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Abstract
We present a method to recover small perturbations from constants in electrical
conductivity σ and relative (to the air’s) permittivity ε of a body, from electrical
measurements at low frequencies at the boundary. The method is based on
the asymptotic expansion of the frequency differential of the Neumann-to-
Dirichlet map with respect to both frequency and perturbation size. To show
its feasibility, we implement the method on two numerical experiments for a
complete electrode model.

Keywords: electrical impedance tomography, small perturbation, frequency
differential

(Some figures may appear in colour only in the online journal)

1. Introduction

Electrical impedance tomography (EIT) is the imaging technique in which the electrical
conductivity σ and permittivity ε of a body � is to be recovered from knowledge of electrical
currents and voltages at its boundary �. In this study we have in mind excitations at low
frequency ν of order of 1 kHz. In the imaginary part of the admittivity σ + iνε we assume a
permittivity ε scaled relative to the permittivity εair of air, i.e.

ε := ε/εair, ω := νεair.

Since εair ≈ 8.8 × 10−12 F m−1 and ν ≈ 1 kHz, the values of ω are numerically small of order
O(10−8). Note that the susceptivity νε is invariant under this scaling.

Most generally formulated by Calderón [8] at ω = 0 (when only σ has been sought), the
problem has seen a tremendous development both on the mathematics and engineering facet
with breakthrough results in [1, 7, 25, 26, 27, 37] complemented by important contributions
as reviewed in [2, 4, 9, 15, 39]. At zero frequency direct nonlinear approaches that use the
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complex geometrical optic solutions (CGOs) have been proposed in [21, 23, 24, 30] based
on the reconstruction methods in [1, 3, 6, 22, 27]. At a fixed frequency ω, the Dirichlet-to-
Neumann map uniquely determines the admittivity σ + iνε. This is true in dimensions 2 due to
the result in [7], also in [10] for sufficiently small susceptivity νε. Note that we do not assume
a small susceptivity here since the scaling above leaves the susceptivity invariant.

In three dimensions and higher the results in [26, 37] seem to extend to the complex
coefficient case provided a priori information on admittivity and its normal derivative at the
boundary is known. An algorithm for two dimensional complex admittivity based on [10] has
been proposed recently in [11].

At low frequencies the effect of susceptivity cannot be neglected and working with a
complex valued voltage potential becomes necessary. Practitioners are able to measure both
the magnitude and the phase of the complex valued potential at the boundary [5, 28, 31, 36,
38]. At low frequencies the information about permittivity is mainly carried by the imaginary
part of the voltage potential [20]. The results in section 2 (see remark 2.3) identifies the needed
information and how it can be obtained in two different ways:

– on the one hand one can use the real part of a suitably scaled voltage potential. This is the
approach we took in the numerical experiments here;

– on the other hand one can use the difference in voltages at two distinct frequencies. This
is a fairly recent development known as the frequency difference/differential EIT (fdEIT)
[12, 13, 16, 18, 19, 33, 34].

In general, the methods based on subtraction of two boundary data seem to be more robust
due to the cancellation of instrumentation errors in the data; this has also been observed in
fdEIT [33, 34].

We work under the assumptions that σ = σ (x) and ε = ε(x). In reality they also vary
with frequency ω. For data collected at a single frequency this work interprets the conductivity
and permittivity as the ones corresponding to that single frequency. For data collected at two
different but comparable frequencies, we assume that σ and ε do not vary with frequency at
comparable values.

The mathematical formulation considers a time harmonic current gcos(ωt) being injected
into an object � through surface electrodes to induce a complex voltage potential uω solution
of the Neumann problem:⎧⎪⎨

⎪⎩
∇ · (σ + iωε)∇uω = 0, in �,

−(σ + iωε) ∂uω

∂n = g, on �,∫
�

uω ds = 0,

(1)

for some real valued function g ∈ H−1/2(�). Assuming 1/c � σ � c for some c > 0, the
unique solution uω of (1) is measured at the boundary to define the Neumann-to-Dirichlet map
Nγω

: H−1/2
0 (�) → H1/2

0 (�) by

Nγω
: g �→ uω|�. (2)

Here H1/2
0 (�) is the space of traces with vanishing mean at the boundary of functions in

H1(�), and H−1/2
0 (�) is the dual of H1/2

0 (�) with respect to the L2(�)-inner product.
Despite the transparent usefulness in medical diagnostics, the quantities behind the fdEIT

images are not yet fully understood. However, for � ⊂ R
n, n � 3, σ ∈ C1,1(�) constant near

the boundary and ε ∈ C1,1
0 (�) the frequency differential at ω = 0 of the Dirichlet-to-Neumann

map uniquely determines the quantity

Q[σ, ε] := ∇ · (∇ε − ε∇ ln σ )/σ (3)

2
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as shown by the authors in [20]. The method is non-constructive and relies on CGOs. Since
knowledge of the Dirichlet-to-Neumann map is equivalent to knowledge of the Neumann-to-
Dirichlet map, one can conclude that the quantity Q is also uniquely determined by d

dω

∣∣
ω=0

Nγω
.

In this paper we give a reconstruction method for the linearized problem of fdEIT about
some known constant conductivity σb, and permittivity εb, which quantitatively recovers the
perturbations. The method proposed is not based on CGOs and applies to models in two or
higher dimensions. To exhibit the error estimates due to the linearization, we consider

σt := σb + tσ̃ , εt := εb + t ε̃, γ t
ω := σt + iωεt, (4)

for some σ̃ , ε̃ ∈ L∞(�) with compact support in �, and t � 0 sufficiently small. While σ̃ and
ε̃ are not known, we assume they are a priori bounded by some known r � 0:

‖σ̃‖∞ � r and ‖ε̃‖∞ � r, (5)

where ‖ · ‖∞ denotes the L∞(�)-norm.
Since (σ̃ , ε̃)|� are assumed known (in fact vanishing), the derivative

dQ[σt, εt]

dt

∣∣∣∣
t=0+

= εb

σb
�

(
ε̃

εb
− σ̃

σb

)
,

recovers the quantity

δQ :=
(

ε̃

εb
− σ̃

σb

)
. (6)

For sufficiently small t, in here we reconstruct t[δQ] from the frequency differential of
an appropriately scaled Nγ t

ω
. The method is based on the following result, which is proved in

section 3.

