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Abstract. We consider the numerical solvability of the Dirichlet problem for the 1-Laplacian
in a plane conformal with Euclidean. Provided that a regular solution exists, we present a globally
convergent method to find it. The global convergence allows to show a local stability in the Dirichlet
problem for the 1-Laplacian nearby regular solutions. Such problems occur in conductivity imaging,
when knowledge of the magnitude of the current density field (generated by an imposed bound-
ary voltage) is available inside. Numerical experiments illustrate the feasibility of the convergent
algorithm in the context of the conductivity imaging problem.
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1. Introduction. Let Ω ⊂ R2 be a simply connected, bounded planar domain
with piecewise C1 boundary ∂Ω, a ∈ C1,1(Ω) with minΩ a > 0, and f ∈ C1(∂Ω). In
this paper we are concerned with the numerical analysis of solutions to the Dirichlet
problem for the degenerate elliptic equation of the 1-Laplacian:

∇ ·
(
a
∇v
|∇v|

)
= 0, v|∂Ω = f.(1.1)

Solutions of the 1-Laplacian in (1.1) are called 1-harmonic. The name borrows from
its geometric property that level sets of regular solutions of (1.1) are geodesics in
the ambient plane endowed with the metric g = a2I, (where I denotes the identity
metric), thus generalizing the Euclidean case a ≡ 1.

We call regular solution a function u ∈ Lip(Ω) with

essinfΩ|∇u| > 0.

From [13] is known that, if it exists, a regular solution to (1.1) is unique in the class
of functions in W 1,1(Ω) with a negligible set of singular points (where the gradient
vanishes). However, there are examples of Dirichlet problems for the 1-Laplacian
which may not have regular solutions. In such a case, solutions are defined in the
viscosity sense [5], and (1.1) may have infinitely many such solutions none of which
is regular; see the example in [17] where Ω is the unit disk, a ≡ 1, and f = x2 − y2

on the unit circle.
In this paper we assume that a regular solution of (1.1) exists, and provide a

globally convergent numerical method to find it. As an application we are able to
show conditional stability for the Dirichlet problem nearby the regular solution. To
authors knowledge this is a first stability with respect to the interior data for the
Dirichlet problem of the 1-Laplacian.
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Throughout we work under the following
Hypothesis 1. The problem (1.1) has a regular solution in C1(Ω).
Neumann problems associated with the 1-Laplacian were first considered in [9],

and Cauchy problems in [12]. The Dirichlet problem for the 1-Laplacian (1.1) was first
considered in [14], where level sets of the 1-harmonic maps are shown to be geodesics
in a conformal metric A locally convergent algorithm (in the sense that a first guess is
sufficiently close to the sought solution) was proposed. This local convergence cannot
be strengthen based on the length minimizing property alone in a general metric
space: In the case of a hemisphere, infinitely many geodesics connect diametral point.

By contrast, in this paper we propose a globally convergent algorithm in the sense
that it is independent on the starting guess. The method of proof relies on the fact
that the level sets are characteristics of a first order PDE (see (2.2) below) to solve
the two point boundary value problem for each level set by a shooting method. The
merit of the paper is the global convergence, and its corollary of a local stability
result. We show that the length of these characteristics depend continuously on the
boundary points and directions. This is a global geometrical property that requires
the convexity of the domain, and uses the fact that the Euclidean curvature of the
characteristics are a priori bounded. The convergence rate of the algorithm depends
on the modulus of continuity of lengths of characteristics with respect to the shooting
direction.

The problem (1.1) satisfying Hypothesis 1 occurs naturally in the hybrid inverse
problem of electrical conductivity imaging from minimal interior data, where a(x)
represents the magnitude of the current density field induced in a body by imposing
the voltage f at the boundary [12, 13, 14, 15]. In such applications to a body of
conductivity σ is applied a voltage f at the boundary; the voltage u then distributes
inside according to the problem

∇ · σ∇u = 0, u|∂Ω = f.(1.2)

In the inverse conductivity problem σ and u are unknown, but the interior data
of the magnitude of the current density field a = |σ∇u| can be obtained using a
Magnetic Resonance technique [16]. Using σ = a/|∇u| one is lead to solving (1.1).
For sufficiently regular conductivities, (σ ∈ C2,α(Ω), 0 < α < 1, suffices) and a
boundary data (in C2,α(∂Ω)) which is almost-two-to-one (with the exception of the
connected minima and maxima it assumes the same value at exactly two boundary
points) the solution of (1.2) of free of singular points [2], thus the Hypothesis 1 is
automatically satisfied.

