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Abstract: Homogeneous a priori bounded scattering is uniquely determined

by the albedo operator. As a consequence of the inversion of the attenuated

X-ray transform, we reconstruct isotropic scattering in two different ways.

1 Introduction

Consider the stationary transport of particles, in a source free scattering media, modeled by the
equation

v · ∇xu(x, v) + a(x, |v|)u(x, v) = b(x, |v|)

∫

V

ρ(x, v′, v)u(x, v′)dv′, x ∈ Ω, v ∈ V. (1)

The domain Ω is convex, bounded with smooth boundary and the set of velocities V is {v : 0 <
vmin ≤ |v| ≤ vmax}. The function u(x, v) represents the density of particles at x, traveling in
the direction v/|v| with speed |v|. In particular

∫

Ω

∫

V
u(x, v)dxdv is the total number of particles.

The total macroscopic cross section a(x, |v|) represents the likelihood per unit time for particles to
either hit nuclei or be absorbed by the media. The scattering cross section b(x, |v|) is dimensionless
and represents the quota of collided particles which scatter. The kernel ρ(x, v′, v) represents the
probability per unit path length for particles at x, traveling with velocity v′ to scatter into the
direction v/|v| with speed |v|. The scattering kernel k(x, v′, v) is the product b(x, |v|)ρ(x, v′, v)
measured in inverse unit length. Both a and k are intrinsic features of the media. We have in
mind two kinds of applications governed by small scattering. One of them describes the kinetics of
molecules in gazes. The other is the transport of neutrons through thin plates. For more details
on the physical model refer to [16].

The forward problem solves the equation for u when some boundary sources are specified. The
inverse boundary value problem aims to reconstruct a and k from the boundary measurements. This
problem appeared first for the mono-energetic case in the works of Anikonov and his collaborators
[1], [2], [3], [4]. The formal determination of a and k has been completely solved by Choulli and
Stefanov in three dimensional models [10]. They analyzed the operator which takes incoming
boundary data into the outgoing boundary data (the so called albedo operator). The Schwartz
kernel of this operator has the main singularity, a delta distribution, concentrated along straight
lines. From the strength of this singularity one can determine the X-ray transform of a. The next
singularity is concentrated along planes through x determined by the two scattering directions v
and v′. The strength of this singularity recovers k. For three dimensional domains, the number of
variables in the distributional kernel of our data exceeds the number of variables of k. The problem
is over-determined and this is one of the reasons why numerical methods as in [14] developed earlier.

In the two dimensional case, this method still determines a but fails to reconstruct k. The
problem is formally determined and it is still open whether k(x, v, v′) can be uniquely determined
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from boundary measurements. The best general result for unit speed velocities is due to Romanov
[19]. He gives a stability estimate for small absorption and small scattering which depends on
position x and the angle between the two scattering directions: k = k(x, v

|v| ·
v′

|v′|). Other known

results assume special forms of scattering. In the unit speed velocity case, Bal [9] reconstructs k as
a trigonometric polynomial in the scattering angle. Numerical reconstruction was obtain by Dorn
[13] in two and three dimensional domains.

This paper considers the question of determining k for plane domains. There are two kinds of
results. Theorem 1 shows unique determination of homogeneous and a priori bounded scattering
k(v, v′). This type of scattering is not completely covered by the result of Romanov, as we allowed
the kernel to depend on two independent velocities. Moreover, we do not need a to be small. The
weakness of our result is the homogeneous assumption. However, unlike the case considered by Bal
[9], a need not be constant and k need not be trigonometric polynomial.

The second result presents two different inversion formulae (Proposition 2, 3) for unit speed
velocities and isotropic scattering. Isotropy assumes that the particles scatter in every direction
with the same probability, (ρ is constant and we determine formulae for b). The first formula is a
straightforward application to the Novikov’s inversion formula of the attenuated x-ray transform
[18]. The second formula is an application of the theory of A-analytic functions as developed by
Bukhgeim in [11], [7]. Although different in appearance we explain why they are the same.

