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Abstract

We prove uniqueness for minimizers of the weighted least gradient problem

inf

{∫
Ω
a|Du| : u ∈ BV (Ω), u|∂Ω = f

}
.

The weight function a is assumed to be continuous and it is allowed to vanish in
certain subsets of Ω, and existence is assumed a priori. Our approach is motivated by
the hybrid inverse problem of imaging electric conductivity from interior knowledge
(obtainable by MRI) of the magnitude of one current density vector field.

1 Introduction

Consider the following weighted least gradient problem

inf

{∫
Ω

a|Du| : u ∈ BV (Ω), u|∂Ω = f

}
, (1)

where Ω is a bounded open set in Rn (n ≥ 2) with connected Lipschitz boundary, a is a
bounded non-negative function, and f ∈ C(∂Ω). Our motivation comes from a hybrid inverse
problem in medical imaging. The problem is to determine the conductivity of a body from
knowledge of the magnitude a = |J | (in Ω) of one current density vector field J generated
by imposing the voltage f on ∂Ω. The interior data |J | can be obtained non-invasively via
a magnetic resonance technique pioneered in [7]. In [11] this problem was reduced to the
weighted least gradient problem (1) (see [12, 9, 8, 14] for further results on partial data,
inclusions, reconstruction algorithms, and stability, and also [13] for a review).

Existence and uniqueness of the minimizers of (1) was first studied for the case a ≡ 1 in
[15] (see also [17]). In particular the authors proved that (1) has a unique minimizer if f is
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continuous and the mean curvature of ∂Ω is positive on a dense subset of ∂Ω, see conditions
(3.1) and (3.2) in [15]. Recently, in a companion paper [6], authors showed among other
results that if a ∈ C1,1(Ω) is positive and bounded away from zero, and if f is continuous
on ∂Ω, then the weighted least gradient problem (1) has at most one minimizer in BV (Ω).
They also showed that the condition a ∈ C1,1(Ω) is sharp in the sense that uniqueness can
fail for a ∈ C1,α(Ω) with any α < 1.

In this paper the weight a is only assumed to be continuous and it is allowed to vanish in
certain subsets of Ω. On the hand here we require existence of a minimizer u of (1) that
has appropriate properties (see Definition 1). This assumption is naturally satisfied in the
weighted least gradient problems arising in the conductivity problems (explained below) that
motivated us. Our uniqueness proof is quite different from that in [6], and is based on a
calibration argument.

To motivate the existence assumption, assume Ω ⊂ Rn is a conductive body with (spatially
varying) conductivity σ. If the voltage f is imposed on ∂Ω, then the corresponding voltage
potential u is the solution of the following Dirichlet problem{

∇ · σ∇u = 0, in Ω,
u = f on ∂Ω.

(2)

Let J = −σ∇u be the corresponding current density. In the inverse problem σ is not known.
It is shown in [11] that if u satisfies (2) then it is a minimizer of the weighted least gradient
problem (1) which only involves the measured data a = |J | and the prescribed voltage f on
∂Ω.

More generally, as in [9], we also consider the case when Ω contains perfectly conducting
and insulating inclusions O∞ and O0. In this case the corresponding voltage potential u is
the unique solution of the following equation

∇ · σ∇u = 0, in Ω \O∞ ∪O0,
∇u = 0, in O∞,
u|+ = u|−, on ∂(O∞ ∪O0),∫
∂Oj∞

σ ∂u
∂ν
|+ds = 0, j = 1, 2, ...,

∂u
∂ν
|+ = 0, on ∂O0,

u|∂Ω = f,

(3)

where O0 ∩ O∞ = ∅ and O∞ =
⋃
j=1O

j
∞ is the partition of O∞ into open connected com-

ponents (see the appendix in [9] for more details). Moreover, if σ ∈ Cα(Ω \ O0 ∪O∞) and
the boundaries of O0, O∞, and Ω are regular enough, then it follows from standard elliptic
regularity results that u ∈ C1(Ω̄ \ (O0 ∪O∞)). Under certain assumptions, it is shown in [9]
that the solution of the equation (3) is a minimizer of (1), where a is the magnitude of the
corresponding current density vector field.