Theorem 1.1. Let σt, εt , and γ t
ω in (4) satisfy (5). Let t0 � 1 be sufficiently small such that

1/c � σt � c, (7)

for some c > 0 independent of 0 � t � t0. Let f , g ∈ H−1/2
0 (�), and φ f , φg ∈ H1(�)

be the harmonic functions with mean vanishing traces on �, which satisfy −σb
∂φ f

∂n

∣∣
�

= f ,

respectively −σb
∂φg

∂n

∣∣
�

= g . Then, with δQ the quantity in (6), we have∫
�

[δQ]∇φg · ∇φ f dx = lim
t→0+

1

t

〈
d

dω

∣∣∣∣
ω=0

{(
ω

σb
− i

εb

)
Nγ t

ω
g

}
, f

〉
�

, (8)

where 〈·, ·〉� denotes the pairing of functions in H±1/2(�) with respect to the L2(�)-inner
product.

Since products of gradients of harmonic function is dense in L2(�) (as originally noted
by Calderón in his linearization approach in [8]), the right-hand side of (8) for appropriate
choices of f and g uniquely determines (the Fourier transform of) δQ in (6). However, in the
method proposed here we do not use the density of gradients of harmonic functions above.
Instead, we propose a method in which the resolution in the image is predetermined by the
number (of combinations) of electrodes, where in each pixel the unknown δQ is assumed
constant. The method and its numerical implementation are tailored for the complete electrode
model in [35].

While the nonlinear approach in [20] shows that d
dω

∣∣
ω=0

Nγω
recovers Q, in here we

show that the linearization of d
dω

∣∣
ω=0

Nγω
recovers the linearization of Q. This gives a natural

interpretation of (6), whose support has been recovered previously in [12].
A key feature of authors’ result in [20] is the analytic dependence in ω of the voltage

potential, for frequencies satisfying∥∥∥ωε

σ

∥∥∥
∞

< 1, (9)
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which allows for a recurrence type decoupling in the real and imaginary part of uω. The
analogous result (proven in the appendix) holds for the solution of the Neumann problem (1),
and allows to explicit the asymptotic expansion of the data d

dω

∣∣
ω=0

{(
ω
σb

− i
εb

)
Nγ t

ω
g
}

with an
error estimate; it also explains why the harmonic functions appearing in the left-hand side
of (8) are independent on the permittivity. The hypothesis (9) is meaningful to biomedical
applications such as in [32]. According to experimental values at 10 kHz for a variety of
biological tissues [29], the left-hand side of (9) has a maximum of 0.528 achieved in the tissue
of the heart.

In section 4 we present a method which reconstructs t(δQ) from boundary voltages. We
use the complete electrode model in [35] to obtain (approximate) solutions of the Neumann
problem (1).

In section 5 we first adapt Calderón’s original arguments to recover the small perturbation
tσ̃ from the real part �(uω). In combination with knowledge of t(δQ) we can also recover t ε̃
separately. Different from the result in [14], which recovers the support of the perturbation in
admittivity, our method here provides a quantitative reconstruction.

The method is implemented in two numerical experiments in section 6. We conclude with
a series of remarks.

2. Analytic dependence in frequency

In this section we present the analytic dependence in ω of the complex valued solutions
uω ∈ H1(�) of (1). The admittivity need not be a small perturbation from constant. Due to
the frequency dependence in the Neumann boundary condition the estimates (while similar
to the ones in [20, theorem 3.1]) requires a different proof. To preserve the flow of exposition
of the inverse problem, the details are included in the appendix.

Theorem 2.1. Let σ, ε ∈ L∞(�) with σ satisfying (7) for some c > 0. Assume that ω lies in
the frequency range (9). Then the Neumann problem (1) has a unique solution uω ∈ H1(�),
whose real part vω = �(uω), and imaginary part hω = 
(uω) satisfy the series representation

vω(x) =
∞∑

n=0

v2n(x)ω2n, hω(x) =
∞∑

n=0

h2n+1(x)ω2n+1, (10)

with the convergence in the H1(�)-sense. Moreover, v0 solves⎧⎪⎨
⎪⎩

∇ · (σ∇v0) = 0, in �,

−σ ∂v0
∂n = g, on �,∫

�
v0 ds = 0,

(11)

and, for k = 0, 1, 2, . . . , the following recurrences hold:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇ · (σ∇h2k+1) = −∇ · (ε∇v2k), in �,

∇ · (σ∇v2k+2) = ∇ · (ε∇h2k+1), in �,

−σ
∂h2k+1

∂n = (−1)k+1
(

ε
σ

)2k+1
g, on �,

−σ
∂v2k+2

∂n = (−1)k+1
(

ε
σ

)2k+2
g, on �,∫

�
v2k+2 ds = ∫

�
h2k+1 ds = 0.

(12)

As a corollary, we can now clarify the operator appearing in the right-hand side of (8).
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Corollary 2.2. Let σ, ε ∈ L∞(�), with 1/c � σ � c, for some c > 0. For g ∈ H1/2(�) real
valued we have

d

dω

∣∣∣∣
ω=0

{(
ω

σb
− i

εb

)
Nγω

g

}
= v0

σb
+ h1

εb
, (13)

where v0 ∈ H1(�) solves (11), and h1 solves⎧⎪⎨
⎪⎩

∇ · (σ∇h1) = −∇ · (ε∇v0), in �,

σ ∂h1
∂n = (

ε
σ

)
g, on �,∫

�
h1 ds = 0.

