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Abstract. We characterize the range of the attenuated and non-attenuated X-ray transform
of compactly supported vector fields in the plane. The characterization is in terms of a Hilbert
transform associated with the A-analytic functions à la Bukhgeim. As an application we determine
necessary and sufficient conditions for the attenuated Doppler and X-ray data to be mistaken for
each other.
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1. Introduction. Necessary and sufficient constraints on the range of the (non-
attenuated) Radon transform of zero order tensors in the Euclidean space have been
known since the works in [9], [10], and [17]. In the case of the attenuated Radon
transform with constant attenuation some range conditions can be inferred from [16],
[1] and [2]. For a varying attenuation, range constraints for the two dimensional X-
ray transform were given in [23] based on the inversion method in [22], see also [4].
A separate method to invert the two dimensional attenuated X-ray transform based
on the theory of A-analytic functions was originally developed in [3]. In [29] the
authors introduce a Hilbert transform corresponding to A-analytic maps, and use it
to characterize the range of the attenuated Radon transform of compactly supported
functions.

The problem of inversion of the X-ray transform of higher order tensor fields
have been formulated in [30] in the geometric setting of Riemannian manifolds with
boundary; see [33] for the Euclidean setting. Coming from the practical procedure
of acquiring data, the X-ray transform of vector fields is also known as the Doppler
transform. Various partial results (e.g., [31], [32]) culminated with the inversion
formulas for recovering the solenoidal part of 1-tensors on simple Riemannian surfaces
with boundary [27]; see also [28]. Injectivity in the attenuated case for both 0- and
1-tensors is much more recent [34]; see also [12] for a more general weighted transform.
Inversion formulas to tensors of higher orders have been found in [15] for the Euclidean
case, and [25] for the Riemannian case. However, these works do not address range
characterization.

The first range characterizations of the (non-attenuated) X-ray transform is given
in [27] for both 0- and 1-tensors supported on simple Riemannian surfaces with bound-
ary. This characterization is given in terms of the scattering relation.

We consider here the problem of the range characterization of both attenuated
and non-attenuated Doppler transform in a strictly convex bounded domain in the
Euclidian plane. Our approach uses the Hilbert transform for A-analytic maps in [29]
and relies on new identities enjoyed by such maps, see Lemma 2.6. The characteri-
zation concerns the Fourier modes (in the angular variables) of the data and can be
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interpreted as a characterization of the scattering relation in [27] for the Euclidean
case. Of particular interest in the non-attenuating case, we found that the even and
odd negative Fourier modes play a different role. More precisely, the odd negative
index modes are doubly constrained, and that the zero-th order Fourier mode is in-
dependent of the other modes; see Theorem 3.1. This is a direct equivalence to the
non-uniqueness in the inversion (up to a gradient of a compactly supported map). In
the positive attenuation case, the Doppler transform is uniquely invertible as shown
in [15], see also [35]. In such a case the zero-th Fourier mode is uniquely determined
by the negative modes of the boundary data, see Theorem 4.3.

The method used in the characterization will explain when (and only then) the
attenuated X-ray and Doppler data can be confounded for each other, see Section
5. Practical applications may include noise reduction and missing data completion
in medical imaging methods such as Single Photon, Positron Emission Computed
Tomography, or Doppler Tomography [21].

Let Ω ⊂ R
2 be a bounded strictly convex domain in the plane and Γ be its

boundary. The unit sphere is denoted by S1. For any (x, θ) ∈ Ω × S1, let τ±(x, θ)
denote the distance from x in the ±θ direction to the boundary, and distinguish the
endpoints x±θ ∈ Γ of the chord in the direction of θ passing through x by

x±θ := x± τ±(x, θ)θ, (1.1)

as in Figure 1.1 below. Note that τ(x, θ) = τ+(x, θ) + τ−(x, θ) is the length of the
cord.
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Fig. 1.1. Definition of τ±(x, θ)

We consider a real valued function a ∈ C1
0 (Ω). For each x ∈ Ω and θ =

(cosϕ, sinϕ) ∈ S1 the divergence beam transform of a is

Da(x, θ) :=

∫ τ+(x,θ)

0

a(x+ tθ)dt. (1.2)

The attenuated X-ray transform (with attenuation a) of some function f ∈ L1(Ω)
is given by

∫ τ+(x,θ)

−τ−(x,θ)

f(x+ tθ)e−Da(x+tθ,θ)dt, (1.3)

and the attenuated Doppler Transform of some vector field F ∈ L1(Ω;R2) is given by

∫ τ+(x,θ)

−τ−(x,θ)

(θ ·F)(x + tθ)e−Da(x+tθ,θ)dt. (1.4)
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Both transforms are functions on the tangent bundle of the circle, however we
will describe the constraints in terms of a function g on Γ × S1 as follows:

Definition 1.1. (i) We say that g is an attenuated X-ray transform of f with
attenuation a, if

g(x+θ , θ)−
[
e−Dag

]
(x−θ , θ) =

∫ τ+(x,θ)

τ−(x,θ)

f(x+ tθ)e−Da(x+tθ,θ)dt, (1.5)

for (x, θ) ∈ Ω× S1. We use the notation g ∈ Raf , and g ∈ Rf if a ≡ 0.
(ii) We say that g is an attenuated Doppler transform of F with attenuation a,

if

g(x+θ , θ)−
[
e−Dag

]
(x−θ , θ) =

∫ τ+(x,θ)

τ−(x,θ)

(θ · F)(x+ tθ)e−Da(x+tθ,θ)dt, (1.6)

for (x, θ) ∈ Ω× S1. We use the notation g ∈ DaF, and g ∈ DF if a ≡ 0.
These definitions are motivated by the connection with the transport model as

follows. If v is a solution to

θ · ∇v(x, θ) + a(x)v(x, θ) = f(x), (x, θ) ∈ Ω× S1, (1.7)

then g := v|Γ×S1 satisfies (1.5), and similarly, if u is a solution to

θ · ∇u(x, θ) + a(x)u(x, θ) = θ · F(x), (x, θ) ∈ Ω× S1, (1.8)

then g := u|Γ×S1 satisfies (1.6). Let

Γ± = {(x, θ) ∈ Γ× S1 : ±θ · ν(x) > 0},

where ν(x) is the outer normal. It is clear that specifying v, or u on Γ− well defines
a unique solution to the transport equations (1.7), respectively (1.6). In particular,
those traces g vanishing on Γ−, make g|Γ+

coincide with the classical definitions (1.3),
respectively (1.4).