Uniqueness of minimizers in W 1,1(Ω) ∩ C(Ω̄) was proved in [11], and [9] in the presence of
inclusions. The main objective of this paper is to prove uniqueness of minimizers of the
above problem in BV (Ω) where we have compactness (see Proposition 2.1). This is crucial
when one studies the stability of the problem with respect to errors in measurements of |J |
and f . Once u is determined, the shape and locations of perfectly conducting and insulating
inclusions and the conductivity outside of the inclusions can be easily recovered.
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We now state our assumptions and results more precisely. Throughout the paper we shall
assume that Ω ⊂ Rn is a bounded open set with connected Lipschitz boundary and a ∈
L∞(Ω) is non-negative. By Hd we denote the d-dimensional Lebesgue/Hausdorff measure.
While a is allowed to vanish, its zero set

S := {x ∈ Ω̄ : a(x) = 0}

is assumed to satisfy the following structural hypothesis:

S̄ =: Ō0 ∪ Γ, (4)

where Γ is a set of measure zero and the (possibly empty) open set O0 ⊂⊂ Ω, modelling
the insulating regions, is a pairwise disjoint union of finitely many C1- diffeomorphic images
of the unit ball. In addition, in two dimensions O0 is assumed to have at most one such
component.

Let
X := {b ∈ L∞(Ω;Rn) : ∇ · b ∈ Ln(Ω)}.

For any u ∈ BVloc(Ω \ S̄) the total variation of u (with respect to a) in Ω is defined as∫
Ω

|Du|a = sup
b∈Ba

∫
Ω

u∇ · b dx, (5)

where
Ba = {b ∈ X : supp(b) ⊂⊂ Ω, |b(x)| ≤ a(x) Hn-a.e. in Ω},

(see [2] and the references cited therein). By the structural hypothesis (4), ∂S has measure
zero and therefore

∫
Ω
|Du|a is independent of the value of u in S̄. Hence BVloc(Ω \ S̄) is the

natural space of functions in which (5) makes sense.

Now consider the weighted least gradient problem

min{
∫

Ω

|Dv|a : v ∈ BVloc(Ω \ S̄), v|∂Ω = f}, (6)

where the boundary condition is in the sense of the trace of functions in BV (Ω). In general
the minimization problem (6) need not have a unique solution (see [6]). The following
admissibility assumption plays a crucial role in our uniqueness proof. Essentially it assumes
continuity of a outside of the inclusions and existence of a minimizer of (6).

Definition 1 (Admissibility) Let Ω ⊂ Rn be a open bounded region with connected Lip-
schitz boundary. A pair of functions (f, a) is called admissible if the following conditions
hold.

(i) The zero set S of the weight a satisfies the structural hypothesis (4) for some O0 and Γ.

(ii) There exists a solution u ∈ C1(Ω̄ \ O0) of the weighted least gradient problem (6) such
that

{x ∈ Ω : |∇u(x)| = 0} \ Ō0 = O∞,

and int(u(O∞)) = ∅.
(iii) a ∈ C(Ω̄ \ (O0 ∪O∞)).
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The (possibly empty) set O∞ models the perfectly conducting inclusions. Note that the
above definition of admissibility is significantly simplified if O0 = O∞ = ∅. Even in this
simpler case a large class of admissible pairs (f, a) is provided by the conductivity problem
(2).

The following is our uniqueness result.

Theorem 1.1 (Uniqueness) Let Ω ⊂ Rn be a bounded Lipschitz domain with connected
boundary and (f, a) be admissible in the sense of Definition 1. Then the weighted least
gradient problem (6) has a unique solution in BVloc(Ω \ S̄).

It may be helpful to compare the above theorem to the uniqueness result in [6]. The unique-
ness proof in [6] does not require the pair (a, f) to be admissible, but instead it assume
0 < c < a ∈ C1,1(Ω).

To illustrate a simple case with one perfectly conducting inclusion, consider the following
example from [16].

Example 1.2 Let D = {x ∈ R2 : x2 + y2 < 1} be the unit disk, f(x, y) = x2 − y2, and
O∞ = (− 1√

2
, 1√

2
)× (− 1√

2
, 1√

2
). It is shown in [16] (see also [9] for a different proof) that

u =


2x2 − 1, if |x| ≥ 1√

2
, |y| ≤ 1√

2
,

0, if (x, y) ∈ O∞,
1− 2y2, if |x| ≤ 1√

2
, |y| ≥ 1√

2
.

is a minimizer of the least gradient problem

min{
∫
D

|∇u|dx, u ∈ BV (D), and u|∂D = f}. (7)

It is easy to observe that (1, x2 − y2) is an admissible pair with O∞ defined as above and
S = O0 = ∅. Hence Theorem 1.1 provides a new proof that u is the only minimizer in
BV (Ω).