(14)

Proof. From theorem 2.1 a straightforward calculation shows that(
ω

σb
− i

εb

)
Nγω

g = −i
v0

εb
+ ω

(
v0

σb
+ h1

εb

)
+ ω2R̃(ω). (15)

Moreover, a geometric series summation using the estimates (A.7) and (A.8) in the appendix
show that

|R̃(ω)|1/2 � M||g‖−1/2

∥∥∥ ε

σ

∥∥∥2

∞

(
1 −

∥∥∥εω

σ

∥∥∥
∞

)−1
, (16)

for a constant M which depends on c and � only. �
Recall that at low frequencies we work with ω = O(10−8). The following note explains

what information obtained from the voltage potential at the boundary is needed in our
linearization approach.

Remark 2.3. From the asymptotic formula (15), the right-hand side of (13) can be recovered
from boundary data in two different ways:

• For ω1, ω2 = O(ω) with ω1 �= ω2 one can use a difference quotient to get
v0

σb
+ h1

εb
= 1

ω2 − ω1

[(
ω

σb
− i

εb

)
Nγω

g

]ω2

ω1

+ O(ω). (17)

• Upon one division by ω and then taking the real part in (15), we have
v0

σb
+ h1

εb
= �

{(
1

σb
− i

ωεb

)
Nγω

g

}
+ O(ω). (18)

In fdEIT one would use the boundary data as in (17). In the numerical experiments in
section 6, we use the formula (18).

3. Proof of theorem 1.1

In this section we denote by ‖ · ‖±1/2 the norm in H±1/2(�), by ‖ · ‖±1 the norm in H±1(�),
and by ‖ · ‖ the norm in L2(�). We make use several times of the classical estimate in the
Neumann problem, which we state without proof below.

Proposition 3.1. Let F ∈ H−1(�), g ∈ H−1/2
0 (�) and σ ∈ L∞(�) satisfying (7) for some

c > 0. Let v ∈ H1(�) be the unique solution of the Neumann problem⎧⎪⎨
⎪⎩

∇ · (σ∇v) = F, in �,

−σ ∂v
∂n = g, on �,∫

�
v ds = 0.

Then there exists a constant M > 0, dependent only on � and c, such that

‖v‖1 � M(‖g‖−1/2 + ‖F‖−1). (19)

5
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To simplify notation, for the rest of the proof in this section we will drop the vanishing
mean normalizing condition from the Neumann problems below, although it is always tacitly
assumed.

Recall the notations in (4), and the fact that σt satisfies (7) for a constant c > 0 independent
of 0 � t � t0. By possibly replacing the constant c by εb + r, without loss of generality we
also assume

‖εt‖∞ � c, for 0 � t � t0 � 1. (20)

Since we no longer use the series but rather the formula (13), and in order to emphasize
dependence in t without cluttering notation, we let vt ∈ H1(�) denote the solutions to{∇ · (σt∇vt ) = 0, in �,

−σt
∂vt
∂n = g, on �,

(21)

and ht ∈ H1(�) denote the solution of{∇ · (σt∇ht ) = −∇ · (εt∇vt ), in �,

σt
∂ht
∂n = εt

σt
g, on �.

(22)

Then, according to (13),

d

dω

∣∣∣∣
ω=0

(
ω

σb
− i

εb

)
Nγ t

ω
g =

(
vt

σb
+ ht

εb

)
. (23)

For g, f ∈ H1/2 recall that φg, φ f are the harmonic functions with traces of vanishing
mean on � that satisfy the Neumann conditions −σb

∂φg

∂n = g, respectively −σb
∂φ f

∂n = f . Note
that φg solves (21) when t = 0. Also, let h0 be the solution of (22) for t = 0, i.e., h0 is the
harmonic function with trace of vanishing mean on �, which satisfies the Neumann condition
σb

∂h0
∂n = εb

σb
g, in particular we have

h0 = − εb

σb
φg. (24)

Next we use the estimates (19) in the forward problem to exhibit the t-asymptotic
(with t → 0+) of the left-hand side of (13).

In all the estimates below the constant M may change from equation to equation, but at
all times remains a constant dependent only on the domain �, the ellipticity constant c > 0,
and, for brevity, on the constants σb and εb. Dependence on r > 0 in (5) will remain explicit.

By proposition 3.1 applied to (21) we obtain

max{‖vt‖1, ‖φg‖1} � M‖g‖−1/2, (25)

and when applied to (22) we obtain

‖ht‖1 � M

(
‖∇ · εt∇vt‖−1 +

∥∥∥∥ εt

σt

∥∥∥∥
∞

‖g‖−1/2

)
� M‖εt‖∞(‖∇vt‖ + c‖g‖−1/2)

� M(‖vt‖1 + ‖g‖−1/2) � M‖g‖−1/2, (26)

where the last inequality uses (25).
Now let

δv := vt − φg, and δh := ht − h0. (27)

A simple calculation shows that (δv) solves{∇ · σt∇(δv) = −t∇ · σ̃∇φg, in �,

σt
∂(δv)

∂n = tσ̃ ∂φg

∂ν
, on �.