2 The albedo operator and its kernel

This section presents some preliminary results concerning the forward problem. Throughout the
paper we assume the admissibility conditions

{

0 ≤ a ∈ L∞(Ω × (vmin, vmax))

0 ≤ k ∈ L∞(Ω × V × V )).
(2)

Further conditions will be imposed on k later on.
The total travel time τ is given by τ(x, v) = τ−(x, v)+τ+(x, v), where τ±(x, v) is the travel time

from x in the direction ±v until the boundary is met. For a convex domain with smooth boundary
τ± are smooth maps. Let d be the diameter of Ω. Since velocities are bounded away from zero, all
the particles reach the boundary within a maximum time T = d/vmin.

The albedo operator (our data) takes the incoming flux to the outgoing flux at the boundary.
The exact definition follows from the existence and uniqueness result of Proposition 1 and from the
trace Lemma 1 below. Let n(x) denote the outer unit normal at x ∈ ∂Ω. We define the incoming
and outgoing boundary by Γ± := {(x, v) ∈ ∂Ω × V : ±n(x) · v > 0}.

The space of solutions W = {f ∈ L1(Ω × V ) : τ−1f, v · ∇f ∈ L1(Ω × V )}. The gradient is
understood in the sense of distributions. The norm on W is given by ||f ||W := ||v · ∇f ||+ ||τ−1f ||,
where || · || is the standard norm on L1(Ω × V ).

On Γ± we consider the measure dξ(x, v) := |n(x) · v|dµdv, where dµ is the induced Lebesgue
measure on the boundary. Following the method of Cessenat [12], Choulli and Stefanov showed
that functions in W restrict to L1(Γ±, dξ). Throughout the paper we denote by R the trace on Γ+,
Rf = f |Γ+ .

Lemma 1 ([10]). For any f ∈ W we have ||Rf ||L1(Γ±,dξ) ≤ ||f ||W .

Without the scattering contribution, the linear transport equation decouples into a family of
first order ordinary differential equations indexed by the velocity v. A function f− ∈ L1(Γ−, dξ)

2



can be extended to the whole space Ω × V satisfying these equations. More precisely,

Jf−(x, v) = exp

(

−

∫ τ−(x,v)

0
a(x − sv, |v|)ds

)

f−(x − τ−(x, v)v, v) (3)

is the extension of f−, which satisfies the non-scattered transport equation. For an incoming flux
f− ∈ L1(Γ−, dξ) we have that Jf− lies in W and the following result holds.

Lemma 2 ([10]). ||Jf−||W ≤ ||f−||L1(Γ−,dξ).

Consider the equation (1) together with the boundary condition u|Γ−
= f−. Integrating along

the direction v and using exp
(

−
∫ t

0 a(x − sv, |v|)ds
)

as an integrating factor, we can reduce the

boundary value problem to the integral equation

u = Ku + Jf−, (4)

where K is defined by

Ku(x, v) =

∫ τ−(x,v)

0
exp

(

−

∫ t

0
a(x − sv, |v|)ds

)
∫

V

k(x − tv, v′, v)u(x, v′)dv′dt. (5)

This calculation is similar to the one used in getting the Peierls’ integral equation in section 4.
Let σ(x, v′), defined by

σ(x, v′) =

∫

V

k(x, v′, v)dv, (6)

represent the total contribution at x of particles traveling with velocity v′. The sub-critical condition

||τσ||∞ < 1 (7)

is sufficient for the forward problem to be well posed. The sub-critical condition can be satisfied
in the experiment of neutrons penetrating thin plates, as τ(x, v) is controlled by the width of the
plate. In the other model, due to the small density of gazes, the kernel k can be small. When k is
large a diffusion approximation is considered instead [6].

Under this assumption, the solution of (4) is given by the Neumann expansion

u = Jf− + KJf− + K2Jf− + ... = Jf− + (I − K)−1KJf. (8)

The series converges in W and the restriction of u to Γ+ makes sense.
We summarize the properties which make the direct problem well posed and allow to define the

albedo operator.

Proposition 1 ([10]). If the admissible (2) and sub-critical (7) conditions hold, then
a) K defined by (5) is a bounded operator from L1(Ω × V, τ−1dxdv) to itself, with the operator

norm ||K|| ≤ ||τσ||∞ < 1;
b) the integral equation (4) has a unique solution u = (I − K)−1Jf−;
c) the albedo operator A takes f− to u|Γ+ and it is bounded from L1(Γ−, dξ) to L1(Γ+, dξ).

