... <

Ty < Tp41. Show that the polynomial p is the only polynomial solving the
Lagrange interpolation problem to p at the above knots.

. Consider the function f(x) = 2%+ 1 and the knots —2, —1,0, 1. Compute the

following divided differences,

f[72’ 71]%}0[727 7150]%}[‘[7170’ 1]7f[727 71,0]7.]0[727 71705 1]a

and use Newton form to construct the Lagrange interpolation polynomial to
f at the above four knots.

. Let f(z) = |z|,x € [-1,1], and let ¢,,1 < n < 10, be the unique Lagrange

interpolating polynomials to f at the knots being roots of Chebeshev poly-

nomials,

. (20 — )m .

(n) _ _
T, =-— ,i=1,...,n.

co
2n

Compute the uniform norm of ¢, numerically and plot g, for all ;1 < n < 10.

. Find the quadratic spline g at the knots —1,—1/2,0,1/2, 1, which interpolates

|sinmx| at —1,-3/4,—1/4,1/4,3/4,1.

. Find the quadratic spline ¢ at the knots —1,0, 1, which interpolates el*! at

~1,-1/2,1/2,1.

Find the cubic spline g at the knots —1,—1/2,0,1/2,1, which interpolates
sin? rx/2,2 € [~1,1] at —1,—1/2,0,1/2,1 and has same dertivatives with
sin? 7z /2 at the boundary knots —1, 1.
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11. Consider the knot set X := {xg,z1, 22} = {-1/2,0,1/2}.

(i) Construct cubic splines p;,0 < i < 2, and ¢g, g2 in S3(X) such that
pi(z;) = 1 and p;(z;) = 0 for all j # ¢ and p)(zo) = pj(z2) = 0;
(ii) Construct cubic splines gg, g2 in S3(X) so that gs(z;) = 0,0 < i < 2,
di(zs) =1 and ¢} (z¢) = 0 for t € {0,2}\{s}.
(iii) Use the results in part (i) and (ii) to construct a cubic spline p such

that p(z;) = f(2i),0 < i < 2 and p'(z;) = f'(2;),i = 0,2, where
f(z) = cosmzx +sinwz,z € [-1/2,1/2].



Chapter 5

Approximation in Normed
Linear Spaces

In this chapter, we study the approximation problem in a normed linear
space. In particular, we consider the existence and uniqueness problem of
the best approximation to a given function in a normed linear space out of
a linear subspace.

5.1 Normed Linear Spaces

In this section, we introduce the concept of a normed linear space, and recall
some basic properties of a normed linear space.

5.1.1 Linear Spaces

A linear space V is a set of vectors that has the following properties:

(i) There is an operation of addition, and the addition of any two vectors
in the set produces another vector and satisfies:

—u+ (v+w)=(u+v)+w for all u,v,w e V.
—u+v=v+uforal uveV.

There is a zero vector 0 such that u+0=wu for all u € V.

Every vector u has a negative correspondence —u such that u +
(—u) = 0.

63
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(ii) There is an operation of multiplication, and the multiplication of a real
number gives another vector and satisfies:

— afu+v) =au+ av for all « € R and u,v € V.
— (a+B)u=au+Puforall o, € Rand u € V.
— (af)u = a(fu) for all o, € Rand u € V.

— lu=wuforallueV.

One may verify that the following mathematical objects are linear spaces:
(a) The set R of all real numbers with usual addition and multiplication.

(b) The Euclidean space R = {(x1,...,24) : z; € R,1 < i < d} with
coordinate addition and multiplication.

(¢) The space II,,7 = 0,1,..., of all trigonometric polynomials of degree
at most r,
'
I, = {ao + Z(ak cos krx + b sinnmx) :
k=1

ageR,ak,bkERforkzl,...,r}.

(d) The space P, of all polynomials of degree at most r,

PT:{Zakwk: akeR,nggr}, r=20,1,....
k=0

(e) The space L?([a,b]) of all square integrable functions on the interval
[a, b],

L([a,b]) = {f : /ablf(:v)l2dfv < oo};

(f) The space C(]a,b]) of all continuous functions on a finite interval [a, b].

(g) The shift-invariant space V2(¢) spanned by the integer shifts of a com-
pactly supported L? function ¢ on the real line R,

V2(g) = {Z c(R)plz—k): Y le(k)P < +oo} .

kEZ keZ
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5.1.2 Normed Linear Spaces

A normed linear space V is a linear space with a norm || - ||, a function from
V to R that has the following properties:

(i) |lv]] > 0 for all v € V, and ||v|| = 0 if and only if v = 0.
(ii) ||ew|| = |e]jv|| for all « € R and v € V.
(iii) (Triangle inequality) |lu + v|| < ||u|| + ||v]| for all u,v € V.
The following are some examples of normed linear spaces:
(a) The space R of all real numbers with magnitude as the norm on R.

(b) The d-dimensional Euclidean space R? with the norm |-[,,1 < p < oo,
defined by

d 1/17
|z, = (Z |xi]p) for & = (z1,...,2q) € RY.
i=1

(The norm |- |3 is usual norm on R? and is commonly denoted by |z|.)

(¢) The space P, of all polynomials of degree r with the norm || - || defined
by

' T
Ipll = lax| for p(x) = axa®.
k=0 k=0

(d) The space L?([a,b]) of square-integrable functions on the interval [a, b]
with the norm || - ||2 defined by

1/2
o= [ irPac)

(e) The space C([a,b]) of all continuous function on the interval [a, b] with
the uniform norm || - || defined by

[flloo = sup [f(z)].

z€[a,b]
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Remark 5.1.1 We remark that a nonegative function on a linear space may
not be a norm. For instance, the function |- |, on Euclidean space R,

n 1/17
2|, = (Z\xzyp> for x = (z1,...,2q) e R,
i=1

is not a norm when 0 < p < 1, because since the triangle inequality in the
definition of a norm does not hold in general. For instance, for z = (1,0)
and y = (0,1), we have

|z + y’p =2P>2= ’x‘p + ‘y’p-

5.1.3 Strictly Convex Norms

In this section, we show that the L? norm on the space of all p-integrable
functions on the interval [a,b] is a strictly convex norm, where 1 < p < co.
Here a norm || || on a linear space V' is said to be a strictly conver norm if the
unit sphere S of V., S ={v € V : ||[v|| = 1}, contains no open line segment,
i.e., if v1,v9 are two distinct element in V' and satisfy ||v1]| = ||v2|| = 1, then
[tvr + (1 — t)ve|| < 1 for all t € (0,1).