6
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By proposition 3.1 we estimate

‖δv‖1 � tM

(
‖∇ · σ̃∇φg‖−1 +

∥∥∥∥σ̃
∂φg

∂ν

∥∥∥∥
−1/2

)

� tM‖σ̃‖∞(‖∇φg‖ + ‖g‖−1/2)

� tMr‖g‖−1/2, (28)

where the last inequality uses (5) and (25).
To estimate (δh) in (27), we note first that it solves{∇ · σb∇(δh) = −∇ · (tσ̃∇ht − εt∇(δv) − t ε̃∇φg), in �

σb
∂(δh)

∂n = −t σ̃ εt

σ 2
t

g + (
εt
σt

− εb
σb

)
g, on �.

(29)

Also, by using (7) and (5) we have∣∣∣∣ εt

σt
− εb

σb

∣∣∣∣ = t

∣∣∣∣σbε̃ − εbσ̃

σtσb

∣∣∣∣ � trc

(
1 + εb

σb

)
. (30)

By applying once more proposition 3.1 to (29) we estimate

‖δh‖1 � M

(
t‖σ̃‖∞‖∇ht‖ + ‖εt‖∞‖∇(δv)‖ + t‖ε̃‖∞‖∇φg‖

+
∥∥∥∥ σ̃ εt

σ 2
t

∥∥∥∥
∞

‖g‖−1/2 + trc

(
1 + εb

σb

)
‖g‖−1/2

)
� tMr‖g‖−1/2, (31)

where in the last inequality we used in the estimates (26), (28), (25), and (30) in this order.
We have now all the ingredients necessary to establish (8). We start by multiplying the

top equation of (22) by φ f , and use Green’s formula once to obtain∫
�

σt
∂ht

∂ν
φ f ds −

∫
�

σt∇ht∇φg = −
∫

�

εt
∂vt

∂ν
φ f ds +

∫
�

εt∇vt · ∇φ f dx.

Now use the Neumann condition in (22) and (21) to cancel the two boundary integrals above
and obtain the key identity∫

�

(σt∇ht + εt∇vt ) · ∇φ f dx = 0. (32)

In the identity (32) we first replace σt = σb + tσ̃ , εt = εb + t ε̃, and separate the zero order
terms to get ∫

�

(σb∇ht + εb∇vt ) · ∇φ f dx = −t
∫

�

(σ̃∇ht + ε̃∇vt ) · ∇φ f dx.

Now use ht = h0 + (δh), and vt = φg + (δv) and further separate the first order from the
quadratic terms in the right-hand side above. Upon one division by εbσb we obtain∫

�

(
1

εb
∇ht + 1

σb
∇vt

)
· ∇φ f dx = − t

εbσb

∫
�

(σ̃∇h0 + ε̃∇φg) · ∇φ f dx − t2r2R(t), (33)

where r is the bound in (5) and the remainder

R(t) := 1

tr2σbεb

∫
�

[σ̃∇(δh) + ε̃∇(δv)] · ∇φ f dx. (34)

Using the H1(�)-estimates of (δv) in (28) and of (δh) in (31), it is easy to see the uniform
bound

|R(t)| � M‖g‖−1/2‖ f ‖−1/2, (35)

for some constant M dependent only on �, c, σb and εb.

7
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Returning to (33), we use Green’s identity in the left-hand side, and the relation (24)
between h0 and φg to get∫

�

f

(
ht

εb
+ vt

σb

)
ds = t

∫
�

(
σ̃

σb
− ε̃

εb

)
∇φg∇φ f dx − t2r2R(t). (36)

Finally, corollary 2.2 in the formula (23) identifies the left-hand side in (36) to conclude
the t-asymptotic expansion〈

f ,
d

dω

∣∣∣∣
ω=0

(
ω

σb
− i

εb

)
Nγ t

ω
g

〉
= t

∫
�

[δQ]∇φg∇φ f dx − t2r2R(t). (37)

This proves theorem 1.1.

4. A reconstruction method for δQ using the complete electrode model

Recall the notations in (4)

σt := σb + tσ̃ , εt := εb + t ε̃, γ t
ω := σt + iωεt,

for some known constants σb, εb, and unknown σ̃ , ε̃ ∈ L∞(�) of compact support in �. We
assume the a priori bound in (5) holds for some r > 0.

In this section we first propose a method based on theorem 1.1 to approximately reconstruct

t[δQ] =
(

t ε̃

εb
− tσ̃

σb

)
,

for t sufficiently small.
The method uses the complete electrode model [35] as follows. Let L electrodes e1, . . . , eL

of corresponding impedance ζ1, . . . , ζL be placed at the boundary �. In each experiment we
use a pair of electrodes, say (el, e j) to inject/extract a time harmonic current Il j cos ωt. There
are L(L − 1)-many experiments as (l, j) ranges in {1, . . . , L} × {1, . . . , L} with l �= j. The
complete electrode model (if γ t

ω were known) assumes the complex voltage potential ul j
ω would

distribute inside according to the problem⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇ · (γ t
ω∇ul j

ω

) = 0, in �,(
ul j

ω + ζlγ
t
ω

∂ul j
ω

∂n

)∣∣∣
el

≡ const. ≡ −
(

ul j
ω + ζ jγ

t
ω

∂ul j
ω

∂n

)∣∣∣
e j

− ∫
el

γ t
ω

∂ul j
ω

∂n ds = ∫
e j

γ t
ω

∂ul j
ω

∂n ds = Il j

−γ t
ω

∂ul j
ω

∂n = 0, on � \ {e j ∪ el}.

(38)

The voltage potential ul j
ω also solves the Neumann problem (1) with the Neumann boundary

data given by

gl j := −γ t
ω

∂ul j
ω

∂n

∣∣∣∣∣
�

. (39)

We note here that point-wise values of gl j are unknown on the electrodes el , e j.
At each electrode ek not used in injection we measure Ul j

ω,k, which gives∫
ek

ul j
ω ds = Ul j

ω,k, k �= l, j. (40)

8
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At the electrode el where we ‘inject’ we may measure Ul j
ω,l , which yields∫

el

ul j
ω ds = Ul j

ω,l + ζl Il j. (41)

Similarly at the electrode e j where we ‘extract’ we may measure Ul j
ω, j, which yields∫

e j

ul j
ω ds = Ul j

ω, j − ζ jIl j. (42)

Now theorem 2.1 yields the asymptotic

ul j = v
l j
0 + iωhl j

1 + O(ω2).