2 Preliminaries

In this section we recall and present some preliminary results that will be used in the following
sections. First we recall a useful representation formula from [2]. For u ∈ BV (Ω)∫

A

|Du|a =

∫
A

h(x, vu)|Du|, (8)

where
h(x, vu) = (|Du| − ess sup

b∈Ba

)b · vu(x) for |Du| − a.e. x ∈ Ω (9)
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and vu denotes the Radon-Nikodym derivative vu(x) = dDu
d |Du| . The right-hand side of (8)

makes sense, since vu is |Du|-measurable, and hence h(x, vu(x)) is as well. In particular, if
u ∈ BV (Ω), and the coefficient a is continuous in the Borel measurable subset A ⊂ Ω, then∫

A

|Du|a =

∫
A

a|Du|, (10)

as shown in [2]. The following Lemma provides a simple extension of this formula for the
total variation of the voltage potential u that corresponds to an admissible pair (f, a).

Lemma 2.1 Let Ω ⊂ Rn be a bounded open region with Lipschitz boundary, (f, a) be admis-
sible, and u be a minimizer of (6) as in Definition 1. Then∫

Ω

|Du|a =

∫
Ω

a|∇u|dx.

Proof: Since (f, a) is admissible, a ∈ C0(Ω \ (O0 ∪ O∞)). Hence by [2, Proposition 7.1] we
have that

h(x, vu) =

{
a(x) in Ω \ (O0 ∪O∞)
0 in O0.

(11)

Thus it follows from (8) that∫
Ω

|Du|a =

∫
Ω\(O0∪O∞)

a|∇u| =
∫

Ω

a|∇u|dx.

�
It is a straightforward consequence of the definition (5) that u 7→

∫
Ω
|Du|a is L

n
n−1 (Ω)−lower

semi-continuous. As proven in [3, Theorem 1.2], if ν denotes the outer unit normal vector
to ∂Ω, then for every b ∈ X there exists a unique function [b · ν] ∈ L∞Hn−1(∂Ω) such that∫

∂Ω

[b · ν]udHn−1 =

∫
Ω

u∇ · bdx+

∫
Ω

b · ∇udx, ∀u ∈ C1(Ω̄). (12)

Moreover, for u ∈ BV (Ω) and b ∈ X, the linear functional u 7→ (b ·Du) gives rise to a Radon
measure on Ω, and∫

∂Ω

[b · ν]udHn−1 =

∫
Ω

u∇ · bdx+

∫
Ω

(b ·Du), ∀u ∈ BV (Ω), (13)

see [1, 3] for a proof. We shall need the following lemma in the proof of our uniqueness
result.

Lemma 2.2 Let S be as defined in (4) and b ∈ X. If u ∈ L∞(Ω) and
∫

Ω
|Du|a <∞, then∫

∂Ω

[b · vΩ]udHn−1 =

∫
Ω

u∇ · bdx+

∫
Ω

(b ·Du), (14)

for some unique function [b · ν] in L∞Hn−1(∂Ω).
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Proof: By the structural hypothesis (4), S has finite perimeter in Ω. Therefore, it follows
from

∫
Ω
|Du|a <∞ that

BVloc(Ω \ S̄) ∩ L∞(Ω) ⊂ BV (Ω).

Now (14) follows from (13). �

The following compactness result shows that BVloc(Ω \ S̄) is the natural space of function
for the minimization problem (6).

Proposition 2.1 (Compactness) Let a ∈ L∞(Ω) and assume that the set

S = {x ∈ Ω : a(x) = 0}

satisfies the structural hypothesis (4). Then every sequence {un}∞n=1 in L1(Ω \ S̄) with

c := sup
n

∫
Ω

|Dun|a <∞

has a convergent subsequence in L1
loc(Ω \ S̄). Moreover if u is a limit point, then u ∈

BVloc(Ω \ S̄).

Proof: Consider the nested exhaustion of Ω \ S̄ by the open subsets

Ωk := {x ∈ Ω : a(x) > 1/k}, k ∈ N, (15)

i.e. Ωk ⊂ Ωk+1 and ∪∞k=1Ωk = Ω \ S̄. For each fixed k ∈ N∫
Ωk
|Dun| ≤ k

∫
Ωk
a|Du|dx =

∫
Ωk
|Du|a ≤ kc, for all n ∈ N.