2. Basic properties of A-analytic maps. In this section we briefly introduce
the properties of A-analytic maps needed later, and introduce notation. The presen-
tation follows mainly from [29]. Only the new results are proven.

For z = x1 + ix2, we consider the Cauchy-Riemann operators

∂ = (∂x1
+ i∂x2

) /2, ∂ = (∂x1
− i∂x2

) /2 (2.1)

Let l∞(, l1) be the space of bounded (, respectively summable) sequences, L :
l∞ → l∞ be the left shift

L〈u−1, u−2, ...〉 = 〈u−2, u−3, u−4, ...〉,

and Lk = L ◦ · · · ◦ L
︸ ︷︷ ︸

k

be its k-th composition; we will consider only k = 1, 2.

Definition 2.1. A sequence valued map

z 7→ u(z) := 〈u−1(z), u−2(z), u−3(z)...〉

is called Lk-analytic, k = 1, 2, if u ∈ C(Ω; l∞) ∩ C1(Ω; l∞) and

∂u(z) + Lk∂u(z) = 0, z ∈ Ω. (2.2)
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For 0 < α < 1 and k = 1, 2, we recall the Banach spaces in [29]:

l1,k∞ (Γ ) :=






u = 〈u−1, u−2, ...〉 : sup

ζ∈Γ

∞∑

j=1

jk|u−j(ζ)| <∞






, (2.3)

Cα(Γ ; l1) :=







u : sup
ξ∈Γ

‖u(ξ)‖l1 + sup
ξ,η∈Γ
ξ 6=η

‖u(ξ)− u(η)‖l1
|ξ − η|α

<∞







. (2.4)

By replacing Γ with Ω and l1 with l∞ in (2.4) we similarly define Cα(Ω; l1), respec-
tively, Cα(Ω; l∞).

At the heart of the theory of A-analytic maps lies a Cauchy-like integral formula
originally introduced by Bukhgeim in [7]. The explicit variant (2.5) appeared first
in Finch [8]. The Bukhgeim-Cauchy integral formula below is restated in terms of
L-analytic maps as opposed to L2-analytic as in [29].

Theorem 2.2. [29, Theorem 3.1] For some g = 〈g−1, g−2, g−3...〉 ∈ l1,1∞ (Γ ) ∩
Cα(Γ ; l1) define the Bukhgeim-Cauchy operator B acting on g,

Ω ∋ z 7→ 〈(Bg)−1(z), (Bg)−2(z), (Bg)−3(z), ...〉,

by

(Bg)−n(z) :=
1

2πi

∞∑

j=0

∫

Γ

g−n−j(ζ)(ζ − z)
j

(ζ − z)j+1
dζ

−
1

2πi

∞∑

j=1

∫

Γ

g−n−j(ζ)(ζ − z)
j−1

(ζ − z)j
dζ, n = 1, 2, 3, ... (2.5)

Then Bg ∈ C1,α(Ω; l∞) ∩ C(Ω; l∞) is L-analytic.
For our purposes further regularity in Bg will be required. Such smoothness is

obtained by increasing the assumptions on the rate of decay of the terms in g as
explicit below. Let us recall the Banach space Yα in [29]:

Yα =







g ∈ l1,2∞ (Γ) : sup
ξ,µ∈Γ
ξ 6=µ

∞∑

j=1

j
|g−j(ξ)− g−j(µ)|

|ξ − µ|α
<∞







. (2.6)

Proposition 2.3. If g ∈ Yα, α > 1/2, then

Bg ∈ C1,α(Ω; l1) ∩ C
α(Ω; l1) ∩ C

2(Ω; l∞). (2.7)

Proof. Each individual integral in (2.5) defines a C∞(Ω) function. However, each
differentiation essentially brings down a factor of j and convergence of the resulting
series need to be checked. When g ∈ Yα we appeal to [29, Corollary 4.1] to conclude
Bg ∈ C1,α(Ω; l1) ∩ Cα(Ω; l1).

We show next that Bg ∈ C2(Ω; l∞). Since we only claim the regularity inside Ω,
it suffices to do the estimates in a neighborhood of a fixed point z0 bounded away
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from the boundary. For z0 ∈ Ω arbitrarily fixed, let d = inf{|z0 − ζ| : ζ ∈ Γ} > 0.
When taking two arbitrary derivatives (formally denoted ∇2) in (2.5), we can easily
estimate uniformly in {z : |z − z0| < d/2}:

|∇2(Bg)−n(z)| ≤M sup
ζ∈Γ

∞∑

j=0

|g−n−j(ζ)|j
2,

for someM > 0 depending only on the perimeter |Γ | of the boundary and the distance
d, but independent of n. In particular, for each n ≥ 1,

|∇2(Bg)−n(z)| ≤M sup
ζ∈Γ

∞∑

j=0

|g−n−j(ζ)|(n+ j)2 ≤M‖g‖
l
1,2
∞ (Γ )

The Hilbert transform defined below also accounts for the index relabelling due
to the difference between L-analytic and L2-analytic.

Definition 2.4. For g = 〈g−1, g−2, g−3...〉 ∈ l1,1∞ (Γ ) ∩ Cα(Γ ; l1), we define the
Hilbert transform Hg componentwise for n ≥ 1 by

(Hg)−n(ξ) =
1

π

∫

Γ

g−n(ζ)

ζ − ξ
dζ

+
1

π

∫

Γ

{
dζ

ζ − ξ
−

dζ

ζ − ξ

} ∞∑

j=1

g−n−j(ζ)

(
ζ − ξ

ζ − ξ

)j

, ξ ∈ Γ. (2.8)

The following result justifies the name of the transform H. For its proof we refer
to [29, Theorem 3.2].