Consider now the equation governed by another admissible pair (a, k0) and such that k0 also
satisfies the sub-critical condition. Let K0 be the corresponding integral operator defined as in (5).
The following estimate will be needed later.
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Lemma 3. The operator R[(I −K)−1K2 − (I −K0)
−1K2

0 ]J : L1(Γ−, dξ) → L1(Γ+, dξ) is bounded
with the operator norm satisfying

||R[(I − K)−1K2 − (I − K0)
−1K2

0 ]J || ≤ |τσ − τσ0|∞
2|τσ0|

2
∞ + 3|τσ0|∞ + |τσ|∞ + |τσ0|∞|τσ|∞

(1 − |τσ0|∞)(1 − |τσ|∞)
.

(9)

Proof. First apply the Lemmas 1 and 2 and part a) of Proposition 1 to get

||R(I − K)−1K2J − R(I − K0)
−1K2

0J || ≤ |(I − K)−1K2 − (I − K0)
−1K2

0 |.

The norm on the right hand side denotes the operator norm from L1(Ω × V, τ−1dxdv) to itself.
Write (I −K)−1K2− (I −K0)

−1K2
0 = (I −K)−1[K2(I −K0)− (I −K)K2

0 ](I −K0)
−1 and estimate

the middle part. In K2(I − K0) − (I − K)K2
0 replace K0 by K + (K0 − K) and a straightforward

calculation shows that

|K2(I − K0) − (I − K)K2
0 | ≤ |K0 − K|(2|K|2 + 3|K| + |K0| + |K||K0|).

Apply again part a) of Proposition 1 to get the conclusion.

The main ingredient in studying the inverse problem for (1) is the singular decomposition of
the Schwartz kernel of the albedo operator. A similar singular decomposition was obtained in [5]
for three dimensional problems with point sources and zero incoming fluxes. We denote by δ[x0](x)
the delta distribution on the boundary supported at x0 ∈ ∂Ω, i.e. for any φ ∈ C∞(∂Ω),

〈δ[x0], φ〉 =

∫

∂Ω
δ[x0](x)φ(x)dµ(x) = φ(x0).

In order to simplify notation we define a map E(s, x, v, v′) by

E(s, x, v, v′) := e−
∫

s

0 a(x−pv,|v|)dpe−
∫ τ−(x−sv,v

′)

0 a(x−sv−pv′,|v′|)dp. (10)

Lemma 4 (Singular Decomposition, [10] ). Assume that the admissible (2) and sub-critical
(7) assumptions hold. The distribution kernel of the albedo operator A decomposes into α1+α2+α3,
where

α1 =e−
∫ τ−(x,v)

0 a(x−sv,v)dsδ[x−τ−(x,v)v](x
′)δ(v − v′), (11)

α2 =

∫ τ−(x,v)

0
E(s, x, v, v′)k(x − sv, v′, v)δ[x−sv−τ−(x−sv,v′)v′](x

′)ds, (12)

|v′ · n(x′)|−1α3 ∈L∞(Γ−; L1(Γ+, dξ)). (13)

3 Uniqueness of homogeneous a priori bounded scattering

In this section we prove that scattering k = k(v, v′), which also satisfy an a priori bound is uniquely
determined by the albedo operator. This bound depends on the geometry of the domain and the
range of velocities as follows. For any v ∈ V , let Γ+(v) denote the set {x ∈ ∂Ω : (x, v) ∈ Γ+}
and let L := infv∈V length(Γ+(v)). As ∂Ω is smooth and convex, L/π is always greater then the
inverse of the maximum curvature. In particular L is positive (e.g. if Ω is a unit disc then L = π).
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Recall that T was the maximum travel time and vmax is the fastest speed. As before, to any k we
associate the map σ by (6). We prove our result in the class of scatterings k that satisfy

||τσ||∞
3||τσ||∞ + 4

(1 − ||τσ||∞)2
<

Le−T ||a||∞

Tvmax
. (14)

Consider now two problems with the admissible coefficients (a, k) and (a0, k0). Let σ and σ0 be
the maps corresponding to k and k0 defined as in (6) and K and K0 be the operators given by (5).
Let α2 and α0

2 be the Schwartz kernels of RKJ and RK0J , and α3 and α0
3 be the Schwartz kernels

of R(I − K)−1K2J and R(I − K0)
−1K2

0J , respectively.
The uniqueness result is the following.