By taking the real part and integrating over ek in (15), and using the measured data in (40) we
obtain ∫

ek

(
v

l j
0

σb
+ hl j

1

εb

)
ds = �

{(
1

σb
− i

εbω

) (
Ul j

ω,k + δ
l j
k ζkIl j

)} + O(ω), (43)

where

δ
l j
k =

⎧⎨
⎩

1, if k = l,
−1, if k = j,
0, if k �= l, j.

(44)

By using the t-asymptotic in (36) we obtain for an arbitrary f ∈ H−1/2(�) that∫
�

t[δQ]∇φgl j∇φ f dx =
∫

�

(
v

l j
0

σb
+ hl j

1

εb

)
f ds + t2r2R(t), (45)

where φgl j , φ f are the harmonic functions with traces of vanishing mean on � that satisfy the
Neumann conditions

−σb
∂φgl j

∂n
= gl j, −σb

∂φ f

∂n
= f .

Recall that gl j is not known point-wise on the electrodes el and e j. We use instead an
approximate φl j solution to⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�φgl j = 0, in �,

−σb
∂φgl j

∂n = 1
|el | Il j, on el,

−σb
∂φgl j

∂n ds = − 1
|e j | Il j, on e j

−σb
∂φgl j

∂n = 0, on � \ (el ∪ e j).

(46)

Note that the choice of f ∈ H−1/2(�) is totally free. We choose f supported on the
electrodes and constant on each electrode. For an arbitrary α = (α1, . . . , αL) ∈ R

L, with
α1 + α2 + · · · + αL = 0, let

fα =
L∑

k=1

αkχek , (47)

where χek denotes the characteristic function of ek.
By using (43) into (45) we obtain the system of equations∫

�

t[δQ]∇φgl j∇φ fα dx =
L∑

k=1

αk�
{(

1

σb
− i

εbω

)
(Ul j

ω,k + δ
l j
k ζkIl j)

}
+ t2r2R(t) + ωR̃(ω),

(48)

9
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where δ
l j
k is given by (44). Moreover, according to (35), we have the error estimate

|R(t)| � M‖gl j‖−1/2‖ f ‖−1/2,

(M depends only on �, c, σb, and εb), and following from (16),

|R̃(ω)| � N
∥∥∥ ε

σ

∥∥∥2

∞

(
1 −

∥∥∥εω

σ

∥∥∥
∞

)−1
‖gl j‖−1/2‖ f ‖−1/2, (49)

for some constant N which depends on c only.
For t and ω sufficiently small we use the linear approximation∫

�

t[δQ]∇φgl j∇φ fα dx ≈
L∑

k=1

αk�
{(

1

σb
− i

εbω

) (
Ul j

ω,k + δ
l j
k ζkIl j

)}
. (50)

In the numerical method below we assume that both σ̃ and ε̃, and hence δQ are piecewise
constant. Let � = ∪N

p=1�p be a partition of the imaging domain, for some arbitrarily fixed N.
If χ�p denotes the characteristic function of �p, then

tσ̃ =
N∑

p=1

xpχ�p, t ε̃ =
N∑

p=1

ypχ�p, t[δQ] =
N∑

p=1

zpχ�p,

for some unknowns x1, . . . xN , y1, . . . , yN , and z1, . . . , zL related by

zk =
(

xk

σb
− yk

εb

)
, k = 1, . . . , N. (51)

We first use (50) to determine z1, . . . , zN by solving the linear system
N∑

p=1

zp

∫
�p

∇φgl j∇φ fα dx ≈
L∑

k=1

αk�
{(

1

σb
− i

εbω

) (
Ul j

ω,k + δ
l j
k ζkIl j

)}
(52)

for l, j ∈ {1, . . . , L} with l �= j and sufficiently many choices of fα as in (47).

5. Separate reconstruction of small perturbations in conductivity
and permittivity

In this section we adapt the original arguments of Calderón to recover an approximate tσ̃ from
boundary information of the real part �(uω) of the voltage potential for t sufficiently small. In
combination with the independent reconstruction of

(
tσ̃
σb

− t ε̃
εb

)
in section 4 above we can then

recover t ε̃.
For g, f ∈ H−1/2(�) real valued, recall that φg, φ f denote the harmonic maps (with

mean vanishing trace on �) which satisfy the Neumann conditions −σb
∂φg

∂ν
= g, respectively

−σb
∂φ f

∂ν
= f . Let also vt be the solution of the problem (21).

The analytic expansion in theorem 2.1 shows that

�(uω) = vt + ω2R1(ω),

where

|R1(ω)| � N
∥∥∥ ε

σ

∥∥∥2

∞

(
1 −

∥∥∥εω

σ

∥∥∥2

∞

)−1

‖g‖−1/2, (53)

for some constant N which depends only on the domain �, and the ellipticity constant c > 0.
By multiplying the top equation in (21) by φ f , and using δv := vt −φg as before, Green’s

formula yields ∫
�

(tσ̃ )∇φg · ∇φ f dx =
∫

�

( f vt − gφ f ) ds + R2(t), (54)

10
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where the remainder term

R2(t) :=
∫

�

tσ̃∇(δv) · ∇φ f dx.