The classical compactness embedding of BV (Ωk) in L1(Ωk) yields a subsequence {un1
i
}∞i=1

of {ui}∞i=1 such that un1
i
→ v1 in L1(Ω1). Similarly, there exists a subsequence {un2

i
}∞i=1 of

{un1
i
}∞i=1 such that un2

i
→ v2 in L1(Ω1/2), and v1 = v2 on Ω1. Repeating this argument we

obtain a family of subsequences (indexed in k) {unki }
∞
i=1 such that unki → vk in L1(Ωk), for

each k fixed. Since ∪∞k=1Ωk = Ω \ S̄ and vj = vk on Ωk for all j ≥ k, one can define a
function u on Ω \ S̄ by setting u := vk in each Ωk. Any compact K ⊂ Ω \ S̄ is contained
in Ωk for k large enough, hence {unki }

∞
i=1 converges to u in L1(K). Since

∫
Ω
|Du|a is lower

semi-continuous,
∫

Ω
|Du|a ≤ c. �

The next two results yield a calibration which will be used in the uniqueness proof.
Suppose a ∈ L2(Ω) and fix uf ∈ H1(Ω) with uf |∂Ω = f . Consider the weighted least gradient
problem

(P ) min
v∈H1

0 (Ω)

∫
Ω

a|∇v +∇uf |dx.

In [8] it is shown that the dual problem to (P ) is

(D) max{< ∇uf , b >: b ∈ L2(Ω;Rn), |b(x)| ≤ a(x) a.e. and ∇ · b ≡ 0}.

Let v(P ) and v(D) be the optimal values of the primal and dual problems. It is shown in
[8] that v(P ) = v(D) and the dual problem (D) has an optimal solution. The following
proposition is an immediate consequence of Proposition 2.1 and Corollary 2.3 in [8].
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Proposition 2.2 Let a ∈ L2(Ω) be a non-negative function and vf ∈ H1(Ω) with vf |∂Ω = f .
Then the optimal values of the primal problem (P ) and dual problem (D) are equal, and the
dual problem (D) has an optimal solution J with ∇·J ≡ 0 in Ω. Moreover, if v is an optimal
solution of the primal problem (P ), then

J(x) = a(x)
∇(v(x) + vf (x))

|∇(v(x) + vf (x))|
if |∇(v(x) + vf (x))| 6= 0,

for all x ∈ Ω.

The following result is an immediate consequence of Proposition 2.2.

Corollary 2.3 Let Ω ⊂ Rn be a bounded Lipschitz domain and (f, a) be an admissible pair.
Then there exists an optimal solution J ∈ L2(Ω;Rn) of the dual problem (D) such that
∇ · J ≡ 0 in Ω, |J | ≤ a a.e. in Ω, and with u, O0, and O∞ as described in Definition 1 we
have

J(x) =

{
a(x) ∇u|∇u| if |∇u| 6= 0

0 if a(x) = 0.
(16)

Moreover J is continuous in Ω̄ \ (O0 ∪O∞), and |J(x)| > 0 whenever a(x) > 0.

3 Uniqueness of minimizers

In this section we prove our main result, Theorem 1.1. Let u be the minimizer of the weighted
least gradient problem (6) assumed in the Definition 1, and suppose u1 ∈ BVloc(Ω \ S̄) is
another minimizer. We will show that u = u1 a.e. in Ω \ S̄. First notice that u1 is bounded
above and below almost everywhere. Indeed if we define

ū1(x) =


u(x) if mf ≤ u1(x) ≤Mf

Mf if u1(x) > Mf ,
mf if u1(x) < mf ,

(17)

where Mf and mf are the maximum and minimum values of f on ∂Ω, then it is easy to see
that ū1 ∈ BVloc(Ω \ S̄) and ∫

Ω

|Dū1|a ≤
∫

Ω

|Du|a. (18)

Moreover the inequality is strict if {x ∈ Ω : u1(x) > Mf} or {x ∈ Ω : u1(x) < mf} has
positive measure. Therefore we may assume range(u1) ⊂ range(f).