Theorem 1. Let (a, k) and (a0, k0) be two admissible pairs, such that k and k0 are homogeneous
and satisfy (14). If the corresponding albedo kernels of A and A0 coincide, then a = a0 and σ = σ0.

Corollary 1. Let (a, k) and (a0, 0) be two admissible pairs with k homogeneous. If the corresponding
albedo kernels of A and A0 coincide, then a = a0 and k = 0.

Proof. Apply the theorem to get σ(x, v′) = τ(x, v′)
∫

V
k(v′, v)dv = 0 a.e. v′ ∈ V . Now use the fact

that k is non-negative.

In order to use the singular structure of the kernel of A, we test it against some functions φε

defined as follows. For φ ∈ C∞
0 (R), φ(0) = 1,

∫

φ(s)ds = 1, with suppφ ⊂ (−1, 1) and small ε > 0,

φε(x, v, v′) :=
1

ε
φ

(

x · m(v′)

εv · m(v′)

)

,

where m(v′) is the unit vector orthogonal to v′, for some chosen orientation (see figure 1).
Let us denote the algebraic variety of the linearly dependent velocities by D. As in [10], we

work with pairings of velocities outside D. The key calculation is given in the lemma below. Since
no homogeneity or smallness of scattering is needed and we formulate the result and give the proof
in full generality.

Lemma 5. For almost every (x, v′, v) ∈ Ω × (V 2 − D),

lim
ε→0

∫

∂Ω
α2(x + τ+(x, v)v, v, x′, v′)φε(x

′ − x, v, v′)dµ(x′) = (15)

E(τ+(x, v), x + τ+(x, v)v, v, v′)k(x, v′, v).

and

lim
ε→0

∫

∂Ω
α3(x + τ+(x, v)v, v, x′, v′)φε(x

′ − x, v, v′)dµ(x′) = (16)

α3(x + τ+(x, v)v, v, x − τ−(x, v)v′, v′)(v · m).

Proof. For ε small enough, both integrations are on the part of the boundary for which v′ is an
incoming direction. Indeed, for x− = x − τ−(x, v′)v′, we have

suppφε(· − x−, v, v′) ⊂ {x′ ∈ ∂Ω : |(x′ − x−) · m| < ε|v|},

5



and (x−, v′) ∈ Γ−. Using the fact that τ−(x + τ+(x, v)v, v) = τ(x, v) and the formula for α2, the
first integral becomes

∫

∂Ω

∫ τ(x,v)

0
E(s, x + τ+(x, v)v, v, v′)k(x + τ+(s, v)v − sv, v′, v)×

δ[x+(τ+(x,v)−s)v−τ−(x+(τ+(x,v)−s)v,v′)v′](x
′)

1

ε
φ

(

(x′ − x) · m

εv · m

)

dµ(x′) =

∫ τ(x,v)

0
E(s, x + τ+(x, v)v, v, v′)k(x + (τ+(x, v) − s)v, v′, v)

1

ε
φ

(

−s + τ+(x, v)

ε

)

ds.

For the last equality we used the orthogonality of m(v′) on v′ and

〈x + (τ+(x, v) − s)v − τ−(x + (τ+(x, v) − s)v, v′)v′ − x , m(v′)〉 = (τ+(x, v) − s)(v · m).

Since the map s → E(s, x+τ+(x, v)v, v, v′)k(x+(τ+(x, v)−s)v, v′, v) is integrable in a neighborhood
of zero, the last term converges to E(τ+(x, v), x + τ+(x, v)v, v, v′)k(x, v′, v) as ε → 0.

v

v′

x
x − τ−(x, v′)v′ = x−

m(v′)

ζ(s)

s

Figure 1: ζ(s) = (x · m + s)m −
√

R2 − (x · m + s)2v′/|v′|

In order to compute the second limit, we parameterize the boundary such that the tangent vector
at x+ = x + τ+(x, v) has unit length. In the case of a disc of radius R, such a parameterization is
ζ(s) = (x · m + s)m −