Theorem 2.5. For 0 < α < 1, let g ∈ l1,1∞ (Γ) ∩ Cα(Γ; l1). For g to be boundary
value of an L-analytic function it is necessary and sufficient that

(I + iH)g = 0, (2.9)

where H is as in (2.8).
Unlike the 0-tensor case in [29], in the case of 1-tensors the even and odd modes

play a different role. To emphasize this difference we separate the modes:

ueven := 〈u−2, u−4...〉, and uodd := 〈u−1, u−3, ...〉 (2.10)

and note that if u is L2-analytic, then ueven,uodd are L-analytic.
One of the new ingredients in our characterization is the following simple property

of L-analytic maps:
Let us consider the sequence {u2m−1}m≥1 ⊂ C(Ω; l∞) ∩ C1(Ω; l∞) given by

u2m−1 := 〈u2m−1, u2m−3, ...., u1, u−1, u−3, u−5, ...〉, m ≥ 1, (2.11)

obtained by augmenting the sequence of negative odd indices 〈u−1, u−3, u−5, ...〉 by
m many terms in the order u2m−1, u2m−3, ...., u1

︸ ︷︷ ︸

m

.

Lemma 2.6. Let {u2m−1}m≥1 be the sequence of L-analytic maps defined in
(2.11). Assume that

u2m−1|Γ= u−(2m−1)|Γ , ∀m ≥ 1. (2.12)
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Then, for each m ≥ 1,

u2m−1(z) = u−(2m−1)(z), z ∈ Ω, (2.13)

Proof. For each m ≥ 2, since u2m−1 is L-analytic,

∂u2j−1 + ∂u2j−3 = 0, 2 ≤ j ≤ m.

By taking the conjugate and using the fact that m is arbitrary, we get

∂u2m−3 + ∂u2m−1 = 0, ∀m ≥ 2.

In other words the sequence 〈u1, u3, u5, · · · 〉 is L-analytic, and by (2.12) has the same
trace as the sequence 〈u−1, u−3, u−5, · · · 〉. Since the latter is also L-analytic and
L-analytic map are uniquely determined by their traces the identity (2.13) holds.

3. Range Characterization of the Doppler Transform. In this section we
establish necessary and sufficient conditions for a sufficiently smooth function g on
Γ × S1 to be the Doppler data of some sufficiently smooth real valued vector field
F = 〈F1, F2〉 in the sense of (1.6), i.e. g is the trace on Γ × S1 of some solution u of

θ · ∇xu(x, θ) = θ ·F(x), x ∈ Ω. (3.1)

For z = x1 + ix2 ∈ Ω, we consider the Fourier expansions of u(z, ·) in the angular
variable θ = 〈cosϕ, sinϕ〉:

u(z, θ) =
∞∑

−∞

un(z)e
inϕ.

Since u is real valued its Fourier modes occur in conjugates,

u−n(z) = un(z), n ≥ 0, z ∈ Ω.

With the Cauchy-Riemann operators defined in (2.1) the advection operator be-
comes

θ · ∇ = e−iϕ∂ + eiϕ∂. (3.2)

Provided appropriate convergence of the series (given by smoothness in the angular
variable) we see that if u solves (1.8) then its Fourier coefficients solve the system

∂u1(z) + ∂u−1(z) = 0, (3.3)

∂u0(z) + ∂u−2(z) = f1(z), (3.4)

∂u−n(z) + ∂u−n−2(z) = 0, n ≥ 1, (3.5)

where f1 = (F1 + iF2) /2. The proof of Theorem 3.1 below also shows the converse.
The range characterization of the Doppler data g will be given in terms of its

Fourier modes in the angular variables:

g(ζ, θ) =
∞∑

−∞

gn(ζ)e
inϕ, ζ ∈ Γ. (3.6)
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Since the trace g is also real valued, its Fourier modes will satisfy

g−n(ζ) = gn(ζ), n ≥ 0, ζ ∈ Γ. (3.7)

From the negative even modes, we built the sequence

geven := 〈g−2, g−4, g−6, ...〉. (3.8)

For each m ≥ 1, we use the odd modes to build the sequence

g2m−1 := 〈g2m−1, g2m−3, ...., g1, g−1, g−3, g−5, ...〉 (3.9)

by augmenting the negative odd indices by m-many terms in the order

g2m−1, g2m−3, ...., g1
︸ ︷︷ ︸

m

.

Theorem 3.1 (Range characterization of Doppler Transform).
Let α > 1/2.
(i) Let F ∈ C1,α

0 (Ω;R2). Then DF ∩ Cα(Γ ;C1,α(S1)) 6= ∅, and let g ∈ DF ∩
Cα(Γ ;C1,α(S1)) be some Doppler data of F in the sense of (1.6). Consider the
corresponding sequences geven as in (3.8) and g2m−1 for m ≥ 1 as in (3.9). Then
geven,g2m−1 ∈ l1,1∞ (Γ) ∩ Cα(Γ; l1), for m ≥ 1, and satisfy

[I + iH]geven = 0, (3.10)

[I + iH]g2m−1 = 0, ∀m ≥ 1, (3.11)

where the operator H is the Hilbert transform in (2.8).
(ii) Let g ∈ Cα

(
Γ ;C1,α(S1)

)
∩ C0(Γ ;C2,α(S1)), be real valued such that its cor-

responding sequence geven as in (3.8) satisfies (3.10) and g2m−1 for m ≥ 1, as in
(3.9) satisfies (3.11). Then there exists a real valued vector field F ∈ C(Ω;R2), such
that g ∈ DF is the Doppler data of F.

Proof. (i) For the justification of DF∩Cα(Γ ;C1,α(S1)) 6= ∅, we refer to the proof
of [29, Theorem 4.1] in which the 0-tensor f is replaced by θ ·F.

Now let g ∈ DF∩Cα(Γ ;C1,α(S1)) be the Doppler data of the given F. Then by
[29, Proposition 4.1] geven,g2m−1 ∈ l1,1∞ (Γ) ∩ Cα(Γ; l1), for all m ≥ 1. Moreover, g is
the trace on Γ × S1 of a solution u ∈ Cα(Ω;C1,α(S1)).

Since the Fourier modes un of u satisfies the system (3.5) for n negative even,
then

z 7→ ueven(z) := 〈u−2(z), u−4(z), u−6(z), · · · 〉

is L-analytic in Ω and the necessity part in Theorem 2.5 yields (3.10).
The equations (3.3) and (3.5) for odd indices yield that the sequence valued map

z 7→ u1(z) := 〈u1(z), u−1(z), u−3(z) · · · 〉

is L-analytic with the trace satisfying

u2k−1|Γ= g2k−1, k ≤ 1.