When it exists, the regular solution of (1.1) is the unique minimizer in the problem

min

{∫
Ω

a|∇u|dx : u ∈ H1(Ω), u|∂Ω = f

}
,

as shown in [13], and a minimization algorithm has been proposed in [11]. In the
recent work in [10], a local stability result of recovering σ from one magnitude |J |
without using the 1-Laplacian was shown. However, this approach ignores boundary
considerations, and the absence of singular points is implicitly postulated by a re-
stricted neighborhood of the conductivity where stability is shown. This linearized
approach was originally proposed in [8] and [3] for general interior functionals, both
requiring multiple interior measurements for stability.

In Section 2 we present our new algorithm which reconstructs the solution to the
Dirichlet problem of the 1-Laplacian level set by level set. In Section 3 we discuss a
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generic local stability result that follows from the method. In Section 4 we present two
numerical experiments to illustrate the feasibility of the algorithm in its application
conductivity imaging.

2. Reconstruction of level sets of u. We recall first the connection between
the level sets of regular solutions of (1.1) and the characteristics of a first order PDE.
By Hypothesis 1 the unknown function θ is well defined in C1(Ω) by

∇u(x, y)
|∇u(x, y)|

= ⟨cos θ(x, y), sin θ(x, y)⟩ .(2.1)

Since u solves problem (1.1), from (2.1) we get that θ is a solution of the first
order nonlinear PDE:

−θx sin θ + θy cos θ = − (ln a)x cos θ − (ln a)y sin θ,(2.2)

where the subscripts indicate the partial derivatives.
We solve (2.2) by the method of characteristics starting at a point on the boundary

with an initial guess for the “shooting angle”. By using the location where it lands on
the boundary, the algorithm updates the angle. We prove convergence of the iteration
to the level set of u passing through the initial point. This is the content of the two
propositions below.

To fix ideas, let φ : [λ−, λ+] 7→ Γ ⊂ ∂Ω, where λ− = minΩ u and λ+ = maxΩ u,
be a piecewise-smooth parametrization of a (maximal) arc of the boundary, on which
f |Γ : Γ → [λ−, λ+] is a bijection. Existence of the maximal arc is insured by the
almost-two-to-one boundary data.

Let

Θλ = {β ∈ (−π, π] | ⟨− sinβ, cosβ⟩ · n⃗(φ(λ)) < 0}(2.3)

be the set of angles for directions ⟨− sinβ, cosβ⟩ pointing inside Ω. Here n⃗(φ(λ)) is
the outward unit normal at φ(λ) ∈ ∂Ω.

We consider the family (indexed in λ) of solutions to the initial value problem,
each of which describe a curve originating on the boundary at φ(λ) in the direction
⟨− sinβ, cosβ⟩: 

xt = − sin θ,
yt = cos θ,
θt = −(ln a)x cos θ − (ln a)y sin θ,
(x(0), y(0)) = φ(λ), θ(0) = β ∈ Θλ.

(2.4)

Since a ∈ C1,1(Ω) is bounded away from zero, the right hand side is Lipschitz
continuous and classical arguments in ODE show that there is a unique solution
t 7→ (x(t, λ, β), y(t, λ, β)) defined on a maximal interval [0, τ(λ, β)), where

τ(λ, β) := sup{t∗ > 0 : (x(t, λ, β), y(t, λ, β) ∈ Ω, 0 < t < t∗}.(2.5)

Since the curves are traced with speed one, then τ(s, β) also represents the length. In
general τ(s, β) may not necessarily be finite. We will show in Proposition 2.3 below
that τ(s, β) is finite for all λ ∈ (λ−, λ+) and β ∈ Θλ as in (2.3). Moreover, in such
a case, it follows from its definition (2.5) that (x(τ(λ, β), λ, β), y(τ(λ, β), λ, β)) is a
boundary point.
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The first result shows the connection between the level sets of the unknown solu-
tion u of the 1-Laplacian in (1.1), and solutions of the problem (2.4).

Proposition 2.1. Let (ξ(t), η(t)) : [0, T ] 7→ Ω be a level curve of u, which solves ξ′(t) = −uy(ξ, η)/|∇u(ξ, η)|
η′(t) = ux(ξ, η)/|∇u(ξ, η)|
(ξ(0), η(0)) = φ(λ∗), λ∗ ∈ (λ−, λ+),

(2.6)

and define ζ : [0, T ] 7→ R by

ζ(t) := Arg

{
∇u
|∇u|

(ξ(t), η(t))

}
.(2.7)