√

R2 − (x · m + s)2v′/|v′| with s = (x′ − x) · m = 〈x′ − τ−(x, v′)v′, m〉. We
have

∫

∂Ω
α3(x + τ+(x, v)v, v, x′, v′)

1

εv · m
φ

(

(x′ − x) · m

εv · m

)

v · mdµ(x′) = (17)

∫ ε0v·m

−ε0v·m
α3(x + τ+(x, v)v, v, ζ(s), v′)

1

εv · m
φ
( s

εv · m

)

(v · m)||ζ ′(s)||ds. (18)

From lemma 4 we know that α3 is integrable in all the arguments. Applying Fubini’s theorem we
get that the map s → α3(x + τ+(x, v)v, v, ζ(s), v′)(v · m)||ζ ′(s)|| is integrable in a neighborhood of
zero. Since ||ζ ′(0)|| = 1, the result follows from the approximation of the identity.

Proof of Theorem 1. The fact a = a0 is the result of Choulli and Stefanov, still valid in two dimen-
sional domains. Thus we do not have to distinguish E in (10) for the two cases. Moreover, when
T is the maximum time required to reach the boundary, the lower bound

e−T ||a||∞ ≤ |E(0, x, v, v′)| (19)
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holds point-wise for (x, v) ∈ Γ+ and v′ ∈ V .
The preceding lemma ensures that for almost every (x, v, v′) ∈ Ω × (V 2 − D),

E(τ+(x, v), x + τ+(x, v)v, v, v′)(k − k0)(v
′, v) =

−(α3 − α0
3)(x + τ+(x, v)v, v, x − τ−(x, v′)v′, v′)(v · m).

If x+ = x + τ+(x, v), then for every (x+, v) ∈ Γ+ we have

E(0, x+, v, v′)(k − k0)(v
′, v) = −(α3 − α0

3)(x
+, v, x+ − τ−(x+, v′)v′, v′)(v · m).

For any y ∈ Ω multiply both sides by τ(y, v′), take absolute values on both sides and use the lower
bound (19) and the upper bound |τ(y, v′)(v · m)| ≤ Tvmax to get

e−T ||a||∞ |τ(y, v′)(k − k0)(v
′, v)| ≤ |(α3 − α0

3)(x
+, v, x+ − τ−(x+, v′)v′, v′)|Tvmax.

Notice that the left hand side is independent of x+. Integrate the inequality in (x+, v) ∈ Γ+ and
use the fact that x+ spans a boundary arc of length no less than L, to get

Le−T ||a||∞τ(y, v′)

∫

V

|k − k0|(v
′, v)dv ≤ Tvmax

∫

Γ+

|(α3 − α0
3)(x

+, v, x+ − τ−(x+, v′)v′, v′)|dµdv

≤ Tvmax sup
(x′,v′)∈Γ−

∫

Γ+

|(α3 − α0
3)(x

+, v, x′, v′)|dµdv.

Now take the supremum over (y, v′) ∈ Ω × V . We end up with

Le−T ||a||∞ |τσ − τσ0|∞ ≤ sup
(x′,v′)∈Γ−

||(α3 − α0
3)(·, ·, x

′, v′)||L1(Γ+)Tvmax. (20)

The right hand side is the operator norm of R[(I − K)−1K2 − (I − K0)
−1K2

0 ]J and the estimate
(9) gives an upper bound. After dividing by Tvmax we conclude with

|τσ − τσ0|∞

(

Le−T ||a||∞

Tvmax
−

2|τσ0|
2
∞ + 3|τσ0|∞ + |τσ|∞ + |τσ0|∞|τσ|∞

(1 − |τσ0|∞)(1 − |τσ|∞)

)

≤ 0. (21)

The smallness assumption (14) gives the reverse inequality. Therefore τσ must equal τσ0 almost
everywhere.