Theorem 5.1.2 Let LP([a,b]),1 < p < oo, be the space of all p-integrable
functions f on the interval [a,b] with finite || f||,, where

151 = ([ 15typar) .

Then || - ||, is a strictly convex norm on LP([a,b]).

Remark 5.1.3 For 1 < p < oo, we define the LP norm || f||,, of a measurable
function f by

!pr—{ (S 1f@lrdr)”, 1<p<oo,

esssup efq | f ()], p = oo.

and let LP([a, b]) be the space of all measurabele functions f on the interval
[a,b] with finite LP norm || f||,. In Theorem 5.1.2, it is shown that the L?
norm is a strictly convex norm when p € (1,00). The above strict convexity
property is no longer true for p = 1, co. In particular, we notice that if fi, fo
are nonnegative functions on the interval [a, b] with || f1||1 = || f2|l1 = 1, then

Itfi+ A =t)foli =t falli + A=) fal1 =1
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for all t € [0,1]. Therefore the L' norm on L!([a,b]) is not a strictly con-
vex norm. Similarly, the L> norm on the space L*°([a,b]) of all bounded
functions on [a, b] is not a strictly convex norm too because for nonnegative
monotonously-increasing functions f3 and fy on [a,b] with f3(b) = fa(b) =
1, we obtain from the nonnegativeness and monotonicity of the function
tfs + (1 — t)f4 that

[tfs + (1 — 1) fallo = tf3(b) + (1 — 1) fa(b) = 1
for all t € [0, 1].
To prove Theorem 5.1.2, we need the following two lemmas.
Lemma 5.1.4 If A and B are positive and 0 <t < 1, then
A'B'TP <tA+ (1 -1)B,
and the equality holds only if t = 0,1 or A = B.

Proof. Take h(z) = —Inxz. Then h/(z) = —1/x and A" (z) = 1/2% > 0.
Therefore by Taylor expansion, we have

h(A) = h(tA+ (1 —t)B)+ (1 —t)(A— B)W(tA+ (1—-1t)B)

+h//2(§) (1—1t)*(A— B)?

> h(tA+ (1 —-t)B) + (1 —t)(A—B)W(tA+ (1 —t)B)
and
h(B) = h(tA+ (1—-1t)B) —t(A— B)W(tA+ (1 —-1t)B))
+Mt2(,4 — B)?

2
> h(tA+ (1 —t)B) —t(A— B)W(tA+ (1—-1t)B)

for some &,n between A and B. Multiplying ¢ and 1 — ¢ to the above two
estimates respectively, then summing up and subsitituting h(xz) by —Inz,
we obtain

1 1
| tln — 1—¢t)ln—.
n— +( )nB

_— <
"tAra-nB-""4

Moreover, we see that the above inequality becomes an equality holds only
when ¢t = 0,1, or A = B. Then the lemma follows. O
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Lemma 5.1.5 Let 1 <p <o00,0 <A< 1 and f1, fo € LP([a,b]). Then

b
| M) + = N @)
b b
< )\/ | fr(2) Pz + (1 — )\)/ fo(@)Pde,  (5.1.1)
and the above equality holds only if f1 = fo.

Proof. Set h=Af; + (1 — A)fo. By Lemma 5.1.4, we have
1 -1
IR < AP+ Pl
p p

and
| fo| |nP~ < |f2!p ’ Wp-

Combining the above two estimates with

|h| < Alf1l+ (1 =Nl fal,

we obtain
b
/]h(a:)\pdm
< [P+ 1 [ e e
< 2 / |f1<x>|pd:c+*‘ / Ih(z) Pda

+—/ o) Pz + 2= 2D /Ih )Pdx

= 2 [ia@par+ 2 / o)
_ b
+ppf / ()P da.

This proves (5.1.1). Moreover, we see from the above proof that the in-
equality in (5.1.1) becomes an equality only if fi(z)fo(x) > 0, |fi(x)| =
Mu(@) + (1= N fa(@)] and |fo(z)] = [Ma(x) + (1 - A) fa(a)], @ € R. There-
fore fi = fo. O
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Now we start to prove Theorem 5.1.2.

Proof of Theorem 5.1.2. The strictly convexity property of the norm
| - |l, follows easily from Lemma 5.1.5. Therefore it suffices to prove that
| - |lp is a norm. Clearly for any @ € R and f € LP([a,b]), we have that
laflly = lelllfllps | fllp = 0, and the above inequality becomes an equality
only if f = 0. Then it remains to prove

1f +gllp < 171l + llgll

for any nonzero functions f,g in LP([a,b]). Applying Lemma 5.1.5 with
fv=T/I1fllps f2 = g/llgllp and X = [ fllp/ (L f]lp + [lglp), we obtain,

[ <|f<:c> +g<x>|>p "
o \ 17T+ TgT,

T <|f(w)l>p o aly ( \g<x>|>p ]
1ot o 181 ) 2+ 17, %6 o Uil )
171 loly

_|_ =
1Al +llglle 11F 1l + llgll

This proves that | f + gll, < |[fll + llgllp for any nonzero functions f,g €
LP([a,b]), and hence that || - ||, is a norm. O

5.2 Existence of Best Approximation

In this section, we consider the existence problem of best approximations
out of a finite-dimensional linear subspace.

We start this section with the best approximation problem of the hat
function h(z) = max(1—|z|,0),z € [—1, 1], out of the linear space of constant
functions.

Example 5.2.1 Let h be the hat function. Find all best uniform approxi-
mating constants Cy, i.e., ||h — Cpllcc = mincer ||h — C|co-

Solution. Noting that 0 < h(z) < 1, we have
|h(z) — C| > |h(z)| Vxe[-1,1]

for C' < 0 and
|h(z) = C| > |h(z) = 1] Vze[-1,1]
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for C' > 1. Thus,

min | — Cllsc = min ||h — Ol
CeR Ccel-1,1]

Also noting that h(z) — C' is affine on [—1,0] and [0, 1] for any C' € R, we
then obtain

Ih — Cloc = max(|h(—=1) — C|, |h(0) — C|, |h(1) = C|) = max(C,1 — C)
for 0 < C < 1. On the other hand,

1
i C,1-C)=-.
Juin, max(C, =3
Therefore,
1
in |h—Clle = =
g 17 = Clloe = 5.

and Cp = 1/2 is the unique real number such that |k — Cpljcc = 1/2. O

Remark 5.2.2 A general problem to find the best uniform approximating
constant of a continuous function will be discussed in Chapter 5. In fact, it
is shown that for a continuous function f on [a,b], the best approximating
constant is (M + m)/2, where M and m are the maximum and minimum of
the function f on [a,b] (see Corollary 3.5.3 for details).