The estimate ‖φ f ‖1 � C‖ f ‖1/2 together with (28) yields the error estimate

|R2(t)| � t2r2M‖g‖−1/2‖ f ‖−1/2. (55)

Note that the first term in the right-hand side of (54) is known. By ignoring the remainder
term in the right-hand side of (54) we recover an approximate perturbation tσ̃ as follows.

For some arbitrarily fixed integer N recall the partition � = ∪N
p=1�p, the characteristic

function χ�p of �p, and the piecewise constant representation

tσ̃ =
N∑

p=1

xpχ�p

for some unknown x1, . . . , xN .
From (54) with g = gl j supported on ek ∪ e j and f = fα , α = (α1, . . . ., αL) ∈ R

L with
α1 + α2 + · · · + αL = 0 as in (47), we obtain the linear system

N∑
p=1

xp

∫
�p

∇φgl j∇φ fα dx ≈
L∑

k=1

(
αk�

{
Ul j

ω,k + δ
l j
k ζkIl j

} −
∫

ek

gl jφα ds

)

=
L∑

k=1

αk�
{
Ul j

ω,k + δ
l j
k ζkIl j

} −
∫

el∪e j

gl jφ fα ds, (56)

where the coefficients δ
l j
k are defined in (44).

Since we work with the complete electrode model, the values of the injected current gl j

are not known point-wise, instead we further approximate the last term in the right-hand side
above by assuming a piecewise constant current on the electrodes. The values x1, . . . , xN are
thus obtained as solutions of the linear system

N∑
p=1

xp

∫
�p

∇φgl j∇φ fα dx ≈
L∑

k=1

αk�
{
Ul j

ω,k + δ
l j
k ζkIl j

} − Il j

(
|el|

∫
el

φ fα ds − |e j|
∫

e j

φ fα ds

)

(57)

for l, j ∈ {1, . . . , L} with l �= j and sufficiently many choices of fαs as in (47).
Finally, from (51) the values of permittivity are obtained by

yk = εb

(
xk

σb
− zk

)
, k = 1, . . . , N. (58)

Note that N establishes an a priori resolution on our image. Then how large can it be?
In principle N can be arbitrarily large. While there can be at most L(L − 1) combinations to
yield φgl j , the parameter α which fixes φ fα ranges in an (L − 1) dimension subspace of R

L.
However, we should note that the error bound in (45) depends on the H−1/2(�)-norm of f . In
particular, even if t were small, the linearization error we made for large ‖α‖ may be large.
Also, (49) shows that the linearization error may grow as frequency ω approaches the critical
value 1/‖ε/σ‖∞.

We also note that the choice of (l, j) being independent of α has a practical application. It
is difficult to measure the voltage at the electrodes where current is injected at the same time.
Then for a fixed pair (el, e j) choose an α with αl = α j = 0. In this case the right-hand side
of (52) does not depend on the knowledge of the induced voltage on the electrodes el , and e j

used for injection, i.e. formulas (42) and (41) are not used in the reconstruction.
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Figure 1. Symmetric case. Figures on the top row are true images of the conductivity
σt in (a.1), the absolute permittivity εt in (b.1), respectively of t[δQ] in (c.1). Figures
on the bottom row are reconstructed images of σt in (a.2), of εt in (b.2), respectively of
t[δQ] in (c.2) based on the proposed linearization method. The reconstruction in (c.2)
is independent of the one in (a.2). We used 5% random noise in the data.

6. Numerical simulation

To show the feasibility of the linearization method proposed in the previous sections, we
performed two numerical experiments at an angular frequency ν = 2π × 103 Hz.

The numerical experiments are presented in absolute values for the permittivity (not
relative to the air). The domain � is the unit disc. We assume a homogeneous background
conductivity σb = 1 and absolute permittivity εb = 0.5×10−8. A number of L = 32 electrodes
of equal length π/48 are equally spaced around the circumference.

For the first simulation, we assume that embedded in � there are three disc anomalies Dk

with radii 0.2, and centers located at 0.5
〈
cos

(
(k − 1) 2π

3

)
, sin

(
(k − 1) 2π

3

)〉
, for k = 1, 2, 3. It

was assumed that the background admittivity σb + iωεb was perturbed by

t(σ̃ + iνε̃) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3σb
10 + iν 3εb

10 , in D1,
σb
10 + iν εb

2 , in D2,

3σb
10 + iν εb

2 , in D3.

0, otherwise;

(59)

see figures 1(a.1) and (b.1) which show images of the simulated conductivity σt = σb + tσ̃ ,
respectively of the permittivity εt = εb + t ε̃, to be recovered. Note that the admittivity σt + iνεt

satisfies the condition (9) whenever ν is less than 10 kHz.
In order to obtain the forward solutions, we solved the complete electrode model (38)

(recall that the change of scale does not change the admittivity) via the finite element method
with 3215 triangular elements and 1704 nodes. For the electrode impedance, we assumed
that ζk = 0.01, k = 1, 2, . . . , L. We performed 32 forward experiments for adjacent pairs of
electrodes (el, e j), with j = l +1 (mod 32), l ∈ {1, . . . , 32}. This allowed for a reconstruction
mesh of N = 32 × 32 = 2014 elements.

12
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To introduce noise in the simulated data Ul j
ω = (Ul j

ω,1,Ul j
ω,2, . . . ,Ul j

ω,L) ∈ C
L in (40) we

computed the solution ψ
l j
ω to (38) at the background admittivity, and let

� l j
ω =

(∫
e1

ψ l j
ω ds,

∫
e2

ψ l j
ω ds, . . . ,

∫
eL

ψ l j
ω ds

)
∈ C

L.