Next we prove that
∇u
|∇u|

=
dDu1

d|Du1|

|Du1| − a.e. in Ω \O0 ∪O∞.
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Lemma 3.1 Let (f, a) be an admissible pair and u be the corresponding minimizer of (6).
If u1 is another minimizer, then

∇u
|∇u|

= vu1 |Du1| − a.e. in Ω \O0 ∪O∞.

Proof: Let x ∈ Ω and choose ε > 0 small enough such that B(x, 2ε) ⊂ Ω. Then it follows
from the definition of h(x, vu1) that∫

B(x,ε)

h(x, vu1)|Du1| ≥
∫
B(x,ε)

J · vu1 |Du1|,

where J is the solution of the dual problem (D) in Proposition 2.3. Therefore

h(x, vu1) ≥ J · vu1 , |Du1| − a.e. in Ω.

Thus ∫
Ω

|Du1|a =

∫
Ω

h(x, vu1)|Du1| ≥
∫

Ω

J · vu1|Du1|

=

∫
Ω

J ·Du1 =

∫
∂Ω

J · νfdHn−1

=

∫
Ω

∇u · Jdx =

∫
Ω

|J ||∇u|

=

∫
Ω

|Du|a =

∫
Ω

|Du1|a,

where the third and fifth equalities follow form Lemma 2.2 and Lemma 2.1, respectively.
Therefore

h(x, vu1) = J · vu1 , |Du1| − a.e. in Ω.

Since a is continuous in Ω \ (O0 ∪O∞), as in (11) we have

h(x, vu1) = a(x), |Du1| − a.e. in Ω \ (O0 ∪O∞).

On the other hand |vu1| = 1 and |J | ≤ a, |Du1| − a.e. in Ω, and |∇u| 6= 0 on Ω \ O0 ∪O∞.
Thus

∇u
|∇u|

=
J

|J |
= vu1 , |Du1| − a.e. in Ω \O0 ∪O∞.

�
For λ ∈ range(u1), let

Eλ = {x ∈ Ω \O0 : u1(x) ≥ t}.
Define

E ′λ := {x ∈ Rn : lim
r→0

H(B(r, x) ∩ Eλ)
H(B(r))

= 1}. (19)

By changing u1 in a set of measure zero, we may assume that Eλ = E ′λ. Indeed throughout
this paper we shall always assume that Eλ = E ′λ. We also define

Z = {x ∈ Ω̄ \O0 : u(x) ∈ u(O∞)}, (20)

where u is the minimizer of (6) in Definition 1.

8



Lemma 3.2 Assume that (f, a) is an admissible pair, u is the corresponding minimizer of
(6), and u1 ∈ BVloc(Ω \ S̄) is another minimizer. Let Σ be a connected component of Eλ,
then for almost every λ ∈ range(u1), either
(i) Σ ⊂ Z
or
(ii) Σ ∩ Z = ∅, Σ is a C1 hypersurface, and u is constant on Σ.

Let Λ be the set of all λ ∈ range(u1) such that every connected component Σ of Eλ with
Σ ∩ Z = ∅ is a C1 hypersurface. Then by the above lemma

H1(range(u1) \ Λ) = 0. (21)

Proof of Lemma 3.2: By co-area formula we have

0 =

∫
Ω\O0∪O∞

ϕ[
∇u
|∇u|

− vu1 ]|Du1| =
∫ ∞

0

∫
∂∗Eλ∩(Ω\O0∪O∞)

ϕ[
∇u
|∇u|

− vu1 ]dHn−1dλ (22)

for every smooth vector field ϕ, where ∂∗Eλ is the reduced boundary of Eλ. Therefore
∇u
|∇u| = vu1 , Hn−1 − a.e. in ∂∗Eλ ∩ (Ω \ O0 ∪O∞) for almost every λ ∈ range(u1). Since

|DχEλ| is the (n − 1)−dimensional Hausdorff measure restricted to ∂∗Eλ (see [4], Chapter
4), for almost every λ ∈ range(u1), the generalized normal ν(x) exists for |DχEλ| − a.e.
x ∈ ∂Eλ ∩ (Ω \ O0 ∪O∞) and coincides there with the continuous vector field ∇u

|∇u| . By

Theorem 4.8 in [4], for every x ∈ ∂Eλ ∩ Ω \ O0 ∪O∞, ∂Eλ can be represented as the graph
of a Lipschitz continuous function g. Thus the derivative of g coincides almost everywhere
with a continuous function and therefore g must be C1 and consequently we conclude that
each connected component of ∂Eλ ∩ (Ω \ O0 ∪O∞) is a C1 hyperspace for almost every
λ ∈ range(u1).