Then,
(i) the curve t 7→ (ξ(t), η(t), ζ(t)) is a solution of (2.4) with β = ζ(0) and λ = λ∗;
(ii) a solution of (2.4) with a fixed λ and β, which intersects (ξ(t), η(t), ζ(t)) at

least once, coincides entirely with it in Ω.
Proof. Recall that θ = Arg ∇u

|∇u| in (2.1) is a solution of (2.2). From its definition

in (2.7) along a level curve t 7→ (ξ(t), η(t)), we get equality

ζ(t) = θ(ξ(t), η(t)).(2.8)

Then

ξ′(t) = − sin ζ(t), and η′(t) = cos ζ(t).(2.9)

Now use (2.2), (2.8), and (2.9) to obtain

ζ ′(t) = − (ln a(ξ(t), η(t)))ξ cos ζ(t)− (ln a(ξ(t), η(t)))η sin ζ(t),(2.10)

thus proving (i).
To show (ii) let t 7→ (x(t, λ, β), y(t, λ, β), θ(t, λ, β)) be a solution of (2.4) for fixed

λ and β, which intersects (ξ(t), η(t), ζ(t)) at t = t∗. Since the right hand side of the
first three equations in (2.4) is Lipschitz, then by the uniqueness part of solutions to
initial value problems in ODE we have that the curve subject to

(x(t∗, λ, β), y(t∗, λ, β)) = (ξ(t), η(t)), and θ(t∗, λ, β) = ζ(t∗),

is unique. Therefore, the curves (x(t, λ, β), y(t, λ, β), θ(t, λ, β)) and (ξ(t), η(t), ζ(t))
coincide everywhere where defined in Ω. Note that for any fixed boundary point
φ(s), there is one specific direction β(s) which makes the solution of (2.4) be a level
curve for u, in particular of finite length. However, when solving for an arbitrary
shooting direction angle β, there is no general theory to guaranty the solution is not
trapped inside (case in which τ(s, β) = ∞). We prove below the finite length property
for solutions of (2.4). The proof makes essential use of the curvature bound given by
the third equation in (2.4), in conjunction with the fact that Hypothesis 1.1 implies
that level sets of u describe global coordinates in Ω. The following lemma is key to
capturing the effect of curvature on the length.

Lemma 2.2. Let f ∈ C2([0,∞)) with f ′(t0) ≥ 0, |f ′′| < K, and 0 < f(t) < L.
Then,

L >
(f ′(t0))

2

2K
.(2.11)
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Proof. Since f ∈ C2([0,∞)), then there exists t∗ ∈ (t0, t) such that

f(t) = f(t0) + f ′(t0)(t− t0) +
1

2
(t− t0)

2f ′′(t∗).(2.12)

Using the bound on the second derivative of f we have that

|f(t)− f(t0)− f ′(t0)(t− t0)| <
1

2
(t− t0)

2K,

f(t)− f(t0) > f ′(t0)(t− t0)−
1

2
(t− t0)

2K.

Now at t∗∗ = f ′(t0)
K + t0 and using the inequality, 0 < f(t) < L, we get that

L > f(t∗∗)− f(t0) >
(f ′(t0))

2

2K
.(2.13)

For the following theorems, for a fixed λ ∈ (λ−, λ+) let

βλ = arg

{
∇u
|∇u|

(φ(λ))

}
,

recall the initial value problem (2.4) and the definition of τ(λ, β) in (2.5).
Theorem 2.3. Let Ω ⊂ R2 be strictly convex, a ∈ C1,1(Ω), with infΩ |∇a| > 0.

Then τ(λ, β) <∞, for all λ ∈ (λ−, λ+) and β ∈ Θλ, as in (2.3).
Proof. For the case when β = βλ, τ(βλ, λ) < ∞ since all level curves of u have

finite length (due to compactness).
Now take an arbitrary β ∈ Θλ with β ̸= βλ. We consider u along the correspond-

ing solution t 7→ (x(t, λ, β), y(t, λ, β), θ(t, λ, β)) of (2.4). By Proposition 1 part (ii) we
know that

d

dt
u(x(t, λ, β), y(t, λ, β)) ̸= 0.

Without loss of generality let us consider the case

d

dt
u(x(t, λ, β), y(t, λ, β)) > 0, 0 ≤ t < τ(λ, β).(2.14)

We reason by contradiction: assume τ(λ, β) = ∞.
Since the level sets of u describe general coordinates in Ω, with a bounded Jaco-

bian away from zero and infinity, we may assume that level curves of u are straight lines
parallel to the x-axis. (For example, the change of coordinates [0, t(λ)]× [λ−, λ+] 7→
(x, y) ∈ Ω defined by solutions of the problem xt(t, λ) = −uy(x, y)/|∇u(x, y)|

yt(t, λ) = ux(x, y)/|∇u(x, y)|
(x(0, λ), y(0, λ)) = φ(λ)