By the necessity part of Theorem 2.5, it must be that g1 = 〈g1, g−1, g−3, ...〉 satisfies

[I + iH]g1 = 0.
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Recall that u is real valued so that un = u−n for all n ≥ 0. Consider now the
equation (3.5) for n = 1 and take its conjugate to get

∂u3 + ∂u1 = 0. (3.12)

Along with (3.3) and (3.5) for odd indices, the equation (3.12) yield that the sequence
valued map

z 7→ u3(z) := 〈u3(z), u1(z), u−1(z), u−3(z) · · · 〉

is L-analytic with the trace satisfying

u2k−1|Γ= g2k−1, k ≤ 2.

By Theorem 2.5, it must be that g3 = 〈g3, g1, g−1, g−3, ...〉 satisfies

[I + iH]g3 = 0.

Inductively, the argument above holds for any odd index 2m− 1 to yield

z 7→ u2m−1(z) := 〈u2m−1(z), u2m−3(z), ..., u1(z), u−1(z), u−3(z) · · · 〉

is L-analytic. Then, again by the necessity part in Theorem 2.5, its trace g2m−1 must
satisfy

[I + iH]g2m−1 = 0, ∀ m ≥ 1.

(ii) Assume that we have g ∈ Cα
(
Γ ;C1,α(S1)

)
∩C0(Γ ;C2,α(S1)) with the corre-

sponding sequences geven satisfying (3.10) and g2m−1 satisfying (3.11) for all m ≥ 1.
We need to construct a function u(x, θ) and a real valued vector field F(x) such that
(3.1) is satisfied and u|Γ×S1 = g. We will construct u via its Fourier modes in the
angular variable.

First we use the Bukhgeim-Cauchy integral formula (2.5) to construct the negative
even Fourier modes:

〈u−2, u−4, u−6, ..., 〉 := Bgeven, (3.13)

where B is the operator in (2.5). By Theorem 2.2, the sequence valued map

z 7→ 〈u−2(z), u−4(z), u−6(z), ..., 〉,

is L-analytic in Ω, thus the equations

∂u−2k + ∂u−2k−2 = 0 (3.14)

are satisfied for all k ≥ 1. Moreover, the hypothesis (3.10) and the sufficiency part of
Theorem 2.5 yield that u−2k extend continuously to Γ and

u−2k|Γ = g−2k, k ≥ 1. (3.15)

All of the positive even Fourier modes are constructed by conjugation:

u2k := u−2k, k ≥ 1. (3.16)



Range characterization of the attenuated Doppler transform 9

By conjugating (3.14) we note that the positive even Fourier modes also satisfy

∂u2k+2 + ∂u2k = 0, k ≥ 1. (3.17)

Moreover, they extend continuously to Γ and

u2k|Γ = u−2k|Γ = g−2k = g2k, k ≥ 1. (3.18)

Let u0 be an arbitrary function in C1(Ω) ∩ C(Ω) with

u0|Γ = g0. (3.19)

The arbitrariness of u0 characterizes the non-uniqueness (up to the gradient field of a
function which vanishes at the boundary) in the reconstruction of a vector field from
its Doppler data.

We construct the negative odd index Fourier modes from

godd := 〈g−1, g−3, ...〉

via the Bukhgeim-Cauchy integral formula (2.5) by

uodd = 〈u−1, u−3, · · · 〉 := Bgodd. (3.20)

By Theorem 2.2 the sequence uodd is L-analytic, i.e.,

∂u−2k−1 + ∂u−2k−3 = 0, ∀k ≥ 0, (3.21)

Note that Lg1 = godd. By hypothesis (3.11), [I + iH]g1 = 0. Since H commutes with
the left translation L, then

0 = L[I + iH]g1 = [I + iH]Lg1 = [I + iH]godd.

Applying the sufficiency part of Theorem 2.5 we have that each u2k−1 extends con-
tinuously to Γ and

u−2k−1|Γ = g−2k−1, k ≥ 1. (3.22)

So far we have constructed z 7→ 〈u−1(z), u−2(z), u−3(z), ...〉 such that

∂u−n + ∂u−n−2 = 0, (3.23)

u−n|Γ = g−n, ∀n ≥ 1. (3.24)

If we were to define the positive odd index modes by conjugating the negative
ones (as we did for the even ones) it would not be clear why the equation (3.3)
should hold. To solve this problem we will define the positive odd modes using the
Bukhgeim-Cauchy integral formula (2.5) inductively.

Let u1 = 〈u1, u1−1, u
1
−3, · · · 〉 be the L-analytic map defined by

u1 := Bg1. (3.25)

The hypothesis (3.11) for m = 1,

[I + iH]g1 = 0,
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allows us to use the sufficiency part of Theorem 2.5 to get that u1 extends continuously
to Γ and has trace g1 on Γ . However, Lu1 is also L-analytic with the same trace
Lu1|Γ = godd as uodd has. By the uniqueness of L-analytic maps with the given trace
we must have the equality

〈u1−1, u
1
−3, · · · 〉 = 〈u−1, u−3, · · · 〉.

In other words the formula (3.25) constructs only one new function u1 and recov-
ers the previously defined negative odd functions u−1, u−3, .... In particular u1 =
〈u1, u−1, u−3, · · · 〉 is L-analytic, and

∂u1 + ∂u−1 = 0

holds in Ω. We stress here that, at this stage, we do not know that u1 = u−1.
Inductively, for m ≥ 1, the formula

u2m−1 = 〈u2m−1, u
2m−1
2m−3, ..., u

2m−1
1 , u2m−1

−1 , · · · 〉 := Bg2m−1 (3.26)

defines a sequence {u2m−1}m≥1 of L-analytic maps with u2m−1|Γ= g2m−1. By the
uniqueness of L-analytic maps with the given trace, a similar reasoning as above shows

Lu2m−1 = u2m−3, ∀m ≥ 2.

In particular for all m ≥ 1

u2m−1 = 〈u2m−1, u2m−3, ..., u1, u−1, · · · 〉

is L-analytic.
Note that the sequence {u2m−1}m≥1 constructed above satisfies the hypotheses

of the Lemma 2.6, and therefore for each m ≥ 1,

u2m−1(z) = u−(2m−1)(z), z ∈ Ω. (3.27)

We stress here that the identities (3.27) need the hypothesis (3.11) for all m ≥ 1, can-
not be inferred directly from the Bukhgeim-Cauchy integral formula (2.5) for finitely
many m’s.