Now we show that u is constant on every C1 connected component Σ of ∂Eλ∩(Ω\O0 ∪O∞)).
Let γ : (−ε,+ε)→ Σ be an arbitrary C1 curve. Then

d

dt
u(γ(s)) = |∇u(γ(s))|ν(γ(s)).γ′(s) = 0,

because either |∇u(γ(s))| = 0 or ν(γ(s)).γ′(s) = 0 on Σ. Thus u is constant along γ and
consequently u is constant on Σ. The proof is now complete. �

We show next that every connected component of ∂Eλ intersects the boundary ∂Ω.

Proposition 3.1 Let (f, a) be an admissible pair and u1 be a minimizer of (6). Assume Σλ

is a C1 connected component of ∂Eλ = ∂{x ∈ Ω \O0 : u1(x) > λ}, and Σλ ∩ Z = ∅. Then

Σλ ∩ ∂Ω 6= ∅.

Proof: Assume Σλ ∩ ∂Ω = ∅. We consider two cases:

(I) Σλ is a manifold without boundary in Ω \O0,
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(II) Σλ ∩ ∂O0 6= ∅.

Case I: Assume that Σλ is a manifold without boundary in Ω. Then ∂Ω ∪ Σλ is a compact
manifold with two connected components. By the Alexander duality theorem for ∂Ω ∪ Σλ

(see, e.g., Theorem 27.10 in [5]) we have that Rn \ (∂Ω ∪ Σλ) is partitioned into three open
connected components: Rn = (Rn \ Ω) ∪ U1 ∪ U2. Since Σλ ⊂ Ω we have U1 ∪ U2 = Ω \ Σλ

and then ∂Ui ⊂ ∂Ω ∪ Σλ for i = 1, 2.

We claim that at least one of the ∂U1 or ∂U2 is in Σλ. Assume not, i.e. for i = 1, 2, ∂Ui∩∂Ω 6=
∅. Since ∂Ω is connected (by assumption) we have that U1∪U2∪∂Ω is connected which implies
that U1 ∪U2 ∪ (Rn \Ω) is also connected. Again by applying the Alexander duality theorem
for Σλ ⊂ Rn, we have that Rn\Σλ has exactly two open connected components, one of which
is unbounded: Rn \Σλ = U∞ ∪U0. Since U1 ∪U2 ∪ (Rn\Ω) is connected and unbounded, we
have that U1∪U2∪ (Rn\Ω) ⊂ U∞, which leaves U0 ⊂ Rn \ (U1∪U2∪ (Rn \Ω)) ⊂ Σλ. This is
impossible since U0 is open and Σλ is a hypersurface. Therefore either ∂U1 or ∂U2 or both
lie in Σλ.

Assume ∂U1 ⊂ Σt. We claim that u is constant in U1. Indeed, by Lemma 3.2, u = c on Σλ

for some c. Hence the new map ũ defined by

ũ :=

{
u, x ∈ Ω \ U1,
c, x ∈ U1,

is in BVloc(Ω\ S̄) and decreases the energy, which contradicts the minimality of u. Therefore
u = c in U1. This is a contradiction since we have assumed Σλ ∩ Z = ∅.

Case II: Suppose Σλ ∩ ∂O0 6= ∅. First assume n ≥ 3. Let

ε∗ := min{min
i 6=j

dist(Oi, Oj),min
i
dist(Oi, ∂Ω)},

where Oi, 1 ≤ i ≤ m, are the open connected components of the set O0. For any 0 < ε < ε∗ :
define

Oε
0 = O0 ∪ {x ∈ Ω : dis(x,O) < ε}.

Then Oε
0 is an open set with the same number of disjoint open connected components as O0.