From the above example, we see that there is a unique best uniform
approximating constant to the hat function. In general, we have the following
theorem about the existence of best approximation, which is also known as
the fundamental theorem in approximation theory.

Theorem 5.2.3 Let V be a normed linear space, and W be a finite dimen-
stonal linear subspace of V.. Then, given any v € V, there exists w* € W
such that
lv —w*|| = inf [jv—w].
weWw

Remark 5.2.4 The requirement that the approximating space W is finite
dimensional in Theorem 5.2.3 is essential. For example, let V' be the space
of all continuous functions on [0, 1/2], and W be the space of all polynomials
(without any restriction on their degrees). By Taylor’s expansion,

n k

T T
e —ZE

k=0

€$n+l

Sm vV el0,1],
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which implies

sup — 0 asn— oo.

z€[0,1]

e Zk'

Therefore inf,cw || f—w||o = 0, while e” is obviously not a polynomial. This
shows that there does not exist w* € W such that sup,cp ) [e* —w*(z)[ = 0.

n+1)

To prove Theorem 5.2.3, we need two lemmas.

Lemma 5.2.5 Let V be a finite dimensional linear space, and x1,...,x, €
V. Then the function f on R™ defined by

Fq, o ) = [[Axr + - 4 Azl
is uniformly continuous.
Proof. By the triangle inequality of the norm || - || on V/,
—llz =yl <=l =Myl < lle =yl Vaz,yeV.
Therefore for any vectors A = (A1,...,A,) and A> = (A},...,\%) € R,
F e A) — £, D)

< [IPams - Al = [0+ -+ A

< fl(a = A?)ﬂfl +o o (A = A0

< = Azl 4+ = Azl
n 1/2 n 1/2

< (=) T x (X lwal?) (5.2.1)
=1 =1

This implies that for any given ¢ > 0,

[FO0 - A) = FOL . )] < e
holds for all vectors (A1,...,\,) and (A),...,AY) € R™ that satisfy

(30— a2 (1+Z\|xz||> P

=1
Then the uniform continuity of f is proved. o
We say that x1,...,x, in a linear space V is linearly independent if

Az + ...+ Az, =0 for some A, ..., A, € Rimplies A\ =--- =\, =0..



72

Lemma 5.2.6 Let V be a finite-dimensional linear space, and || - | be a
norm on V. If x1,...,x, € V are linear independent, then there exist two
positive constants A and B such that

n 1/2 n 1/2
A (Z |/\i\2> <Mz + -+ M| < B (Z \)\i]2> ) (5.2.2)
=1

i=1
Proof. For any (\1,...,\,) € R™, by the definition of a norm, we have

1/2

n 1/2 n
= Pualled+ -+ Palleall < (S P) 7 x (D llmll?)
=1 1=1

Therefore the right estimate of (5.2.2) follows by letting B = (3%, [|2:[%)/2.
Now we prove the estimate on the left-hand side of (5.2.2). Clearly it

holds for the trivial case Ay = --- = A, = 0. So we may assume that
(A1,..., An) # 0 hereafter. Let

sl = {(Al,...,)\n) eR": > [N = 1}

i=1
be the unit sphere in R"™, and define a function f on the unit sphere S™~!

by
f()\l, .. .,/\n) = H/\lxl + -+ /\nan

Denote the minimum of f on the unit sphere S"~! by

- inf Moo ).

m (Al,...,if)esn—lf( 1 )
Now we claim that m > 0. By the fact that f(A1,...,A,) > 0 for all
(M, -5 ) € S" 1 we have m > 0. Therefore it suffices to prove that m #

0. Suppose, on the contrary, that m = 0. Then there exists (A},...,\)) €
S"~! by Lemma 5.2.5 so that

9

which implies that Az; + .-+ + A2z, = 0 by the norm property. This
together with the linear independent assumption yields A = --- = A\ =0,
which contradicts (A},...,A\)) € S"~1. The claim m > 0 is proved.
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By the above claim m > 0,

INz1 4+ -+ Apzp]| = m (5.2.3)
for any (A1,...,\,) € S® L. For any 0 # (M1,...,\,), we have that
(N, .., N) € 81 where N, = \/A 1 < i <mnand A = (X0, |22
Thus,

Aiz1 + -+ Azl = [AN 21 + -+ Xzl
= A|Nax1+-+ Nz, > Am

n .21/2
m(;m) .

Hence the left estimate of (5.2.2) follows by letting A = m. O

v

Now we start to prove Theorem 5.2.3.
Proof of Theorem 5.2.3. Set M = ||v|| and let m = inf,ew ||v —w|.
By 0 € W and the triangle inequality of the norm || - ||, we have

m < flo— 0] = M,
and
v —wl| > [[w| = [Jv]| >2M — M >m

for any w € W with |jw|| > 2M. Therefore it suffices to find the best
approximation w* in the set {w : ||w| < 2M}, ie.,

lv —w]l. (5.2.4)

inf
weW,|lw||<2M

Select a basis eq, ..., e, of the space W, where n is the dimension of W.
By Lemma 5.2.6, there exists two positive constants A and B independent
of (A1,...,An) € R" so that

Sy 2\ /2 g2\ /2
A(;m) < | her + +)\nen||§B<i§:1!)\Z|> .

Note that every element w € W can uniquely be written as

w=Me1+ ...+ Apen.
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Therefore for any w € W with |w|| < 2M, the corresponding vector (A1,...,\,) €
R” satisfies (37 |\i|>)Y/2 < 2471 M. This leads to the following inclusion,

" 1/2
{weW:|w| <2M} C {)\161+--~+)\nen : (Z])\z|2) / < 2A_1M}.
i=1

(5.2.5)

By (5.2.4) and (5.2.5), we have

m = inf Aly e An),

(Z?:1|>\i|2)1/2§2A_1Mf( 1 n)

where we set

f(/\l, ceey >\n) = HU — )\161 — .. )\nenH
By Lemma 5.2.5, f is a continuous function on R™. Hence m = f(\},..., \})
for some vector (\i,...,\%) € R™ with (X7, |\#%)/2 < 2471 M, which
proves that the element w* := >~ Afe; € W is a best approximation to v
out of W. O

5.3 Uniqueness of Best Approximation

In this section, we consider the uniqueness problem of best approximations,
and establish the following result.