We have shown that

∂u2k−1 + ∂u2k−3 = 0, ∀k ∈ Z. (3.28)

We define now the real valued vector field F = 〈2Re f1, 2 Im f1〉, where

f1 := ∂u0 + ∂u−2, (3.29)

where, by Theorem 2.2 we know that u−2 ∈ C1,α(Ω). Together with the assumed
regularity of u0 ∈ C1(Ω) we have F ∈ C(Ω;R2).

We define u by

u(z, θ) := u0(z) +

∞∑

n=1

u−n(z)e
−inϕ +

∞∑

n=1

un(z)e
inϕ (3.30)

and check that it has the trace g on Γ and satisfies the transport equation (3.1) in Ω.
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Since g ∈ Cα
(
Γ ;C1,α(S1)

)
∩ C0(Γ ;C2,α(S1)), we use [29, Corolloary 4.1] and

[29, Proposition 4.1] to conclude that u defined in (3.30) belongs to C1,α(Ω × S1) ∩
Cα(Ω × S1). In particular u(·, θ) for θ = 〈cosϕ, sinϕ〉 extends to the boundary and
its trace satisfies

u(·, θ)|Γ×S1 =

(

u0 +
∞∑

n=1

u−ne
−inϕ +

∞∑

n=1

une
inϕ

)∣
∣
∣
∣
∣
Γ

= u0|Γ+
∞∑

n=1

u−n|Γ e
−inϕ +

∞∑

n=1

un|Γ e
inϕ

= g0 +

∞∑

n=1

g−ne
−inϕ +

∞∑

n=1

gne
inϕ = g(·, θ).

Since u ∈ C1,α(Ω× S1) ∩ Cα(Ω× S1), the following calculation is also justified:

θ · ∇u = e−iϕ∂u0 + eiϕ∂u0 +

∞∑

n=1

∂u−ne
−i(n+1)ϕ +

∞∑

n=1

∂u−ne
−i(n−1)ϕ

+

∞∑

n=1

∂une
i(n−1)ϕ +

∞∑

n=1

∂une
i(n+1)ϕ

= e−iϕ(∂u0 + ∂u−2) + eiϕ(∂u0 + ∂u2) + ∂u1 + ∂u−1

+
∞∑

n=1

(∂u−n + ∂u−n−2)e
−i(n+1)ϕ +

∞∑

n=1

(∂un+2 + ∂un)e
i(n+1)ϕ

= e−iϕf1 + eiϕf1,

= θ · F,

to conclude (3.1). In the third equality above we used (3.23), (3.28), and (3.29).

Remark: The Doppler data g of a vector field F and that of F + ∇ψ, where
ψ ∈ C1(Ω) with ψ|Γ= 0 is the same. This non-uniqueness is transparent in our
approach: the function u0 + ψ satisfies

∂(u0 + ψ) + ∂u−2 = f1 + ∂ψ,

and its trace on Γ is still the same g0.

4. Range Characterization of the attenuated Doppler Transform. In
this section we assume an attenuation a > 0 in Ω be given. We establish necessary
and sufficient conditions for a sufficiently smooth function g on Γ × S1 to be the
attenuated Doppler data, with attenuation a, of some sufficiently smooth real valued
vector field F = 〈F1, F2〉 in the sense of (1.6), i.e. g is the trace on Γ × S1 of some
solution u of (1.8),

θ · ∇u(x, θ) + a(x)u(x, θ) = θ ·F(x), x ∈ Ω.

When a > 0 the attenuated Doppler transform uniquely determines the vector
field as shown in [14]. This uniqueness will be seen in the boundary data, where the
zero-th mode g0 is determined by the negative index modes.
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As in [29] we start by the reduction to the non-attenuated case via the special
integrating factor e−h, where h is explicitly defined in terms of a by

h(z, θ) := Da(z, θ)−
1

2
(I − iH)Ra(z · θ⊥, θ), (4.1)

where θ⊥ is orthogonal to θ, Ra(s, θ) =

∫ ∞

−∞

a
(
sθ⊥ + tθ

)
dt is the Radon transform of

the attenuation, and the classical Hilbert transform Hh(s) =
1

π

∫ ∞

−∞

h(t)

s− t
dt is taken

in the first variable and evaluated at s = z· θ⊥. The function h was first considered in
the work of Natterrer [19]; see also [8], and [6] for elegant arguments that show how
h extends from S1 inside the disk as an analytic map.

We do not use the definition of h but rather the following properties.
Lemma 4.1. Assume a ∈ Cp,α

0 (Ω), p = 1, 2, α > 1/2, and h defined in (4.1).
Then h ∈ Cp,α(Ω× S1) and the following hold

(i) h satisfies

θ · ∇h(z, θ) = −a(z), (z, θ) ∈ Ω× S1. (4.2)

(ii) h has vanishing negative Fourier modes yielding the expansions

e−h(z,θ) :=

∞∑

k=0

αk(z)e
ikϕ, eh(z,θ) :=

∞∑

k=0

βk(z)e
ikϕ, (z, θ) ∈ Ω× S1, (4.3)

with
(iii)

z 7→ 〈α1(z), α2(z), α3(z), ..., 〉 ∈ Cp,α(Ω; l1) ∩ C(Ω; l1), (4.4)

z 7→ 〈β1(z), β2(z), β3(z), ..., 〉 ∈ Cp,α(Ω; l1) ∩ C(Ω; l1). (4.5)

(iv) For any z ∈ Ω

∂β0(z) = 0, (4.6)

∂β1(z) = −a(z)β0(z), (4.7)

∂βk+2(z) + ∂βk(z) + a(z)βk+1(z) = 0, k ≥ 0. (4.8)

(v) For any z ∈ Ω

∂α0(z) = 0, (4.9)

∂α1(z) = a(z)α0(z), (4.10)

∂αk+2(z) + ∂αk(z) + a(z)αk+1(z) = 0, k ≥ 0. (4.11)

(vi) The Fourier modes αk, βk, k ≥ 0 satisfy

α0β0 = 1,

k∑

m=0

αmβk−m = 0, k ≥ 1. (4.12)
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Proof. The regularity of h follows from [29, Proposition 5.1]. The proof of (i)
follows from the fact that the term

z 7→ (I − iH)Ra(z · θ⊥, θ)

is constant along lines in the direction of θ. For the proof of (ii) we refer to [8]. The
regularity in (iii) follows from Bernstein’s Lemma [13, Chpt. I. Theorem 6.3] and the
regularity of h. The proofs of (iv) and (v) follow by identifying the corresponding
Fourier modes in the identities

θ · ∇e±h(z,θ) = ∓e±h(z,θ)a(z),

and (3.2). The proof of (vi) follows by identifying the corresponding Fourier modes
in the identity e−heh = 1.