Now let Σε
λ = Σλ \ Oε

0 which we know is C1 on Ω \ Oε
0. Since ∂Σε

λ ⊂ ∂Oε
0 and ∂Oε

0 \ ∂Σε
λ

is open, each connected component of ∂Σε
λ is the boundary of an open set in ∂Oε

0 with
connected boundary. Suppose M is a connected component of ∂Σε

λ. Then M ⊂ ∂Oε
i for

some 1 ≤ i ≤ m, Oε
i is C1-diffeomorphic image of the unit ball for ε small, and M is an

orientable manifold without boundary in ∂Oε
0. Therefore it follows from Alexander’s duality

theorem that
∂Oε

i \M = V1 ∪ V2,

where V1, V2 are disjoint open connected (with respect to the topology of ∂Oε
0) sets. Since

Σt
ε can be extended to a C1 hypersurface Σλ inside Oε

0 \ O0, we can extend Σε
λ inside Oε

i to
obtain a C1 hypersurface Σ such that

Σ ∩ (Ω \Oε
0) = Σε

λ ∩ (Ω \Oε
0)
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and ∂(Σ∩Oε
0) = M . Repeating this argument for other connected components of ∂Σε

λ leads
to a C1 orientable hypersurface Sε with no boundary, ∂Ω∩Sε = ∅, and Sε∩ (Ω \Oε

0) = ∂Σε
λ.

Now apply Alexander’s duality theorem to get the partition

Rn \ Sε = U ε ∪ U ε
∞,

where U ε and U ε
∞ are open subsets of Rn and U ε

∞ is unbounded. Notice that Σε
λ ⊂ ∂U ε ⊂

Σε
λ∪Oε

0 and consequently Σε
λ ⊂ ∂(U ε\Ōε

0) ⊂ ∂Oε
0∪Σε

t. If ε′ < ε, then Σε
λ ⊂ Σε′

λ and Oε′
0 ⊂ Oε

0.
Therefore

U ε \ Ōε
0 ⊂ U ε′ \ Ōε′

0 .

Now let
U = ∪0<ε<ε∗(U

ε \ Ōε
0).

Then U is open and ∂U ⊂ Σλ ∪ O0. We claim that u is constant in U . Indeed, by Lemma
3.2 u = c on Σλ for some c and the new map defined by

ũ :=

{
u, x ∈ Ω\U,
λ, x ∈ U, (23)

is in BVloc(Ω \ S). This contradicts the minimality of u. Thus u = c in U which is a
contradiction because we have assumed Σλ ∩O∞ = ∅.
Now assume n = 2. Since Σλ ∩ ∂Ω = ∅ and O0 has only one connected component, there
exists two distinct point a, b ∈ Σ̄λ ∩ ∂O0 such that

∂O0 \ {a, b} = V1 ∪ V2.

Now notice that Σλ ∪ V1 is a continuous closed curve in R2. By the Jordan Curve Theorem
there exists a bounded open set U1 such that ∂U1 = Σλ ∪ V1. Define U = U1 \ Ō0 6= ∅. Then
∂U ⊂ Σλ ∪ ∂O0 which is a contradiction in view of (23).

In both cases (I) and (II) the contradiction follows from the assumption that Σλ∩∂Ω = ∅. �

Since u ∈ C1(Ω̄ \ O0), u can be extended to a function in C1(Rn \ O0) ∩ BV (Rn). We will
denote the restriction of u to Ωc by f , again. Let u1 be the continuous extension of u1 to Rn

with ū1 = f on Ωc and define

Fλ = {x ∈ Rn \ Ō0 : ū1(x) ≥ λ}.

Remark 3.3 Let Λ ⊂ range(u1) be the set defined by Lemma 3.2 and λ ∈ Λ. By Lemma
3.2 every connected component of ∂F ′λ ∩ (Ω \ Z) is a C1 hypersurface, where F ′λ is defined
by (19). Therefore without loss of generality we may assume that Fλ ∩ (Ω \Z) is open, since
otherwise F ′λ ∩ (Ω \Z) can be replaced by int(F ′λ) ∩ (Ω \Z) which differs from F ′λ ∩ (Ω \Z),
and hence Fλ ∩ (Ω \ Z) on a set of measure zero.

The proof of the following lemma is very similar to that of Theorem 3.7 in [15]. We include
the proof for the convenience of the reader.
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Lemma 3.4 Let Ω be a bounded domain with connected Lipschitz boundary. If x ∈ ∂∗Fλ∩∂Ω
and

lim
r→0
−
∫
Br(x)∩Ω

|ū1(y)− f(x)|dy = 0,

then λ = f(x).

Proof: Assume f(x) < λ. Then

0 = lim
r→0

1

|Br(x) ∩ Ω|

(∫
Br(x)∩Ω∩{ū1<λ}

|ū1(y)− f(x)|dy +

∫
Br(x)∩Ω∩{ū1≥λ}

|ū1(y)− f(x)|dy
)

≥ lim sup
r→0

1

|Br(x) ∩ Ω|

∫
Br(x)∩Ω∩{ū1≥λ}

|ū1(y)− f(x)|dy

≥ (λ− f(x)) lim sup
r→0

|Br(x) ∩ Ω ∩ {ū1 ≥ λ}|
|Br(x) ∩ Ω|

.