(2.15)

gives a desired diffeomorphism.) In this new coordinates we have yt(t) > 0 for t ≥ 0,
and for every ϵ > 0 there is an Mϵ such that for all t > Mϵ

|L− y(t)| < ϵ.(2.16)



6 Alexandru Tamasan, Alexandre Timonov And Johann Veras

Let K > maxΩ |∇ ln a|, then

|ytt(t)| = | sin θ(t)||θt(t)| < K.(2.17)

Consequently, by Lemma 2.2 we have that

y2t (t) < 2Kϵ, ∀t > Mϵ.(2.18)

By choosing ϵ < 1
4K and the arc length parametrization of this curve (x2t + y2t = 1)

gives the inequality

x2t (t) >
1

2
(2.19)

for every t > M 1
4K

. From the Mean Value Theorem one can show that x(t) increases

unboundedly thus contradicting the boundedness of Ω. Therefore τ(λ, β) is finite.

Theorem 2.4. Assume that Ω is convex. Then the map β 7→ τ(λ, β) is continu-
ous at βλ.

Proof. For simplicity, we assume first that Ω is a rectangle, say [0, x0] × [0, y0],
in the coordinates described by the level sets of u. Or, equivalently, that the level
curves of u are parallel to the x-axis. Extend the function a to the open set Ω′ such
that Ω ⊂ Ω′, a ∈ C1,1(Ω′), and the solutions of (2.4) are defined in Ω′. Let ϵ > 0
be given and let h > 0 be small enough and, without loss of generality, assume that
δ := τ(λ, βλ + h) − τ(λ, βλ) > 0 (the case when δ < 0 follows similarly). By the
stability with respect to t of solutions of initial value problems we have that

∥(x(t, λ, βλ + h), y(t, λ, βλ + h))− (x(t, λ, βλ), y(t, λ, βλ))∥C1([0,τ(λ,βλ)])
< ϵ.(2.20)

We will show that as ϵ→ 0, then

τ(λ, βλ + h)− τ(λ, βλ) → 0.

Observe that

|(x(0, λ, βλ + h), y(0, λ, βλ + h), θ(0, λ, βλ + h))−
(x(0, λ, βλ), y(0, λ, βλ), θ(0, λ, βλ))| < h.

Since t 7→ x(t, λ, βλ + h) is twice continuously differentiable, then

x(τ(λ, βλ + h), λ, βλ + h) >

x(τ(λ, βλ), λ, βλ + h) + δxt(τ(λ, βλ), λ, βλ + h)− δ2

2
K,

where K > max |xtt(t, λ, β)|. Using the latter inequality and the inequality in (2.20)
we get

x(τ(λ, βλ + h), λ, βλ + h) >

x(τ(λ, βλ), λ, βλ)− ϵ+ δ[xt(τ(λ, βλ), λ, βλ)− ϵ]− δ2

2
K

= x0 − ϵ+ δ[xt(τ(λ, βλ), λ, βλ)− ϵ]− δ2

2
K.
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Since, x0 = x(τ(λ, βλ + h), λ, βλ + h) and xt(τ(λ, βλ), λ, βλ) > 0, then

0 > −ϵ+ δ[xt(τ(λ, βλ), λ, βλ)− ϵ]− δ2

2
K(2.21)

and

δ <
1

K

[
xt(τ(λ, βλ), λ, βλ)− ϵ−

√
[xt(τ(λ, βλ), λ, βλ)− ϵ]2 − 2ϵK

]
=

2ϵ

xt(τ(λ, βλ), λ, βλ)− ϵ+
√
[xt(τ(λ, βλ), λ, βλ)− ϵ]2 − 2ϵK

<
2ϵ

xt(τ(λ, βλ), λ, βλ)− ϵ
.

Thus continuity follows, since, if ϵ→ 0 then, τ(λ, βλ + h)− τ(λ, βλ) → 0.

The continuity of τ(λ, β) at βλ yields the following.
Corollary 2.5. Under the hypotheses of Theorem above, for each λ ∈ (λ−, λ+)

consider the map Fλ : Θλ 7→ R defined by

Fλ(β) := u (x(τ(λ, β), λ, β), y(τ(λ, β), λ, β))− λ,(2.22)

where (x(τ(λ, β), λ, β), y(τ(λ, β), λ, β) is the corresponding solution of (2.4), and Θλ

as in (2.3). Then β 7→ Fλ(β) is a continuous at βλ.
The algorithm and its convergence rely on the following properties of F .
Proposition 2.6. (i)Fλ(β) = 0 if and only if β = βλ.
(ii) There exist α and β such that

Fλ(α) < 0 < Fλ(β).(2.23)