From (4.2) it is easy to see that u solves (1.8) if and only if v := e−hu solves

θ · ∇v(z, θ) = (θ · F)e−h(z,θ). (4.13)

If u(z, θ) =
∑∞

n=−∞ un(z)e
inϕ solves (1.8), then its Fourier modes satisfy

∂u1(z) + ∂u−1(z) + a(z)u0(z) = 0, (4.14)

∂u0(z) + ∂u−2(z) + a(z)u−1(z) = f1(z), (4.15)

∂un(z) + ∂un−2(z) + a(z)un−1(z) = 0, n ≤ −1, (4.16)

where f1 = (F1 + iF2) /2 as before.
Also, if v := e−hu =

∑∞
n=−∞ vn(z)e

inϕ solves (4.13), then its Fourier modes
satisfy

∂v1(z) + ∂v−1(z) = α0(z)f1(z),

∂v0(z) + ∂v−2(z) = α1(z)f1(z),

∂vn(z) + ∂vn−2(z) = 0, n ≤ −1, (4.17)

where α0, α1 are the Fourier modes in (4.3), and f1 as above.
The following result shows that the equivalence between (4.16) and (4.17) is in-

trinsic to negative Fourier modes only.
Lemma 4.2. Assume a ∈ C1,α

0 (Ω), α > 1/2.
(i) Let v = 〈v−1, v−2, ..., 〉 ∈ C1(Ω, l1) satisfy (4.17), and u = 〈u−1, u−2, ..., 〉 be

defined componentwise by the convolution

un :=

∞∑

j=0

βjvn−j , n ≤ −1. (4.18)

where β′
js are the Fourier modes in (4.3). Then u solves (4.16) in Ω.

(ii) Conversely, let u = 〈u−1, u−2, ..., 〉 ∈ C1(Ω, l1) satisfy (4.16), and v =
〈v−1, v−2, ..., 〉 be defined componentwise by the convolution

vn :=
∞∑

j=0

αjun−j , n ≤ −1. (4.19)
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where α′
js are the Fourier modes in (4.3). Then v solves (4.17) in Ω.

Proof. Starting from the definition, for each n ≤ −1, we calculate

∂un =

∞∑

j=0

∂βjvn−j +

∞∑

j=0

βj∂vn−j ,

∂un−2 =

∞∑

j=0

∂βjvn−2−j +

∞∑

j=0

βj∂vn−2−j .

By rearranging the terms we get

∂un + ∂un−2+aun−1 =

∞∑

j=0

∂βjvn−j +

∞∑

j=0

∂βjvn−2−j

+

∞∑

j=0

βj(∂vn−j + ∂vn−2−j) +

∞∑

j=0

aβjvn−1−j

= ∂β0vn + (∂β1 + aβ0)vn−1

+

∞∑

j=2

(
∂βj + ∂βj−2 + aβj−1

)
vn−j = 0,

where in the second equality we used (4.17) and the third equality we used the Lemma
4.1 (iv).

An analogue calculation using the properties in Lemma 4.1 (v) shows the converse.

The range characterization of the attenuated Doppler data g will be given in
terms of its zero-th mode g0 =

∮
g(·, θ)dθ and the negative index modes of

e−h(ζ,θ)g(ζ, θ) =

∞∑

k=−∞

γk(ζ)e
ikϕ, ζ ∈ Γ, (4.20)

namely,

gh := 〈γ−1, γ−2, γ−3...〉. (4.21)

To simplify the statement, from the negative even, respectively, negative odd Fourier
modes, we built the sequences

geven
h = 〈γ−2, γ−4, ...〉, and godd

h = 〈γ−1, γ−3, ...〉. (4.22)

Recall the Hilbert transform H in (2.8).
Theorem 4.3 (Range characterization of attenuated Doppler Transform). Let

a ∈ C2,α
0 (Ω) with a > 0 in Ω, α > 1/2.

(i) Let F ∈ C1,α
0 (Ω;R2). Then DaF ∩ Cα(Γ ;C1,α(S1)) 6= ∅, and let g ∈ DaF ∩

Cα(Γ ;C1,α(S1)) be some Doppler data of F in the sense of (1.6). Consider the
corresponding sequences geven

h ,godd
h as in (4.22). Then geven

h ,godd
h ∈ l1,1∞ (Γ)∩Cα(Γ; l1)

satisfy

[I + iH]geven
h = 0, [I + iH]godd

h = 0. (4.23)
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Moreover, for each ζ ∈ Γ , the zero-th Fourier mode g0 of g satisfy

g0(ζ) = lim
Ω∋z→ζ∈Γ

−2Re∂u−1(z)

a(z)
, (4.24)

where

u−1(z) =

∞∑

j=0

βj(z)(Bgh)−1−j(z), z ∈ Ω,

with B be the Bukhgeim-Cauchy operator in (2.5), β′
js are the Fourier modes in (4.3)

and gh is the sequence of the negative Fourier modes of ehg in (4.21).
(ii) Let g ∈ Cα

(
Γ ;C1,α(S1)

)
∩ C0(Γ ;C2,α(S1)) be real valued, so that the cor-

responding sequences geven
h ,godd

h ∈ Yα. If geven
h ,godd

h satisfy (4.23) and g0 satisfies
(4.24), then there exists a unique real valued vector field F ∈ C(Ω;R2) such that
g ∈ DaF is the attenuated Doppler data of F.

Proof. (i) For the justification of DaF ∩ Cα(Γ ;C1,α(S1)) 6= ∅, we refer to the
proof of [29, Theorem 5.1] (where θ · F is to replace the zero-tensor f).

Now let g ∈ DaF ∩ Cα(Γ ;C1,α(S1)) be the Doppler data of the given F. Then
by [29, Proposition 4.1(i)] geven

h ,godd
h ∈ l1,1∞ (Γ) ∩ Cα(Γ; l1). Moreover, g is the trace

on Γ × S1 of a solution u ∈ C1,α(Ω × S1) ∩ Cα(Ω × S1) of the Transport equation
(1.8). Then the negative Fourier modes of v := e−hu satisfy (4.17). In particular its
negative odd subsequence 〈v−1, v−3, ...〉 and negative even subsequence 〈v−2, v−4, ...〉
are L-analytic with traces godd

h respectively geven
h . The necessity part of Theorem 2.5

yields (4.23):

[I + iH]godd
h = 0, [I + iH]geven

h = 0.