Notice that this method still works in the case of slow particles, when velocities can go to zero
and T gets large. The factor L/(Tvmax) stays bounded away from zero but not exp(−T ||a||∞).
However, we can replace the bound (19) by

exp

(

− sup
(x+,v)∈Γ+

∫ ∞

0
a(x+ − sv, |v|)ds

)

< |E(0, x+, v, v′)|

and ask that the integral be finite. This is always the case in practice since a is compactly supported.
Unlike the sub-critical assumption, the smallness assumption is due to the technicalities of the

method and not to the physical phenomenon. To compare it with the sub-critical assumption we
consider the example of the one velocity model in the unit disc. We have vmax = 1, T = 2, L = π
and the right hand side of (14) becomes ε0 = πe−2||a||∞/2. As long as a is such that ε0 < 3, a
simple calculation reduces the smallness assumption to

||τσ||∞ <
1

3 − ε0

(

−2 − ε0 +
√

(2 + ε0)2 + ε0(3 − ε0)
)

.
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For the applications we had in mind we can consider ||a||∞ = 1 and then the method guarantees
uniqueness only for those scattering kernels k for which ||τσ||∞ < 0.2762.

The question remains open whether sub-criticality suffices to get uniqueness. There are no
counterexamples in this case. As we shall see in the next section, for isotropic scattering, just
sub-criticality suffices.

4 Isotropic Scattering

This section deals with a special case of (1). All the velocities have unit speed and the scattering ker-
nel depends only on position, k = k(x). In this case the inverse problem becomes over-determined
and two formulae are provided for reconstruction. For convenience we rewrite the transport equa-
tion (1) as

θ · ∇xu(x, θ) + a(x)u(x, θ) = b(x)

∫

S1

u(x, θ′)dθ′, x ∈ Ω ⊂ R
2, θ ∈ S1. (22)

The admissibility condition reduce to 0 ≤ a, b ∈ L∞(Ω) and the sub-criticality condition reduce to
diam(Ω)||σ||∞ < 1. Throughout this section a is known.

The first reconstruction method is based on the Novikov’s inversion formula for the attenuated
x-ray transform. For a fixed θ ∈ S1 and x ∈ ∂Ω recall that τ±(x, θ) denotes the travel time from
x in the direction ±θ, until the boundary is met. The divergence beam of a is a map on Ω × S1

given by

Da(x, θ) =

∫ τ+(x,θ)

0
a(x + sθ)ds. (23)

Also let f(x) denote the right hand side of (22) and treat it as a source term. Evaluate (22) at
x + tθ and multiply both sides by exp (−Da(x + tθ, θ)) to get

d

dt
(exp(−Da(x + tθ, θ))u(x + tθ, θ)) = exp(−Da(x + tθ, θ))f(x + tθ). (24)

Integrating in t from 0 to τ+(x, θ) and using the compact support of a and b, we get

exp(−Da(x+τ+(x, θ)θ, θ))u(x+τ+(x, θ)θ, θ)−u(x, θ) =

∫ ∞

−∞
exp(−Da(x+tθ, θ))f(x+tθ)dt. (25)

The left hand side in (25) is known from boundary measurements. Since it is a function on the
tangent bundle to the unit circle, we denote

g(x · θ⊥, θ) = exp(−Da(x + τ+(x, θ)θ, θ))u(x + τ+(x, θ)θ, θ) − u(x, θ).

The right hand side of (25) is the attenuated x-ray transform of f(x). Novikov’s inversion formula
[18] reconstructs f from g. The form below is due to Natterer [17].

Lemma 6. Assume that f ∈ L∞
c (R2) with support in Ω̄ then

f(x) = −
1

4π
Re div

∫

S1

θe−Da(x,θ)ehHeh̄g(x · θ⊥, θ)dθ, (26)

where h(s, θ) = (1/2)(I + iH)Pa(sθ⊥, θ⊥) with Pa(x, θ) is the X-ray transform of a, and H is the
Hilbert transform Hg(s) = 1

π

∫

R
g(t)/(s − t)dt.
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Next we deduce the Peierls’ integral equation [1]. For brevity, let us denote by u0 the total flux
through a point; u0(x) =

∫

S1 u(x, θ)dθ. Consider again (22) evaluated at x − tθ and multiply by

the integrand factor exp(−
∫ t

0 a(x − sθ)ds) to get an alternate form of (24)

d

dt

{

exp

(

−

∫ t

0
a(x − sθ)ds

)

u(x − tθ, θ)

}

= exp

(

−

∫ t

0
a(x − sθ)ds

)

f(x − tθ).