Proof. First we prove statement (i). Let β ∈ Θλ such that

Fλ(β) = 0.(2.24)

Thus, λ = u(x(τ(s, β), s, β), y(τ(s, β), s, β)). By Rolle’s Theorem ∃t∗ ∈ (0, τ(λ, β))
such that

d

dt
u(x(t∗, λ, β), y(t∗, λ, β)) = 0.(2.25)

Consequently,

θ(t∗, λ, β) = Arg

{
∇u
|∇u|

(x(t∗, λ, β), y(t∗, λ, β))

}
.(2.26)

Therefore, by Proposition 2.1 (x(t, λ, β), y(t, λ, β)) is a level curve and

β = βλ.(2.27)

The converse follows directly from Proposition 2.1.
The proof of (ii) is as follows. Let α, β ∈ Θλ such that

α < βλ < β.
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Without loss of generality assume that Fλ(α), and Fλ(β) are negative. Then, either
the curve (x(t, λ, α), y(t, λ, α)) or the curve (x(t, λ, β), y(t, λ, β)) intersects, in Ω, the
level curve of u corresponding to λ. Then, assume (x(t, λ, β), y(t, λ, β)) intersects the
level curve at t = t1. By the same argument of the proof of statement (i) in this
Proposition, there is a t∗ ∈ (0, t1) such that

d

dt
u(x(t∗, λ, β), y(t∗, λ, β)) = 0.(2.28)

The latter implies that the curve (x(t, λ, β), y(t, λ, β)) is a level curve which is a
contradiction, since

β > βλ.(2.29)

The following algorithm recovers the λ-level set of u, for λ ∈ (λ−, λ+) fixed.
Algorithm: We will recursively define the following sequences. Let α1 < α′

1 ∈
Θλ be the angles given by proposition 2.6 such that

Fλ(α1) < 0 < Fλ(α
′
1).(2.30)

Consider, for the natural number n, the bisector angle

γn =
αn + α′

n

2
.(2.31)

For each member of the sequences (αn) and (α′
n),

• if Fλ(γn) ≤ 0, let αn+1 = γn and α′
n+1 = α′

n, or
• if Fλ(γn) > 0, let α′

n+1 = γn and αn+1 = αn.
Note the ordering

α1 ≤ αn ≤ αn+1 < α′
n+1 ≤ α′

n ≤ α′
1(2.32)

and

α′
n+1 − αn+1 =

α′
n − αn

2
.(2.33)

Consequently,

α′
n+1 − αn+1 =

α′
1 − α1

2n
.(2.34)

Therefore, the sequences (αn) and (α′
n) both converge to the same angle γ. The

continuity of Fλ at βλ and the inequality in (2.30) imply that

Fλ(αn) → Fλ(γ) = 0 and Fλ(α
′
n) → Fλ(γ) = 0,(2.35)

and by Proposition 2.6

γ = βλ.(2.36)

Proposition 2.1 guarantees that the curve (x(t, λ, γ), y(t, λ, γ)) is the level curve of u
corresponding to u = λ.

Note that it is the modulus of continuity of F which determines the rate of
convergence of our algorithm.
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3. On the stability of the method. In this section we discuss a conditional
stability result.

An additional differentiation in the first two equations of (2.4) and substitution
into the third equation, enables us to eliminate θ. Our method, in fact, solves the
family of two point boundary value problems xtt = yt [(ln a)xyt − (ln a)yxt]

ytt = −xt [(ln a)xyt − (ln a)yxt]
(x(0), y(0)) = φ(λ), (x(L), y(L)) = (x(τ(λ, β), λ, β), y(τ(λ, β), λ, β)).

(3.1)

In general, a two point boundary value problem may have no solutions, unique solution
or infinitely many solutions. However, sufficient conditions for existence, uniqueness
and continuous dependence on the data have been long known, see e.g. [7]. In what
follows we do not revisit the stability issue of the two point boundary value problem
but rather assume that our system (3.1) obeys some sufficient conditions (one such
example can be obtained by the reduction of (3.1) to a Fredholm integral system of
second type) that yield:

Hypothesis 2. For every ϵ > 0 there is a δ > 0 such that if

∥ã− a∥C1,1(Ω) < δ and ∥f̃ − f∥C0(Γ) < δ,(3.2)

then

max
t∈[0,L]

(|x(t)− x̃(t)|+ |y(t)− ỹ(t)|) < ϵ.(3.3)

Let us consider the class C of pairs (a, f) ∈ C1,1(Ω) × C1(Γ), for which the
problem (1.1) has a regular solution satisfying Hypotheses 1 and 2. Within the class
C , our method is conditionally stable in the following sense:

Proposition 3.1 (Conditional Stability). For every ϵ > 0 there is a δ > 0 such
that if (a, f), (ã, f̃) ∈ C with

∥ã− a∥C1,1(Ω) < δ and ∥f̃ − f∥C0(Γ) < δ,(3.4)

then

∥u− ũ∥C0(Ω) < ϵ.(3.5)

Proof. Let P ∈ Ω. Consider the following curves:

• the level curve [0, L] ∋ t 7→ (x(t), y(t)) corresponding to u(P ), and
• the level curve [0, L] ∋ t 7→ (x∗(t), y∗(t)) of ũ with (x(0), y(0)) = (x∗(0), y∗(0)).