Since a > 0 in Ω, and the Fourier modes u1, u−1, u0 of u solve (4.14), we have

u0(z) =
−2Re∂u−1(z)

a(z)
, z ∈ Ω. (4.25)

Since the left hand side of (4.25) is continuous all the way to the boundary, so is the
right hand side. Moreover the limit below exists and

g0(z0) = lim
z→z0∈Γ

u0(z) = lim
z→z0∈Γ

−2Re∂u−1(z)

a(z)

thus (4.24) holds. This proves part (i) of the theorem. We note here that for the
necessity part suffices to assume a ∈ C1,α

0 (Ω).
To prove the sufficiency we will construct a real valued vector field F in Ω and a

real valued function u ∈ C1(Ω × S1) ∩ C(Ω × S1) such that u|Γ×S1= g and u solves
(1.8) in Ω.

Let g ∈ Cα
(
Γ ;C1,α(S1)

)
∩ C0(Γ ;C2,α(S1)), be real valued with the zero mode

g0 satisfying (4.24) and the corresponding sequences geven
h ,godd

h as in (4.22) satisfying
(4.23). By [29, Proposition 4.1(ii)] and [29, Proposition 5.2(iii)] geven

h ,godd
h ∈ Yα.

Use the Bukhgeim-Cauchy Integral formula (2.5) to define the L-analytic maps

veven(z) = 〈v−2(z), v−4(z), ...〉 := Bgeven
h (z), z ∈ Ω (4.26)

vodd(z) = 〈v−1(z), v−3(z), ...〉 := Bgodd
h (z), z ∈ Ω. (4.27)
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By intertwining let also define

v := 〈v−1(z), v−2(z), v−3(z), ...〉.

By Proposition 2.3

veven,vodd,v ∈ C1,α(Ω; l1) ∩ C
α(Ω; l1) ∩ C

2(Ω; l∞). (4.28)

Moreover, since geven
h ,godd

h satisfy the hypothesis (4.23), by Theorem 2.5 we have

veven|Γ= geven
h and vodd|Γ= godd

h .

In particular

vn|Γ=
∞∑

k=0

(αk|Γ ) gn−k, n ≤ −1. (4.29)

For each n ≤ −1, we use the convolution formula below to construct

un :=

∞∑

j=0

βjvn−j . (4.30)

Since a ∈ C2,α
0 (Ω), by (4.5), the sequence z 7→ 〈β0(z), β1(z), β2(z), ...〉 is in

C2,α(Ω; l1) ∩ Cα(Ω; l1). Since convolution preserves l1, the map is in

z 7→ 〈u−1(z), u−2(z), ...〉 ∈ C1,α(Ω; l1) ∩ C
α(Ω; l1). (4.31)

Moreover, since v ∈ C2(Ω; l∞) as in (4.28), we also conclude from convolution that

z 7→ 〈u−1(z), u−2(z), ...〉 ∈ C2(Ω; l∞). (4.32)

The property (4.31) justifies the calculation of traces un|Γ for each n ≤ −1:

un|Γ =

∞∑

j=0

βj (vn−j |Γ )

=

∞∑

j=0

βj

∞∑

k=0

αkgn−j−k =

∞∑

m=0

m∑

k=0

αkβm−kgn−m

= α0β0gn +

∞∑

m=1

m∑

k=0

αkβm−kgn−m = gn, (4.33)

where in the second equality we have used (4.29), in the third equality we introduce
the change of index m = j + k, and in the last equality we used Lemma 4.1 (vi).

From the Lemma 4.2, the constructed un in (4.30) satisfy

∂un + ∂un−2 + aun−1 = 0, n ≤ −1. (4.34)

All of the positive Fourier modes are constructed by conjugation:

un := u−n, n ≥ 1. (4.35)
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Since a > 0 in Ω we can define u0 by

u0(z) := −
2Re∂u−1(z)

a(z)
, z ∈ Ω, (4.36)

in particular

∂u1 + ∂u−1 + au0 = 0 (4.37)

holds. The hypothesis (4.24) shows that, as defined, u0 extends continuously to the
boundary Γ and u0|Γ= g0. Moreover, since u−1 ∈ C2(Ω) as shown in (4.32) and
a ∈ C2(Ω) we get u0 ∈ C1(Ω).

We next define the real valued vector field F ∈ C(Ω;R2) by

F = 〈2Re f1, 2 Im f1〉, (4.38)

where

f1 := ∂u0 + ∂u−2 + au−1. (4.39)

Finally, let u be defined by

u(z, θ) := u0(z) +
∞∑

n=1

u−n(z)e
−inϕ +

∞∑

n=1

un(z)e
inϕ (4.40)

and check that it has the trace g on Γ and satisfies the transport equation (1.8) in Ω.
The regularity in (4.31) also allows us to take the trace as follows

u(·, θ)|Γ×S1 =

(

u0 +

∞∑

n=1

u−ne
−inϕ +

∞∑

n=1

une
inϕ

)∣
∣
∣
∣
∣
Γ

= u0|Γ+
∞∑

n=1

u−n|Γ e
−inϕ +

∞∑

n=1

un|Γ e
inϕ

= g0 +

∞∑

n=1

g−ne
−inϕ +

∞∑

n=1

gne
inϕ = g(·, θ),

where in the third equality we have used (4.33) and (4.35).
Also, the regularity in (4.31) allows us to differentiate term-wise in order to check

that u satisfies (1.8):

θ · ∇u+ au = e−iϕ∂u0 + eiϕ∂u0 +
∞∑

n=1

∂u−ne
−i(n+1)ϕ +

∞∑

n=1

∂u−ne
−i(n−1)ϕ

+

∞∑

n=1

∂une
i(n−1)ϕ +

∞∑

n=1

∂une
i(n+1)ϕ +

∞∑

n=−∞

aune
inϕ

= e−iϕ(∂u0 + ∂u−2 + au−1) + eiϕ(∂u0 + ∂u2 + au1)

+ ∂u1 + ∂u−1 + au0 +
∞∑

n=1

(∂u−n + ∂u−n−2 + au−n−1)e
i(n+1)ϕ

+

∞∑

n=1

(∂un+2 + ∂un + aun+1)e
i(n+1)ϕ

= e−iϕf1 + eiϕf1

= θ · F,
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where the third equality uses (4.34), (4.37), (4.39).