Theorem 5.3.1 Let V be a normed linear space with a norm || - ||, and W
be a linear subspace of V.. If the norm || - || is strictly convex, then for any
given v € V there exists at most one best approximation out of W.

Clearly, combining Theorems 5.2.3 and 5.3.1, we obtain

Corollary 5.3.2 Let V be a norm linear space with a norm ||| and W be a
finite-dimensional linear subspace of V. If the norm || - || is a strictly convex
norm on V', then for any given v € V there is a unique best approximation
w* to v out of W.

Remark 5.3.3 The assumption on the strict convexity of the norm || - ||
in Theorem 5.3.1 cannot be dropped in general. For instance, let V :=
LY([-1,1]), the space of all integrable functions on [—1,1], and let W :=
{csin7x : ¢ € R}, an one-dimensional subspace of L'([—1,1]). It is known
that the L' norm on the space L!([—1,1]) is not a strictly convex norm(see
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Section 2.1.4). For the constant function f =1 € L'([-1,1]), we claim that
functions csin 7z are best approximations to f out of W for any ¢ € [-1,1],
ie.,
Il —e¢sinmz/2|p = inf |[v—w|1 Vce[-1,1]. (5.3.1)
weW

Now we prove the claim (5.3.1). For ¢ € [-1, 1],

1
11— esinmz/2|; = / (1-csin =) do =2, (5.3.2)
. 2

since csinma /2 <1 for all x € [—1,1]. For ¢ > 1, let &, € [0, 1] be so chosen
that c¢sinméy/2 = 1. Then
1

o
Hl—csinﬂa:/2||1:/ (1—csin%)da:+

. . (c sin 7;—56 — 1)da:

1
= 242 (esin - —1)dz>2. (5.3.3)
o 2

Similarly for ¢ < —1, we have
Il —csinmz /2| > 2. (5.3.4)

Hence the claim (5.3.1) follows from (5.3.2), (5.3.3) and (5.3.4).

Remark 5.3.4 On the other hand, the strict convexity of the norm in The-
orem 5.3.1 is not necessary to gurantee the uniqueness of the best approx-
imation. In Section 2.2.1, the best uniform approximating constant to the
hat function is unique even though the L°° is not strictly convex. In general,
it will be shown later that the best uniform approximation to a continuous
function on a finite interval out of P,, the space of all polynomials of degree
at most r, is unique, where r > 0 (see Theorem 3.5.4 for details).

We say a set F is conver if for any wi,ws € F, all elements on the line
segment tw; + (1 —t)we,t € [0, 1], belong to E. For instance, the unit ball
B :={v eV : |v| <1} of a normed linear space V is a convex set. To
prove Theorem 5.3.1, we consider the convext property of the set of all best
approximations out of a linear space.

Lemma 5.3.5 Let V be a normed linear space, and W be a linear subspace
of V.. Suppose that v € V, and denote the set of all best approximations to
v oout of W by W*. Then W* is a convex set.
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Proof. Take any wg,wi € W*, we have

lv = wgll = lv —will = inf flv—wl. (5.3.5)

Set wy = tw} + (1 — t)wg,t € [0,1]. Then w, € W and

— > inf —wl|. 3.
o —wil > inf flo—wl (5.3.6)

By (5.3.5) and the triangle inequality of the norm || - ||, we obtain

o —will = lt(v = wf) + (1 = )(w —w))|
< tlo—will+ (-l —wil = if Jo-w].  (537)

Combining (5.3.6) and (5.3.7) leads to ||v — w|| = infyew ||[v — w]||. Thus w;
is also a best approximation to v out of W, and hence belongs to W*. O

An easy application of Lemma 5.3.5 leads to the following interesting
result.

Corollary 5.3.6 Let V' be a normed linear space, and W be a linear sub-
space of V. Suppose that v € V. Then either there is only one best approxi-
mation to v out of W, or there are infinitely many best approrimation to v
out of W.

Now we start to prove Theorem 5.3.1.
Proof of Theorem 5.3.1. Suppose, on the contrary, that wg and

wj are two distinct best approximations to v out of W. By Lemma 5.3.5,

w* = (w§ + wj)/2 is also a best approximation to v out of W. Therefore

lo = wpll = llv = wi] = [lo = w*[| = p, (5.3.8)

where we set p = inf,ew ||[v — w||. In the case p = 0, it follows from (5.3.8)
that v = wg and v = w], which contradicts wg # wj. So we may assume
p # 0 hereafter. Still by (5.3.8), we obtain

lp™ (v =wg)ll = llp~ (v —wi) =1 and [|p~"(v—w")| =1,

which is a contradiction since

o0 = w)l = |5 (o7 0 = wD) + o7 0 - wD) | <1
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by the strict convexity property of the norm || - ||. O

Exercises

1. Define ||f|1 = f; |f(x)|dx for any measurable function f on [a,b] and let
L'([a,b]) be the space of all measurable functions f with finite || f||;. Prove
that || - ||; is a norm on L!([a,b]).

2. Let C([a,b]) be the space of all continuous functions f on a finite interval
[a,b] with || f[lec < o0, where || f|[oc = SupP,eq |f(x)]. Prove that [ - ||l is a
norm.

3. Let P, be the space of all polynomials of degree at most r,r > 0. Define
Ipll =" lax| for p(z) =Y ara® € P,.
k=0 k=0

Prove that || - || is a norm but not a strictly convex norm.

4. Let R? be the d-dimensional Euclidean space, and define

d 1/p
|$|p:(2\xi|p> , = (21,...,24) € RY,
i=1

where 1 < p < oo. Prove that |- |, is a strictly convex norm on R? for
1 <p<oo.
5. Let V be a finite-dimensional linear space, and || - || and || - || be two norms

on V. Prove that there exist two positive constants A, B such that

Allzl| < |l=]l < Bllz|| VaxeV.
6. Let f(z) =z,2 €[0,1], and 1 < p < oo. Find all constants ¢y so that
1 = collp = min [ f — [,

and evaluate || f — col|p, where we define

ol = ([ lowpas)”, g 0.1,
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10.

11.

. Let f(z) =e",z € [0,1]. Find all affine functions p* so that

* _ . o
If—p “2_;5252 If —p"l2s

where | - ||2 is the usual L? norm on L?([0, 1]) and P is the space of all affine
functions.