Integrate first in t from 0 to τ−(x, θ) and then integrate in θ over S1 to get

u0(x) =

∫

S1

exp

(

−

∫ τ−(x,θ)

0
a(x − sθ)ds

)

u(x − τ−(x, θ)θ, θ)+

∫

S1

∫ ∞

0
f(x − tθ) exp

(

−

∫ t

0
a(x − sθ)ds

)

dtdθ.

After a change to polar coordinates t = |x − y| and θ = (x − y)/|x − y| we have that the second
term is equal to

∫

R2

f(y)

|x − y|
exp

(

−|x − y|

∫ 1

0
a(sx + (1 − s)y)ds

)

dy.

We get the formula

u0(x) =

∫

S1

exp

(

−

∫ τ−(x,θ)

0
a(x − sθ)ds

)

u(x − τ−(x, θ)θ, θ)dθ+ (27)

∫

R2

f(y)

|x − y|
exp

(

−|x − y|

∫ 1

0
a(sx + (1 − s)y)ds

)

dy,

known as the Peierls’ integral equation.
Notice that u(x−τ−(x, θ)θ, θ) is the incoming flux we apply to the boundary, hence it is known.

With f given by (26), the second integral also involves known quantities. We summarize with the
following.

Proposition 2. Assume the admissible and sub-critical conditions. The albedo operator determines
a ∈ L∞(Ω). One extra measurement, with a continuous incoming flux, determines f ∈ L∞(Ω) via
(26) and then b by the formula

b(x) =
f(x)

u0(x)
, (28)

with u0 given in (27).

Next we take an alternative approach to finding a formula for an isotropic k. This time the main
ingredient is the Cauchy integral formula from the theory of A-analytic functions as developed by
Bukhgeim [11]. We use the complex z to identify a point in Ω. The absorption a, determined by
the albedo operator, is assumed in C2(Ω̄).

The theory of A-analytic functions is an extension of analyticity to functions on the complex
plane with values in Banach spaces. We denote by l2 the space of square sum-able sequences and
by l2,1 the Sobolev space of sequences u = (u0, u1, u2, ...) such that

∑∞
n=0(1 + n2)|un|

2 < ∞. Let
A : l2 → l2 be a bounded operator.

Definition 1. A sequence valued function v(z) ∈ C1(Ω; l2) is called A-analytic in Ω if v satisfies

∂̄v + A∂v = 0. (29)
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The following analog of the Cauchy integral formula holds.

Theorem 2. Assume u(z) ∈ C(Ω̄; l2,1) ∩ C1(Ω; l2) is A-analytic. Then, for all z ∈ Ω,

u(z) =
1

2πi

∫

∂Ω
K(ζ − z)(dζ + Adζ̄)u(ζ), (30)

where K(z) = (zI + z̄A)−1.

Outside the unit disk the operator valued function K(z) is bounded from l2 to l2. Moreover K
extends continuously to the unit circle {z : |z| = 1} as an unbounded operator from l2,1 to l2. For
us it plays the role of 1/z, see [11] for further details. In our case A is the double shift to the left,
denoted by L2. We briefly describe the reduction of the transport equation (1) to a Beltrami type
equation for operator valued coefficients.

Let θ = (cos ϕ, sinϕ), ∂̄ = (∂x + i∂y)/2 and ∂ = (∂x − i∂y)/2. The advection operator θ · ∇
becomes e−iϕ∂̄ + eiϕ∂. Expand u(z, ϕ) =

∑∞
−∞ un(z)e−inϕ and let u denote the sequence valued

function u(z) = (u0(z), u1(z), u2(z), ...). Notice the consistency of u0 defined previously. Since u is
real valued we have un = ū−n. Plug into (1) the new differential operator and identify coefficients
to get the infinite dimensional system

∂̄(un)(z) + ∂un+2(z) + a(z)un+1(0) = 0, n = 0, 1, 2, ... (31)

which together with the n = −1 case yields

2Re(∂u1(z)) + a(z)u0(z) = b(z)u0(z). (32)

Let L denote the left translation operator L(u0, u1, u2, ...) = (u1, u2, ...) and R denote the adjoint,
right translation R(u0, u1, u2, ...) = (0, u0, u1, u2, ...). Powers of these operators are understood as
compositions. The system (31) becomes the Beltrami type equation for u,

∂̄u + L2∂u + a(z)Lu = 0. (33)

The equation above has no b involved. Moreover, since L2 and a(z)L commute we are able to
reduce (33) to an A-analytic equation for A = L2. This type of construction was done in [7] in
connection with the attenuated x-ray transform.