For reconstruction, we added the nos lev = 5% random noise to the forward simulated data
by the formulas

�(Ul j
ω ) + (nos lev) ∗

√[�(
Ul j

ω − �
l j
ω

)]2

M
∗ (rand num),


(Ul j
ω ) + (nos lev) ∗

√[
(
Ul j

ω − �
l j
ω

)]2

M
∗ (rand num),

where rand num is a vector of random numbers distributed in (−1, 1).
Using the fdEIT/ data the goal is to reconstruct the quantity

t[δQ] = t

(
ε̃

εb
− σ̃

σb

)
=

⎧⎪⎪⎨
⎪⎪⎩

0 in D1,

0.4 in D2,

0.2 in D3

0 otherwise

(60)

shown in figure 1(c.1); note that the scaling in permittivity leaves tδQ invariant.
In the reconstruction we used the same configuration of electrodes to generate the harmonic

functions φgl j , and φ fα , i.e. α’s were of the type 〈0, . . . , 1,−1, 0, . . .〉. The reconstruction is
based on solving the N × N linear system (52) with N = 32 × 32 = 2014. The sensitivity
matrix in (52) was computed by using the corresponding forward solutions in the absence of
the anomaly. No regularization was used for inverting the matrix.

Figure 1(c.2) shows the reconstructed image of the t[δQ] by solving the linear system in
(52). The interesting part in this reconstruction is that the fdEIT data is blind to the presence
of the anomaly D1, as forecast theoretically.

Next we use the method in section 5 to separately reconstruct conductivity and permittivity
by also employing (single frequency) EIT data encoded in the real part of the voltage potential.
Figure 1(a.2) shows the reconstruction of conductivity σt = σb + tσ̃ , with tσ̃ obtained via
solving the linear system (57). In combination with the reconstruction of t[δQ] we are also
able to recover t ε̃ via (58), and thus the permittivity εt = εb + t ε̃ shown in figure 1(b.2).

In the second experiment we carried out a simulation in which four anomalies (two discs
and two ellipses) were located non-symmetrically across the unit disc �. Let us denote by D1,
D2, D3, D4, respectively, the bigger disc near the center, the smaller disc, the horizonal ellipse,
the vertical ellipse in the figure 2(a.1). Then we assumed that the background admittivity was
perturbed by

t(σ̃ + iνε̃) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2σb
10 + iν 7εb

10 , in D1,

3σb
10 + iν 3εb

10 , in D2,

3σb
10 + iν 3εb

10 , in D3.
σb
10 + iν εb

2 , in D4.

0, otherwise.

(61)

In particular, the smaller disc D2 on the right and the horizontal ellipse D3 on the top have the
zero value of t[δQ], and they cannot be identified solely from the fdEIT data, see figure 2(c.2).
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Figure 2. Non-symmetric case. Figures on the top row are true images of the conductivity
σt in (a.1), the absolute permittivity εt in (b.1), respectively of t[δQ] in (c.1). Figures
on the bottom row are reconstructed images of σt in (a.2), of εt in (b.2), respectively of
t[δQ] in (c.2) based on the proposed linearization method. The reconstruction in (c.2)
is independent of the one in (a.2). We used 5% random noise in the data.

7. Conclusions

We present a method to recover small perturbations from constants in the electrical conductivity
δσ and relative (to the air’s) permittivity δε of a body from boundary measurements at low
frequencies.

The method is based on the asymptotic expansion of the frequency differential of the
Neumann-to-Dirichlet map with respect to both frequency and perturbation size. Errors due
to neglecting small asymptotic terms are estimated in terms of the coercivity constant, the
domain, and a priori estimates of the perturbations.

From the main asymptotic terms we show that the frequency differential of an
appropriately scaled Neumann-to-Dirichlet map recovers δε

εb
− δσ

σb
. In particular, from frequency

differential data alone, one will not be able to distinguish subregions where the relative
perturbation in conductivity equates the relative perturbation in permittivity. If, in addition,
we also take into account the real part of the induced voltage potential, both perturbations δσ

and δε can be determined separately.
We propose a numerical scheme based on finitely many electrode configuration, and show

its feasibility in two numerical experiments. In the simulations the domain contains subregions
in which the relative perturbation in conductivity is the same as the relative perturbation in
permittivity. These subregions cannot be distinguished from the background when using the
frequency differential data alone, as explained theoretically. However, when the real part of
the voltage potential at the boundary is also employed, these subregions are recovered.
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Appendix. Proof of theorem 2.1

We first establish a basic estimate for the double series of functions satisfying the recurrence
(12).

Lemma A.1. Let {v2k} and {h2k−1} be defined recursively in (12). Then[∫
�

σ |∇h2k−1|2 dx

] 1
2

�
∥∥∥ ε

σ

∥∥∥2k−1

∞

[∫
�

σ |∇v0|2 dx

] 1
2

, and (A.1)

[∫
�

σ |∇v2k|2 dx

] 1
2

�
∥∥∥ ε

σ

∥∥∥2k

∞

[∫
�

σ |∇v0|2 dx

] 1
2

, k = 1, 2, . . . . (A.2)

Proof. Fix an index k. From the divergence theorem we have that∫
�

σ |∇h2k−1|2 dx =
∫

�

σ
∂h2k−1

ν
h2k−1 ds −

∫
�

∇ · (σ∇h2k−1)h2k−1 dx

= (−1)k−1
∫

�

( ε

σ

)2k−1
gh2k−1 ds +

∫
�

∇ · (ε∇v2k−2)h2k−1 dx

= (−1)k−1
∫

�

( ε

σ

)2k−1
gh2k−1 ds +

∫
�

ε
∂v2k−2

∂ν
h2k−1 ds

−
∫

�

ε∇v2k−2 · ∇h2k−1 dx

= (−1)k−1
∫

�

( ε

σ

)2k−1
gh2k−1 ds + (−1)k

∫
�

ε

σ

( ε

σ

)2k−2
gh2k−1 ds

−
∫

�

ε∇v2k−2 · ∇h2k−1 dx = −
∫

�

ε∇v2k−2 · ∇h2k−1 dx,

where in the second equality we use the top equation as well as the Neumann boundary
conditions in (12).