. Let f be the sign function on [—1, 1], that is,

1 ifz>0
flx)y=4¢ 0 ifx=0
-1 if x <0,

and W be the space spanned by f(z) + 1. Find all best uniform approxima-
tions gg to f out of W, i.e.,

- = inf [|f — g]loe-
1 = golloe = Inf 1] = glloc

. Construct a finitely-dimensional subspace W of C'([—1,1]) and find a contin-

uous function f on [—1,1] so that the set of all best approximation to f out
of W has more than one elements.

Let V be a normed linear space, and W be a closed linear subspace of V. For
any given v € V, denote the set of all best approximations to v out of W by
W*. Show that W* is closed and bounded.

Let V' be a normed linear space of functions on [—a, a] so that || f|| = || f(—-)]|
for all f € V, and W be a finite dimensional linear subspace of V. Prove that
for any given even function f € V, there exists a even function ¢g* € W such
that

—g*|| = inf ||f — g||.
If =gl glgvllf gl

(Hint: To show that g(—-) is also a best approximation to the even function
f when g is).



Chapter 6

Approximation in Hilbert
Spaces

In this chapter, we consider the approximation problem in a Hilbert space.
We start from recalling some basic properties of Hilbert spaces, then estab-
lish the existence and uniqueness of the best approximation of a function in
a Hilbert space out of its finite-dimensional subspace, and finally apply the
above existence and uniqueness result to the least square approximation of
finite points on the plane by functions on the line.

6.1 Hilbert Spaces

In this section, we recall the definition of an inner product, introduce a
strictly convex norm associated with an inner product, establish the Cauchy-
Schwartz inequality, construct orthogonal projection, recall the Gram-Schmidt
orthogonalization procedure and apply the procedure to construct orthogo-
nal polynomials explicitly.

6.1.1 Inner Product

Let H be a linear space. An inner product on H is a function (-,-) : H X
H —— R, that has the following properties:

(i) (u,u) >0 for all u € H, and the equality holds only if u = 0.
(ii) (u,v) = (v,u) for all u,v € H.

(iii) (au+ Bv,w) = a(u,w) + f{v,w) for all a, f € R and u,v,w € H.

79
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An inner product space is a linear space H with an inner product (-, -), to
be denoted by (H, (-,-)). A Hilbert space is a complete inner product space,
that is, an inner product space such that every Cauchy sequence in H has a
limit in H.

The following are some examples of inner product spaces:

(a) The Euclidean space R? with inner product (,-) defined by

d
(z,9) :Zl'iyi Va=(,...,2q) and y = (y1,...,ya) € R".
i=1

(b) The space £? of all square-summable sequence (3)rez with inner prod-
uct defined by

(,9) =Y eyr V= (2r)rez and y = (yi)rez € €.
kez

(¢) The space

L3, (la,b)) == {f : /ab |f (@)[Pw(z)de < OO}

of all weighted L? functions on the interval [a,b] with inner product
defined by

b
(f.9) = [ f@g@w@)de ¥ f.9 € L(la,b),
where w is a weight function on [a,b], i.e., 0 < w(z) < oo for almost
all z € [a,b].
6.1.2 Cauchy-Schwartz Inequality

For any inner product on a linear space, we have the following Cauchy-
Schwartz inequality.

Theorem 6.1.1 Let (H,(-,-)) be an inner product space. Then
|(u, v)|? < (u,u)(v,v) Y u,veH. (6.1.1)

Moreover the inequality in (6.1.1) becomes an equality if and only if either
v =0 oru=Av for some A € R.
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Proof. Take any nonzero vector u,v € R. We may assume that both
u, v are nonzero vector since (6.1.1) is trivial if either u or v is a zero vector.
By the definition of an inner product, (u + tv,u + tv) > 0 for all t € R, i.e.,

(u,u) + 2t{u,v) +t*(v,v) >0 VteR. (6.1.2)

Hence the inequality (6.1.1) follows by taking ¢t = —(u,v)/(v,v) in the above
inequality (6.1.2).

For v = 0 or u = A\v, one may easily verify that the Cauchy-Schwartz
inequality (6.1.1) becomes an equality. Conversely if the Cauchy-Schwartz
inequality (6.1.1) becomes an equality, then it follows from (6.1.2) that either
v=0or (u+tv,u+tv) =0 for some t € R. For the late case, u+tv = 0 by
the first property of an inner product, and hence u = Av for some A € R. O

For an inner product (-,-) on a linear space H, we define || - || on H by
lull = \/(u,u), ue H. (6.1.3)
In the following theorem, we show that || - || is a strictly convex norm on H.

Theorem 6.1.2 Let (H,(-,-)) be an inner product space. Then the function
| - || defined in (6.1.3) is a strictly convex norm.

Proof. Clearly ||ul]] > 0 for all w € V, ||ul]| = 0 only if v = 0, and
|lou|| = |a|||u|| for all @« € R and u € V. By Cauchy-Schwartz inequality, we
have

lu+ol* = (u+v,u+v) < (u,u) + (0,0) + 2]ull vl = (Jull + ol])?

for all u,v € V. This concludes that the map | - || from H to R is a norm.
Now we prove that the norm ||-|| is a strictly convex norm. Take two distinct
elements u,v € H with ||u]| = ||v|| = 1, and take ¢t € (0,1). Then it suffices
to prove that

ltu + (1 —t)v| < 1. (6.1.4)

Suppose, on the contrary, that |[tu + (1 — ¢)v|| > 1. Recalling that
[tu+ (1 = )o]| < tllufl + (1 =)fv]| =1

by the triangle inequality of a norm, we then have that |[tu+ (1 —t)v|| = 1.
By direct computation,

(tu+ (1 — t)v, tu + (1 — t)v) = 2||ul]> + (1 — )% ||Jo||> + 2¢(1 — t){u, v),



82

which together with
[ull = [lo]l = ltw+ (1 = t)o]| =1 (6.1.5)

implies that
(u,v) =1 = [lufl[lv]l

Therefore © = Av by Theorem 6.1.2. Substituting the above relation into
(6.1.5) leads to A = 1, which contradicts u # v. O

6.1.3 Orthogonal Projection

Let H be an inner product space with inner product (-,-) and M be a linear
subspace of H. For u € H, we say that u is perpendicular to M, to be
denoted by ul M, if (u,v) =0 for all v € M.

For every u € H, the orthogonal projection of u onto M is the vector u*
in M such that u — u* is perpendicular to M.