Let us consider the (formal) Fourier expansion in the angle variable of the divergent beam (23),
Da(z, θ) =

∑∞
−∞ bn(z)e−inϕ. The following lemma is a direct consequence of the regularity of a

and the smoothness of τ+.

Lemma 7. If a ∈ C2(Ω̄) then Da ∈ C(Ω̄ × S1). Consequently the series
∑

n∈Z
(1 + n2)2|bn(z)|2,

∑

n∈Z
(1 + n2)∂̄|bn(z)|2 and

∑

n∈Z
(1 + n2)∂|bn(z)|2 converge uniformly in Ω̄.

The divergence beam Da solves θ · ∇xDa(z, θ) = −a(z) or equivalently

e−iϕ∂̄Da(z, θ) + eiϕ∂Da(z, θ) = −a(z).

Using the power series expansion and the convergence properties of Lemma 7, we have that
∂̄b−2k−3(z) + ∂b−2k−1(z) = 0, for k = 0, 1, 2, ... and ∂b−1(z) = −a(z). Using the sequence of
odd indices of Da we define G(z) an operator valued function by

G(z) =

∞
∑

k=0

b−2k−1(z)L2k+1. (34)
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Using the fact that L has the operator norm 1 and applying Lemma 7 we get that G(z) ∈
C1(Ω; l2,1)∩C(Ω̄; l2,1). Moreover, a calculation shows that ∂̄G +L2∂G + a(z)L = 0. The operator
e−G is well defined by the power series expansion of G as an operator in C1(Ω; l2,1) ∩ C(Ω̄; l2,1).
If v = e−Gu and u is a solution of the Beltrami equation (33) then v is L2 -analytic. Using the
integral formula of Theorem 30 we obtain

u(z) =
1

2πi

∫

∂Ω
K(ζ − z)eG(ζ)−G(z)(dζ − L2dζ̄)u(ζ), (35)

The formula above requires knowledge of u on the boundary. This is given by the Fourier expansion
(in the scattering angle) of boundary measurements. The incoming flux should be at least contin-
uous in the space variable and C2 regular in the angle variable to produce A-analytic extension by
(35). We summarize with the following.

Proposition 3. Assume a ∈ C2(Ω̄) is known. The scattering coefficient b can be reconstructed
from one measurement by the formula

b(z) =
2Re(∂u1(z)) + a(z)u0(z)

u0(z)
, (36)

where u0 and u1 are the first two components of u given by (35).

The second integral in Peierls’ integral formula (27) is in fact Cα(Ω̄) regular, for some α ∈ (0, 1).
This is a classical result in the theory of weakly-singular integral operators applied to L∞(Ω)
functions [15]. The function defined by the first integral in (27) depends on the boundary flux
from the experiment as well as on the regularity of the boundary. For convex smooth boundary we
get a smooth τ±(x, θ). If we apply a continuous incoming flux then u0(x) is also continuous. For
b(x) ≥ 0 and a positive incoming flux we get a positive u0(x). Due to the continuity remark above,
we conclude that (28) holds point-wise.

Formulae (28) and (36) are different in appearance but they are closely related. The numer-
ator 2Re(∂u1(z)) + a(z)u0 is nothing but Bukhgeim’s inversion formula for the attenuated x-ray
transform of the function f = bu0 [7]. In other words the two formulae differ only by the way the
inversion of the right hand side in (22) is computed.

Formula (26) has been numerically implemented using a filter back projection algorithm [8],
[17]. Consequently, the isotropic scattering given by (28) can be numerically reconstructed.

The A-analytic method cannot be applied to anisotropic scattering kernel, even in the case
of homogeneous scattering, i.e. k is independent of x. The difficulty arises in constructing an
integrating factor for the Beltrami type equation (33). The operator a(z)L changes into a more
general Fourier multiplier BL where Bu = (b0u0, b1u1, ...). The main impediment is the fact that
L2 and BL do not commute.
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