For ϵ > 0 and P given, let P ∗ ∈ {(x∗(t), y∗(t)) : t ∈ [0, L]} be the closest point to P .
From Hypothesis 2 there is a 0 < δ < ϵ/2 small enough with the property: if

∥ã− a∥C1,1(Ω) < δ and ∥f̃ − f∥C0(Γ) < δ,(3.6)

then

sup
t∈[0,L]

√
|x(t)− x∗(t)|2 + |y(t)− y∗(t)|2 < ϵ

2Lũ
,(3.7)
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where Lũ is the maxΩ |∇ũ|. Consequently, dist(P, P ∗) < ϵ
2Lũ

. We estimate

|u(P )− ũ(P )| = |f(x(0), y(0))− ũ(P )|
≤ |f̃(x(0), y(0))− ũ(P )|+ |f(x(0), y(0))− f̃(x(0), y(0))|

≤ δ + |ũ(P ∗)− ũ(P )| < ϵ

2
+ Lũdist(P

∗, P ) < ϵ.

Since P were arbitrary in Ω, then

∥u− ũ∥C0(Ω) < ϵ.(3.8)

4. Numerical Results. In this section we present two numerical reconstruc-
tions of some conductivities based on the algorithm above. Figure 1 illustrates the
two conductivities which are to be reconstructed from the data. Also, figure 2 shows
the difference of the calculated solution of the conductivity equation (1.2) (for each
conductivity) and the harmonic function with the same boundary data.
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Fig. 1. The original conductivity distribution maps: the four modes (left) and the cross section
of a C2 approximation of a human brain (right).

4.1. Data. The magnitude of the current density, a, for the numerical experi-
ments is obtained numerically.

We solve the Dirichlet problem (1.2) for two different conductivities by using the
finite element method in MATLAB’s PDE toolbox. The domain Ω is the unit box
[0, 1] × [0, 1], and the boundary voltage f(x, y) = y is applied at the boundary. The
first conductivity map is smoothly defined by the C∞ (four modes) function

σ(x, y) = 1 + 0.3 · (A(x, y)−B(x, y)− C(x, y)),(4.1)

where

A = 0.3 · [1− 3(2x− 1)]2 · e−9·(2x−1)2−(6y−2)2 ,

B =

[
3(2x− 1)

5
− 27 · (2x− 1)3 − [3 · (2y − 1)]5

]
· e−[9·(2x−1)2+9·(2y−1)2],

C = e−[3·(2x−1)+1]2−9·(2y−1)2 ;
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Fig. 2. The figure illustrates u(x, y) − y, where u(x, y) is the solution of (1.2) subject to
f(x, y) = y and the conductivities: the C∞ function (left) and the C2 function (right).

see the left image in Figure 1. The second conductivity is a least square approximation
of C2 B-splines of a piecewise-smooth function given by a CT image of a cross-section
of a human brain. This level of smoothness is needed to meet the theory requirements.
The approximating function has the form

σ(x, y) =
22∑
i=1

18∑
j=1

αijB(x− xj)B(y − yi),(4.2)

and it is shown in Figure 1 on the right.
The gradient of the potential ∇u is computed via finite difference. The interior

data a = σ|∇u| is computed in [0, 1]× [0, 1], see figure below.
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Fig. 3. Magnitude of the current density of the C∞ (four modes) (left) and the C2 function
(right) generated over the box [0, 1]× [0, 1].
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4.2. Finding βλ. The algorithm in section 2 finds the root βλ of the function
Fλ(β) in (2.22), which together with (x(0, λ, βλ), y(0, λ, βλ)) give the initial condition
of a level curve of u which solves (2.4). To find βλ numerically, we use the boundary
points which are joined by the level curve of u corresponding to λ, say (x1, y1) and
(x2, y2). Note that the boundary data is almost-two-to-one and these points are the
unique points such that f(x1, y1) = f(x2, y2).