Recalling that the only element in M perpendicular to M is zero ele-
ment, we see that the orthogonal projection of u must be unique if there
exists. Moreover, the map from u to the orthogonal projection uv* is a linear
operator, to be denoted by P and to be called orthogonal projector, from H
to M. For the orthogonal operator P, we have

P?=P and (I-P?*=I-P (6.1.6)

For the case that M is a finite-dimensional linear space, the orthogonal
projection onto M always exists and can be constructed explicitly.

Theorem 6.1.3 Let H be an inner product space and M be a finite-dimensional
linear subspace of H. Then for any w € H there exists an orthogonal pro-
jection Pu onto M. Moreover if e1, ..., e, is a basis of the linear space M,
then the orthogonal projection Pu is given by

n
Pu = Z ;e (6.1.7)
k=1
where ayq, ..., o, satisfies the following linear system:
(e1,e1) -+ (en,e1) aq (u,e1)
= : . (6.1.8)

(e1,en) -+ (en,en) an, (u,en)
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Remark 6.1.4 The n x n square matrix in (6.1.8) is known as the Gram
matriz of {e1,...,e,}. We say that {e1,...,e,} is an orthonormal basis of
a linear space M if {ej,...,e,} is a basis of the linear space W and if the
corresponding Gram matrix is the identity matrix. By Theorem 6.1.3, we
conclude that if {e1,...,e,} is an orthonormal basis of the linear space M,
then the orthogonal projection Pu of u onto M is given by

n

Pu = Z(u, ei)e;. (6.1.9)

=1

Now we prove Theorem 6.1.3.

Proof of Theorem 6.1.3. First we prove that the n x n square matrix
A with (e;, e;) as entries is nonsingular. Suppose, on the contrary, that A is
singular. Then its rows are linearly dependent, which implies that

> Bileies) =0 Vji=1,...,n
i—1

for some nonzero vector (f1,...,0,) € R"™. Hence for w := Y1 | Biei, we
have

(w,0h = 3 By w.e) =0,

which implies that w = 0. This contradicts to (81, ...,08,) # 0, and hence
proves that A is nonsingular. Therefore the linear system (6.1.8) is solvable
and has a unique solution.

Then we prove that Pu defined by (6.1.7) is perpendicular to M. Recall
that e, ..., e, is a basis of M. Then it suffices to prove that

<PU,€j>:<U,€j> jzla"'7n7

which follows from easily from (6.1.7) and (6.1.8). O

6.1.4 Gram-Schmidt Orthonormalization Procedure

From Remark 6.1.4, we see that the orthogonal projection has simple rep-
resentation when an orthonormal basis of M is constructed. This inspires
us to consider the orthogonalization of any given basis, that is, given a lin-
ear independent set {uy,...,u,} of an inner product space H, construct an
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orthonormal set {v1,...,v,} such that the space generated by uy, ..., u, is
the same as the space generated by v, ..., v,.

Gram-Schmidt orthonormalization procedure.

At first, we set

U1
V1= 57—-
[l
Clearly the space spanned by v; is the same as the one spanned by u;.
Secondly we subtract away the orthogonal projection of us onto the space
spanned by v,
Uy = ug — (ug, v1)v1,
and set )
U2
Vg = ——.
[[02]]
The above procedure works because 05 # 0, since otherwise u; and us would
be linearly dependent, which contradicts the linearly independent assump-
tion on wy,us9,...,u,. From the above construction we also see that the
space spanned by vy, vo is the same as the one spanned by w1, us.

Inductively, we assume that we have constructed orthonormal basis vy, ..., vk
from wuy,...,u; such that the space Vi spanned by vy, ..., v is the same as
the one spanned by wuj,---,u;, and such that v1,...,v; is an orthonormal
basis of V.. Now we define

Vg1 = kg1 — (Uks1,V1)01 — - — (U1, V) Uk

and set )

Vk+1

Vk+1 = 7% .

[[Ok+1]l
Here we have used the observation that 95,1 # 0, since otherwise u1, ..., ug11
are linearly dependent which is a contradiction. Also one may easily verify
that the space Vi1 spanned by v1,...,vgy1 is the same as the one spanned
by wi,- -, ug+1, and such that vy, ..., vk is an orthonormal basis of Vj41.

We continue the above process until k& = n.

6.1.5 Orthogonal Polynomials

Given a finite interval [a,b] and an integrable weight w, we may use the
Gram-Schmidt orthonormalization procedure to construct an orthonormal
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basis {po,...,pn} from the natural basis {1,...,2"} of P. under the inner
product (-, -)q:
Do =1, po = po/l|Dol

and inductively we define

k-1
P =" =Y (2", pj)up; (6.1.10)
j=0
and
pr = i/ ||bk| (6.1.11)
until £ = 7.
For the case that the interval is the unit interval I = [—1,1] and the

weight is defined by we g(z) = (1 — 2)%(1 + z)?, where o, 8 > —1, the
associated set of orthogonal polynomials obtained from Gram-Schmidt or-
thonormalization procedure of the polynomials {1,z,x2,...} under the inner
product (-, )y, 4, is denoted by {PT(La’ﬁ) ()15, and usually called the Jacobi
polynomials.

If we specify the indices o and [ and consider the case a = g = 0,
the resulting Jacobi polynomials Péo’o) after renormalization at 1 are called
Legendre polynomials Py, P, = cnP,gO’O) for some ¢, € R and P,(1) = 1. In

this case, the expression of Legendre polynomials up to degree 4:

Po(z) = 1,

Py(x) =

Py(z) = g:vz - %,

Psy(x) = 2:53 — gaz,

Py(x) = %x‘l — ?562 2,

while for n > 2, P, is defined by
nP,(x) = (2n — 1)zPy_1(z) — (n — 1) P,_o.

If we consider the case that &« = = —1/2, the resulting Jacobi poly-

nomials P,(L_l/Z’_l/Q)

T,

after renormalization at 1 are Chebyshev polynomials

T, (x) = cosné,
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Legendre Polynomials of degree O, 1, 2, 3, 4
1 T T T T T

0.8

0.6~ *

0.4 -

0.2+ -

0.2+ -

-0.4 R

0.6+ -

~0.8+ -

Figure 3.1: Legendre Polynomials of degrees 0,1,2,3,4

where & = cos . Here we give the explicit expression of Chebyshev polyno-
mials with degrees up to 4.