5. When can the X-ray and Doppler data be mistaken for each other ?.

By comparing the range conditions for the (non-attenuated) X-ray data for 0-tensors
in [29, Theorem 4.1] and for 1-tensors in Theorem 3.1 above, it is transparent that
the two data cannot be mistaken for each other, unless they are both zero. However,
in the attenuated case with a > 0 the situation is different. To distinguish between
the data coming from the 0- and 1-tensor fields we use the notations gf , gF for the
attenuated X-ray transform of the real valued function f , respectively, of the real
valued vector field F.

In the theorem below the attenuated X-ray and Doppler transforms are assuming
the same attenuation a.

Theorem 5.1.
(i) Let a ∈ C1(Ω) ∩ C(Ω) be real valued with a > 0 in Ω, and f ∈ C1(Ω) ∩ C(Ω)

be real valued with f/a ∈ C0(Ω). Then F := −∇

(
f

a

)

is a real valued vector field

whose attenuated Doppler data gF is the same as the attenuated X-ray data gf of f .

(ii) Let a ∈ C1,α
0 (Ω) be real valued with a > 0 in Ω. Assume that F ∈ C1,α

0 (Ω;R2)
is a vector field whose attenuated Doppler data gF equals the attenuated X-ray data
of some real valued f ∈ C1,α

0 (Ω), α > 1/2. Then F must be a gradient field and

F = −∇

(
f

a

)

.

Proof.
(i) Assume gf is the X-ray data of some real valued function f , i.e., it is the trace

on Γ × S1 of solutions w to the transport problem:

θ · ∇w + aw = f, (5.1)

w|Γ×S1 = gf .

Let u := w −
f

a
and F := −∇

(
f

a

)

. Then

θ · ∇u+ au = θ · ∇

(

w −
f

a

)

+ a

(

w −
f

a

)

= θ · ∇w + aw − f + θ · ∇

(

−
f

a

)

= θ ·F,

where the second equality uses (5.1) and the definition of F. Moreover, since f/a
vanishes on Γ , we get

gF = u|Γ×S1= w|Γ×S1+
f

a

∣
∣
∣
∣
Γ

= w|Γ×S1= gf .

(ii) Let F = 〈F1, F2〉 ∈ C1,α
0 (Ω), α > 1/2, be a real valued vector field whose

attenuated Doppler data gF matches the attenuatedX-ray data gf of some real valued

function f ∈ C1,α
0 (Ω), i.e.

gf = gF =: g ∈ Cα(Γ ;C1,α(S1)).



Range characterization of the attenuated Doppler transform 19

Then there exist u,w ∈ C1,α(Ω × S1) ∩ Cα(Ω × S1) solutions to the corresponding
transport equations (1.8), respectively (1.7) subject to

u|Γ×S1= g = w|Γ×S1 .

Then the corresponding sequences of non-positive Fourier modes {u−n}n≥0 of u satisfy

∂u−1 + ∂u−1 + au0 = 0 (5.2)

∂u0 + ∂u−2 + au−1 = (F1 + iF2) /2, (5.3)

∂u−n + ∂u−n−2 + au−n−1 = 0, n ≥ 1, (5.4)

whereas the non-positive Fourier modes {w−n}n≥0 of w satisfy

∂w−1 + ∂w−1 + aw0 = f(z), (5.5)

∂w0(z) + ∂w−2(z) + aw−1 = 0, (5.6)

∂w−n(z) + ∂w−n−2(z) + aw−n−1 = 0, n ≥ 1. (5.7)

Since the boundary data is the same u|Γ×S1 = w|Γ×S1 , we also have

u−n|Γ = w−n|Γ , ∀n ≥ 1. (5.8)

We claim that the systems (5.4) and (5.7) subject to the identity (5.8) yield

u−n(z) = w−n(z), z ∈ Ω, ∀n ≥ 1. (5.9)

Recall the integrating factor e±h with h in (4.1). Since a ∈ C1,α
0 (Ω), then eh ∈

C1,α(Ω×S1) and its Fourier modes 〈β0, β−1, ...〉 ∈ C1,α(Ω; l1)∩C(Ω; l1) by Lemma 4.1.
Recall the function v := e−hu, and introduce ω := e−hw. Then their corresponding
negative Fourier modes 〈v−1, v−2, ....〉 and 〈ω−1, ω−2, ....〉 satisfy

u−n =

∞∑

j=0

βjv−n−j , ω−n =

∞∑

j=0

βjw−n−j , n ≥ 1, (5.10)

as in Lemma 4.2. Moreover, 〈v−1, v−2, ....〉 and 〈ω−1, ω−2, ....〉 are L2-analytic and
coincide on Γ . By the uniqueness of L2-analytic functions with a given trace, they
coincide inside:

v−n(z) = ω−n(z), z ∈ Ω, ∀n ≥ 1. (5.11)

Using (5.10) and (5.11), we conclude for all n ≥ 1 that

u−n(z) =

∞∑

j=0

βj(z)v−n−j(z) =

∞∑

j=0

βj(z)ω−n−j(z) = w−n(z), z ∈ Ω.

Thus (5.9) holds.
By subtracting (5.6) from (5.3) and using (5.9) we obtain

∂(u0 − w0) = (F1 + iF2)/2.

Since both u0 and w0 are real valued we see that

〈F1, F2〉 = ∇(u0 − w0). (5.12)
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Moreover, by equation (5.5),

f = ∂w−1 + ∂w−1 + aw0

= ∂u−1 + ∂u−1 + aw0

= ∂u−1 + ∂u−1 + au0 + a(w0 − u0)

= a(w0 − u0),

where the second equality uses (5.9) and the third equality uses (5.2). Therefore

u0 − w0 = −f/a, and by (5.12), F = −∇

(
f

a

)

.

Given the Helmholz decomposition of a vector field in gradient and a solenoidal
field part, Theorem 5.1(ii) yields the following.

Corollary 5.2. For a given attenuation, the attenuated Doppler data of a
solenoidal compactly supported smooth real valued vector field cannot be mistaken by
the attenuated X-ray data of a compactly supported smooth real valued function.
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