The method shown here is similar to a bi-section searching algorithm. The novelty
is the criterion which ensures convergence. The iterative process is as follows. Assume
that x1 = 0 and y1 ∈ (0, 1). To initialize the process we solve (2.4) twice: once
subject to (x1, y1, α0) and next subject to (x1, y1, α

′
0), where α0, α

′
0 ∈ (−π, 0) are

initial guesses such that

Fλ(α0) < 0 < Fλ(α
′
0).(4.3)

The next angle is γ0 =
α0+α′

0

2 . Solve (2.4) subject to (x1, y1, γ0). If Fλ(γ0) < 0, then
let the next angles α1 = γ0 and α′

1 = α′
0. Otherwise, let α1 = α0 and α′

1 = γ0. Assign

the new angle, γ1 =
α1+α′

1

2 . Solve (2.4) subject to (x1, y1, γ1). Repeat this scheme n
number of times, so that

|βλ − γn| < |α0 − α′
0|

1

2n
.(4.4)

The plots in figure 4 show a numerical example of the convergence rate of this method
for the voltage potential generated with the σ ∈ C2 example.

We can also use the continuity (for δ > 0 small enough, βλ is close to βλ+δ) to
expedite the convergence rate of the method when from level to level set by using the
already calculated values.

In Figure 4 the reconstructed level curve passing through (x1, y1) = (0, 0.6), which
corresponds to the voltage potential generated in brain experiment σ ∈ C2. The initial
angles are α0 = −2π

3 and β0 = − π
10 . The box on the right shows a plot of the error

versus the number of iterations. The error shown is a discrete version of

∥(x(t, λ, γi), y(t, λ, γi), θ(t, λ, γi))− (x(t, λ, γi−1), y(t, λ, γi−1), θ(t, λ, γi−1))∥∞.

The calculated error at the 11-th iteration is 2.5 · 10−4.

4.3. Numerical experiments. The numerical examples below consider two
instances of the 1-Laplacian coming from the inverse conductivity problem with the
data described in 4.1.

Given the function a in a unit box [0, 1]× [0, 1], we solve (2.4) using the adaptive
Runge-Kutta-Fehlberg ODE solver for m characteristics subject to the initial condi-
tions of the corresponding level curves of u, the voltage potential, found using the
bi-section method in section 4.2,

xj(0) = 0, yj(0) = sj , θj(0) = βsj ,(4.5)

where sj =
j

m−1 , and j = 0, 2, . . . ,m− 1. Since f(x, y) = y, then βs0 = βsm−1 = −π
2 .

The third equation in (2.4) contains the derivative of a in the direction of the
unit vector η = ⟨cos θ, sin θ⟩:

dθ

dt
= −∂η ln a.(4.6)
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Fig. 4. The plots in the left box show a few iterations in finding the level curve passing through
(x1, y1) = (0, 0.6).

In order to decrease the error made in differentiating ln a we use the center difference
for the directional derivative:

∂η ln a(xj(tjk), yj(tjk)) =
1

2h

[
ln a(xjkj+h, y

jk
j+h)− ln a(xjkj−h, y

jk
j−h)

]
,(4.7)

where

xjkj+h =xj(tjk) + h · cos θj(tjk),

xjkj−h =xj(tjk)− h · cos θj(tjk),

yjkj+h =yj(tjk) + h · sin θj(tjk),

yjkj−h = yj(tjk)− h · sin θj(tjk).

In all the numerical experiments the value of ln a (or a) at a point is interpolated
by the bi-quintic piecewise Lagrange polynomials for points away from the boundary,
and the bi-cubic or bi-linear interpolation for points near the boundary.

The characteristics are equipotential lines. The value of the potential along each
characteristic is determined by the voltage potential at the boundary. Let

Λj(t) = (xj(t), yj(t)), j ∈ {0, 1, . . . ,m− 1}, t ∈ [0, τj ],(4.8)

denote the equipotential line, which solves (2.4) subject to (4.5), and

ζi(ξ) = (x̂i(ξ), ŷi(ξ)), ξ ∈ [0, αi], i ∈ {0, 1, . . . , n− 1},(4.9)

denote a smooth non-characteristic curve, which is transversal to each Λj , j = 0, 1, . . . ,m−
1. At the point of intersection we have{

0 = ux
dxj

dt + uy
dyj

dt ,

uξ = ux
dx̂i

dξ + uy
dŷi

dξ ,
(4.10)
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Fig. 5. The top images show a sample of the characteristics (level curves) of the voltage
potential generated by the four modes (left) and the C2 function (right) reconstructed from the
interior data, a, measured in [0, 1]× [0, 1].

and

∇u =
uξ

dyj

dt
dx̂i

dξ − dxj

dt
dŷi

dξ

⟨
dyj
dt
,−dxj

dt

⟩
.(4.11)

The non-characteristic curves of (4.9) are obtained by one dimensional interpolation
in between points lying on different characteristics. The derivative uξ at the node
where Λj intersects ζi, is computed via the Lagrange polynomial interpolation along
ζi.