To(z) = 1,

Ti(z) = uz,

To(z) = 2% -1,

Ts(z) = 423 — 3z,
Ty(z) = 8z'—8z?+1.

If we consider the case that &« = 8 = 1/2, the resulting Jacobi polyno-
mials PT(L_I/ 2712 after renormalization at 1 are the Chebyshev polynomials

of second kind U,,n > 0, by

sin(n 4+ 1)60
Un(w) = (sine )

where x = cosf. The following are the explicit expression of Chebyshev
polynomials of second kind of degree up to 4 and their figures.
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Chebyshev Polynomials of degree O, 1, 2, 3, 4
T T T T T

0.8
0.6 H
o4l -

0.2 —

—0.2- —
—0.4 -
—0.6 -

_o.8 4

Figure 3.2: Chebyshev polynomials of degrees 0,1,2,3,4

Ui(z) = 2z,

Uy(z) = 42 —1,

Us(z) = 8z°— 4,

Uy(z) = 16z — 1222 + 1.

6.2 Existence and Uniqueness of Best Approxima-
tions

In this section, we establish the following result about existence, uniqueness,
and explicit construction of best approximations in Hilbert space.

Theorem 6.2.1 Let H be an inner product space and M be a finite-dimensional
subspace of H. Then for any u € H there exists a unique u* € M such that

||lu — u*|| = min ||u — v]|.
veEM

Moreover, u* is a best approximation to u out of M if and only if u—u* LM,
that is, u* = Pu, where P is the orthogonal projection onto M.
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Chebyshev polynomials of second kind of degree 0, 1, 2, 3, 4
T T T T T T T

Figure 3.3: Chebyshev polynomials of second kind of degrees 0,1,2,3,4

Proof. The existence of the best approximation follows from Theo-
rem 5.2.3, while the uniqueness of best approximations is true because of
Theorems 5.3.1 and 6.1.2.

Now we show that the best approximation is just the projection of u onto
M. Let u* be a best approximation and set d = ||u — u*||. Then for any
AMeRandv e M,

d? < |ju—u* — M||? = d* — 2\(u — u*,v) + N?|]v||?,

which yields
2XMu — u*,v) < \2v|>. (6.2.1)

Letting A\ — 0+ and A — 0— in (6.2.1) respectively, we obtain
2(u —u*,v) <0 and 2(u—u*,v) >0
for all v € W. Thus (u — u*,v) = 0 for all v € M. This proves that u — u*
is perpendicular to M.
Conversely if w € M is so chosen that © — w_L M, then for any v € M,

lu =] = llu—wl|® = |lv - w|]* = 2(u = w,v —w) = [lv - w|* >0,

which implies that w is a best approximation of u out of M. O
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6.3 Least Square Approximation in R?

In this section, we give an application of Theorem 6.2.1. More applications
will be given in later chapters. By Theorems 6.1.3 and 6.2.1, we have the
following result about the least square approximation of a vector in R¢ out
of a linear subspace W of R,

Theorem 6.3.1 Let W be a linear subspace of R®. Then for any given
u € RY there exists unique u* € W so that

|lu —u*|| = inf ||u—v].
veW
Moreover if ey, ..., en is a basis of W, then u* = Y"1 | aye; satisfies
(e1,e1) -+ (em,e1) aq (u,er)
: . =0 (6.3.1)
<€17 €m> T <em7 em> Qm, <u7 €m>

Now we apply the above theorem to solve the following least square
approximation of certain points on plane by functions in a finite-demensional
space.

Example 6.3.2 Let X := {(zx,yx) € R% 1 <k < n} be some points in R?
and W be a finite-dimensional space of continuous functions. Find the least
square approximation f* € W to the points X, that is,

n . N2 n 9\ 1/2
(Xl = @) = mim (5l = Flaw)?)
k=1 k=1
Solution. Let m denote the dimension of the space W, and fi,..., fm

be a basis of W. Then every function f € W can be written as f =
Yoty a; fi for some (i, ..., an) € R™. Thus the problem reduces to finding
(of,---,a,) € R™ so that

1/2

(z": ‘yk—iaffz‘(%k)f) = min (z”: ‘yk—iaifi(xk)f)
k=1 im1 k=1

(alvnaam)ERm i=1

1/2

In other words, it suffices to find u* so that

—u*ll = inf llu—
=) = inf [lu—vl,
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where || - || is usual Euclidean norm on R", u = (y1,...,¥,), and the linear
space W is spanned by vectors

ei .= (fi(z1),..., filzn)), 1 <i<m. (6.3.2)
Let {u1,...,u:} be an orthonormal basis of the linear space, and write

m
uj = Zajieia 1<j<m.
i=1

By Theorem 6.3.1, the function f = >, (Z§Z1<y,uj>aji) fi 1s a solution.
O

For the case that W = F,,_1, the space of all polynomials of degree at
most m — 1, the vectors ey, ..., e, in (6.3.2) are linear independent if m < n
because any nonzero polynomial of degree at most m — 1 has no more than
n roots. Therefore there is a unique polynomial p* of degree at most m — 1
so that

% 2 — : o 2 )
(Xt =p @)™ = ayin (3l = plal’)
If we further specify that m = 2, we have

p*(z) = agr + af,

where
of = n EZ:l TrYk — (2221 xk)(z;;ﬂ yk’)
0 nYp—1 37% — (k=1 Jfk)Z ’
of = (Xh=196) (ims 22) = (ko yewr) (Thioy 2k)
ny gy wy — (Choy o)
Exercises

1. Use Gram-Schmidt orthogonal process to orthonormalize the following two
bases of the 3-dimensional Euclidean space with standard inner product:

(1) €1 = (la 171)7 €2 = (27073)7 €3 = (47270)7
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(H) €1 = (4v2a0)7 €2 = (1, 171)7 €3 = (23073)

. Let M be the space spanned by 1, z,22. Use Gram-Schmidt orthogonal pro-

cess to construct an orthonormal basis of M under the inner product(:,-)
defined by

(f,9) :/0 f(z)g(x)e*dx  for f,g € M.

. Let M be the space spanned by 1,sinz, cos z. Use Gram-Schmidt orthogonal

process to construct an orthonormal basis of M under the inner product(, -)
defined by

(fyg) = 3 f(z)g(x)sin? zdx for f,g € M.

. Let M be the space spanned by 1,e”,sinmx. Use Gram-Schmidt process to

construct an orthonormal basis of M under the inner product(:,-) defined by

(f,9) 2/0 f(z)g(x)dz for f,g € M.