By applying Cauchy’s inequality to the right-hand side above we obtain∫
�

σ |∇h2k−1|2 dx �
∥∥∥ ε

σ

∥∥∥
∞

[∫
�

σ |∇v2k−2|2 dx

] 1
2
[∫

�

σ |∇h2k−1|2 dx

] 1
2

,

and thus [∫
�

σ |∇h2k−1|2 dx

] 1
2

�
∥∥∥ ε

σ

∥∥∥
∞

[∫
�

σ |∇v2k−2|2 dx

] 1
2

. (A.3)

Similarly we obtain[∫
�

σ |∇v2k|2 dx

] 1
2

�
∥∥∥ ε

σ

∥∥∥
∞

[∫
�

σ |∇h2k−1|2 dx

] 1
2

. (A.4)

By induction, the estimates (A.2) and (A.1) follow. �
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Proof of theorem 2.1. Upon identifying the real and the imaginary part, The Neumann
problem (1) is equivalent to the following elliptic system:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇ · (σ∇vω) = ω∇ · (ε∇hω) in �,

∇ · (σ∇hω) = −ω∇ · (ε∇vω) in �,

−(σ 2 + ω2ε2) ∂vω
∂n = σg, on �,

−(σ 2 + ω2ε2) ∂hω
∂n = −ωεg, on �,∫

�
vω ds = ∫

�
hω ds = 0.

(A.5)

�
We seek solutions in the ansatz

v(x, ω) :=
∞∑

k=0

v2k(x)ω2k, and h(x, ω) :=
∞∑

k=1

h2k−1(x)ω2k−1. (A.6)

Let us assume first that the series representation in (A.6) are convergent in H1(�). If
(A.5) is satisfied, then

∇ · (σ∇v0) +
∞∑

k=1

∇ · (σ∇v2k − ε∇h2k−1)ω
2k = 0, and

∞∑
k=0

∇ · (σ∇h2k+1 + ε∇v2k)ω
2k+1 = 0,

where the divergence is taken in the weak sense. In particular we obtain the top equation in
(11) and top two equations in (12).

By our assumption, both series are convergent in H1(�), and therefore ∂vω

∂n , and ∂hω

∂n have
well defined trace in H−1/2(�), which are the corresponding sum of the traces of the terms.
Moreover, since the traces of vω and hω are the sum (in H1/2(�)) of the series of the traces of
v2k, and h2k+1, k = 0, 1, . . ., the zero mean condition will be also satisfied for each term v2k,
and h2k+1.

We are left to check the Neumann conditions in (12). Starting from the Neumann condition
for vω in (A.5) we get

(−σ 2 + ω2ε2)

∞∑
k=0

∂v2k

∂n
ω2k = σg.

Upon identifying like terms, it is easy to see that

−σ
∂v0

∂n
= g, and − σ 2 ∂v2k

∂n
= ε2 ∂v2k−2

∂n
.

By induction in the second equality above we obtain the Neumann condition for v2k in (12). A
similar calculation starting from the Neumann condition for hω in (A.5), yields the Neumann
condition for h2k−1 in (12), k = 1, 2, . . ..

Conversely, for g ∈ H−1/2(�) let v0 be the solution of (11) and define two sequences of
functions {vk}∞0 and {hk}∞1 via the recurrence (12). We denote by ‖ · ‖ the L2(�)-norm. From
(A.2) it follows that for any k = 1, 2, . . .,

‖∇v2k‖ω2k �
√

c

[∫
�

σ |∇v2k|2 dx

] 1
2

ω2k

�
√

c
∥∥∥ωε

σ

∥∥∥2k

∞

[∫
�

σ |∇v0|2 dx

] 1
2

� c‖∇v0‖
∥∥∥ωε

σ

∥∥∥2k

∞
, (A.7)

and, similarly,

‖∇h2k−1‖ω2k−1 � c‖∇v0‖
∥∥∥ωε

σ

∥∥∥2k−1

∞
. (A.8)
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Now consider the series (A.6) to formally define some v(x, ω) and h(x, ω). We show
next that the series converge in H1(�) and that they satisfy the boundary conditions in (A.5).
Indeed, since ω satisfies the frequency range condition

∥∥ωε
σ

∥∥
∞ < 1, the L2(�)-convergence

of the series of gradients is guaranteed from (A.7) and (A.8) to well define ∇xv(x, ω) and
∇xh(x, ω) in L2(�).

Now using the Neumann conditions in (12), and again the frequency range condition (9),
we get the H−1/2-summability of the series

∞∑
k=0

ω2k ∂v2k

∂ν
= − g

σ

∞∑
k=0

(
−ω2ε2

σ 2

)k

= − σg

σ 2 + ω2ε2
. (A.9)

Upon multiplication of (A.9) by arbitrary functions in H1/2(�), integrating over � and applying
Green’s formula, the duality between H−1/2(�) and H1/2(�) then shows H1/2(�)-summability
in the series of the traces

∞∑
k=0

ω2k v2k|� .

In particular this will carry the zero mean property from each term to the sum.
With the L2-summability for the gradient shown previously, we conclude the summability

of the H1(�)-sense. Moreover, the calculation (A.9) showed that

−(σ 2 + ω2ε2)
∂v(·, ω)

∂n
= σg, on �,

which is the Neumann condition for vω in (A.5).
A similar geometric summation as in (A.9), and the duality argument above shows that

the series defining h(·, ω) is also summable in H1(�) and that h(·, ω) satisfies the Neumann
condition for hω in (A.5).
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