In the particular case in which the characteristic curves are graphs, say
∣∣∣dxj

dt

∣∣∣ > 0,

j = 0, 1, . . . ,m − 1, the conductivity is computed on a grid. The first component
of each characteristic is regarded as the independent variable x and the second com-
ponent can be expressed as a function yj = ϕj(x), j = 0, 1, . . . ,m − 1. Thus, by
letting xk = k

n−1 , k = 0, 1, . . . , n − 1 we approximate the values of ykj = ϕj(x
k), j =

0, 1, . . . ,m − 1, k = 0, 1, . . . , n − 1 via fifth degree piecewise Lagrange polynomials.
Note that for a fixed j, u is constant along the points (xk, ykj ), k = 0, 1, . . . , n − 1.
Then there is a function ψ such that uk = ψ(y;xk), for k = 0, 1, . . . , n− 1, whose val-
ues are known at (xk, ykj ). Now, by letting yl = l

p−1 , l = 0, 1, . . . , p−1 we approximate

the values ulk = ψ(yl;xk) via fifth degree piecewise Lagrange polynomials. Therefore,
u is approximated on the p by n rectangular grid (xk, yl), where k = 0, 1, . . . , n − 1,
and l = 0, 1, . . . , p− 1.

We reconstruct the voltage potential for each conductivity with Gaussian noise
added to the data, the magnitude of the current density. In figure 6 we show the
reconstruction of the difference of the voltage potential and the harmonic solution for
the noiseless data. The L1 relative errors for the reconstructed voltage potentials from
noiseless data corresponding to the C∞ function is 1.2691×10−5, and the C2 function
is 1.4798× 10−4. In figure 7 we plot the error of the voltage potential reconstructions
from data with various degrees of Gaussian noise.

One recovers the conductivity on the characteristics of u. The gradient of the
voltage potential is computed using (4.11). In the specific case in which the equipo-
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Fig. 6. The images show the reconstruction of the difference u(x, y) − y for each conductivity
from noiseless data: C∞ function (left) and C2 function (right).

tential curves are graphs, the conductivity is computed on the rectangular grid from
step 2, (xk, yl), k = 0, 1, 2, . . . , n− 1, l = 0, 1, 2, . . . , p− 1, using the formula

σ(xk, yl) =
a(xk, yl)

|∇u|(xk, yl)
.(4.12)

The gradient of the voltage potential of the reconstruction of the conductivities shown
in figure 8 were computed via fintie differences.

4.4. Remarks on numerical stability and applications to noisy data.
Sharp elliptic regularity estimates of Agmon-Douglas-Nirenberg [1] show that we can-
not expect stability estimates in the same order of regularity for the 1-Laplacian,
due to the degeneracy in ellipticity. Our Proposition 3.1, even in the case of exact
boundary data, show a loss of two derivatives in the error estimates of the solution
versus the interior data. However, the numerical experiments below, see Figure 7,
show better numerical stability behaviour, equivalent to the loss of one derivative.

5. Conclusion. We presented a globally convergent algorithm which solves the
Dirichlet problem for the 1-Laplacian in two dimensions by recovering the regular
solution (assumed to exist) level set by level set. Such a problem occurs in the inverse
hybrid problem of recovering the electrical conductivity of a body when the magnitude
of the current density field, obtained by maintaining a fix boundary voltage, is given
inside.

The method requires the interior coefficient be of Lipschitz gradient and does
not work (in theory) for rougher data. Due to the degeneracy in ellipticity a loss of
derivatives in the stability estimates are expected. We show a conditional stability
result which estimates the continuous norm of the error in solution with the C1,1-
norm of error in the data. However, in numerical experiments it seems that a stability
estimate with one loss of derivative may be possible.

Feasibility of the method is numerically illustrated on two examples coming from
a hybrid problem in conductivity imaging.
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Fig. 7. L1 relative error of the voltage potential reconstructed from noisy data for each corre-
sponding conductivity.

0

0.5

1

0

0.5

1

0.8

1

1.2

1.4

Reconstruction of the four modes

0

0.5

1

0

0.5

1
0.8

1

1.2

1.4

1.6

1.8

Reconstruction of the C2 function

Fig. 8. The images show the reconstruction of the four modes (left) and the C2 function
(right) reconstructed from the interior data measured in [0, 1]× [0, 1]. The L1 relative error for the
reconstruction of the four modes and the C2 function are 0.105% and 0.522%, respectively.
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