. Justify that the Chebyshev polynomials T;, are even functions for even n and

odd functions for odd n.

. Justify that the Chebyshev polynomials T}, satisfy the following relation:

Tni1(x) = 22T, (x) — Th—1(x), n > 1.

. Let X = {(=2,-1), (=1,1), (0,—2), (1,3), (2,—1)}. Find the quadratic

polynomial p with least square approximation error to the points in X.

. Let (zg,yx) = (sinkw/100,cos kw/200),0 < k < 50. Find the best approxi-

mating polynomial of the form [*(x) = a* + b* sinx + b*2® numerically such
that

50
_I* 2 _ . _ )
; e = U@l = min e U,

and compute the error Zzozo lyr — 1 ()%

. Find the least square approximating affine function p(z) to 22 on [—1, 1], and

find out all simple zeros of 2 — p(z).

Find the best approximating affine function p to the function e” on [0, c0)
under the norm || - || defined by ||f|| = fooo |f(x)2e 3% da.



92



Chapter 7

Multiresolution
Approximation

In this chapter, we introduce the cubic spline on any knots and B-spline on
equally spaced knots, and study their approximation properties.

7.1 Cubic Spline Interpolation

In this section, we consider the approximating properties of the ”smooth”
piecewise cubic function. Such a function is called cubic spline.
Suppose that X,, denotes the set of real numbers {x, ..., x,}, where

a<xo <1 <...<zp <bD.

Let S(X,) be the set of all functions s(X,,z) = s(z) € C?([a,b]) having
the property that in each interval [z;, z;+1],0 < i <n —1, s(x) agrees with
a polynomial of degree at most 3. We call the function s € S(X,,) a cubic
spline, and the points xg, ..., z, knots.

Claim: A polynomial of degree at most 3 is a cubic polynomial.

Example: Let a = —1,b=1and z; = —1+1i/3,0 < i < 5. Construct a
cubic polynomial not in Ps.

Basis of S(X,,) Both the families

La, 2?2 (x —21)3, ..., (2 — 2pm1)3,
and
L,z a3, (x—21)%, ..., (& —2,1)3,

93
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are basis of S(X5,).

Hint: (i) Show all those functions are cubic spline; (ii) show that any
cubic spline is a linear combination of those basis.

Dimension of S(X,): 4+ (n—1)=n+ 3.

Interpolating Problem Under what circumstances does there exist an
interpolating spline?

First let us verify that: If a < 8, then the unique polynomial p of degrees
at most 3 that satisfies

p(a) = ul’p(ﬁ) = UQ,p/(Oé) = Ulvpl(ﬂ) =2

18

p(z) = ull(x_6)2+2(x_a>(x—ﬁ)2]

(F—a2 " (F-ap
(2 — gx—mw—avl

(B=ap " (B-ap
@-a)e =07 (o=aPa=H)
(- ay (B-ay

“+usg

+v1

For the case that « =0 and § =1,
p(z) = uy(x — 1)%(1 4 22) + upx?(3 — 22) + viz(z — 1) + voz?(z — 1).

Theorem  Given numbers 3o and §,, there exists a unique spline sat-
isfying
S(fameCi) =fi, 0<i<n

and
s'(f, Xn, ;) =5, i =0,n.

How to solve the interpolation problem:
e Find a basis ey, ..., en+3;
e Set p(x) = 3177 aes;
e Solve the linear system
p(z;) = f(z;), i=0,...,n

and
Pl(xo) =50 and  p'(zn) = 3.
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Examples

e Consider f(x) = 2° 2 € [-1,1] and the knots —1/2,0,1/2. Find
a cubic spline p such that p(x;) = f(z;),0 < i < 2 and p'(z;) =
f/({L‘Z'),’L' = 0,2.

e Consider f(z) = cosmz/2,x € [—1, 1] and the knots —1/2,0,1/2. Find
a cubic spline p such that p(x;) = f(z;),0 < i < 2 and p'(z;) =
f/(xi)vi = 072

e Consider f(z) = x* +sinwx,z € [~1,1] and the knots —1/2,0,1/2.
Find a cubic spline p such that p(z;) = f(2;),0 <i < 2 and p'(z;) =
f/(.%'i),’i = 0, 2.

7.1.1 Extreme Property

Theorem 7.1.1 Suppose that a = x9 < x1 < ... < xp, =b and f € C?[a,b].
If we take f; = f(x;),0 < i <n and consider the spline that satisfies

s(z;) = fi,0<i<n

s'(xo) = f'(x0), 8 (xn) = f'(an).

Then we have

/:[f”(:c)]de - /ab[s//(x)]Qda; - /b[f"(x) — (2)]2de.

a

Proof.
[ 1@ - P
= [rer- [k

-2 bs”(x)[f”(x) — §"(z)]dz.

a

Therefore it suffices to verify that

[ @@ - '@ =o
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By partial integration formula, we have

[ @)~ o @l

n—1 Tip1

= a,/ [f(z) — §'(x)]dx
i=0 T

= 0.

O

The minimizing property shown above helps us to explain the origin of

the name spline for interpolating piecewise cubics. Engineers have for a long
time used this rods to fair curves through given points.

Exercise Consider f(z) = sinmz,x € [—1, 1] and the knots {—1/2,0,1/2}.
Find the cubic spline that satisfies the condition in the above theorem, and
compute f; |f"(z)|?dx, ff |s"(x)|>dx and f; If"(z) — s"(z)|?d.

7.1.2 Approximation Property

Now let consider the approximating power of cubic spline.

Suppose now that a = 0,b = 1 and the knots {xg,z1,...,2,} satisfies
0=xz9p <z <---<my=1. Given a continuous function f defined on [0, 1].
Put Az; = ;41 — x; amd define the norm on X, by

0=0(X,) = max Aux,.
0< 1

<i<n—

Theorem 7.1.2 Suppose that f € C*(I) and s € S(X,,) satisfies
s(x;) = f(z;),0<i<n

and

Then for all x € [0,1],
f7 (@) = 50 ()] < 587w (f", [0, 1], 6).
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The above theorem shows that, if 6(X,,) — 0 as n — oo, the interpolating
spline and its first derivatives converge uniformly to a given function in
C?(I).

Similar result can be established for f € C1(I), C3(I).

Exercise Let f = sinmz. By using Jackson’s theorem and the above
theorem, derive an upper bound for the estimate

min — s||.
i If — sl

7.2 B-splines
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