Consequently

lim sup
r→0

|Br(x) ∩ Ω ∩ {u1 ≥ λ}|
|Br(x) ∩ Ω|

= 0.

On the other hand since f is the trace of ū1 ∈ BV (Rn \ Ω) on ∂Ω, with a similar argument
we conclude that

lim sup
r→0

|Br(x) ∩ (Rn \ Ω) ∩ {ū1 ≥ λ}|
|Br(x) ∩ (Rn \ Ω)|

= 0.

Therefore

lim
r→0

|Br(x) ∩ {ū1 ≥ λ}|
|Br|

= 0

and hence x 6∈ ∂∗Eλ which is a contradiction. Similarly f(x) > λ leads to a contradiction.
Thus f(x) = λ. �

Proposition 3.2 Let (f, a) be an admissible pair and u1 be a minimizer of (6). Then for
almost every λ ∈ Λ

u(∂Fλ ∩ (Ω \ Z)) = {λ},

where Λ and Z are defined by Lemma 3.2 and (20), respectively.

Proof: In view of Remark 3.3, we may assume that Fλ∩(Ω\Z) is open and every connected
component of ∂Fλ ∩ (Ω \Z) is a C1 hypersurface intersecting ∂Ω. Now let Σ be a connected
component of ∂Fλ ∩ (Ω \ Z). By Proposition 3.1, Σ̄ ∩ ∂Ω 6= ∅. Let x0 ∈ Σ̄ ∩ ∂Ω 6= ∅. Since
x0 6∈ Z, |∇u(x0)| > 0. Hence x ∈ ∂∗Fλ ∩ ∂Ω, and by Lemma 3.4 and Proposition 3.2 we
conclude that u(Σ) = {λ}. �

It is now straightforward to deduce uniqueness from the results established above. To make
the argument rigorous it helps to work with super level sets of the solutions as in [6] and
[15]. Note however that we do not rely on maximum principles for minimum surfaces that
are at the core of the proofs in [6] and [15], but rather on Lemma 3.2 and Proposition 3.1.
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Proof of Theorem 1.1: First we prove that u1 = u a.e. in Ω \ (Z ∪ Ō0). Suppose this is
not true, then without loss of generality we may assume that there exists α > 0 such that

Hn(N) > 0,

where
N := {x ∈ Ω \ (Z ∪ Ō0) : u1(x) ≥ u(x) + α},

because otherwise (f, a) can be replaced by the admissible pair (−f, a). Let

λ∗ = sup{λ : Hn({x ∈ Ω \ (Z ∪ Ō0) : u(x) ≥ λ} ∩N) ≥ H
n(N)

2
},

Since u ∈ L1(Ω \ Ō0), λ∗ <∞. Define

E1 = {x ∈ Ω \ (Z ∪ Ō0) : u1(x) ≥ λ∗ + (1− β)α},

then by Lemma 3.2 and Proposition 3.1 there exists 0 < β < 1 such that λ∗+ (1− β)α ∈ Λ.
Also it follows from the definition of λ∗ that Hn(K) > 0, where

K := {x ∈ Ω \ (Z ∪ Ō0) : λ∗ − βα < u(x) < λ∗} ∩N.

Now let E2 = {x ∈ Ω\(Z∪Ō0) : u(x) ≥ λ∗}. It is easy to see that K ⊂ E1\Ē2 ⊂ Ω\(Z∪Ō0).
On the other hand by Remark 3.3 we may assume that E1 is open and hence E1 \ Ē2 is a
non-empty open set. Also

∂(E1 \ Ē2) ⊂ (∂E1 ∩ Ec
2) ∪ (E1 ∩ ∂E2)

and in particular, ∂(E1 \ Ē2) ⊂ ∂E1∪∂E2. Notice that ∂(E1 \ Ē2) 6⊂ ∂E2, because otherwise
u = λ∗ in E1 \ Ē2 which is in contradiction with the assumption E1 \ Ē2 ⊂ (Ω \ Z). Let

x0 ∈ ∂(E1 \ Ē2) \ ∂E2.

Then x0 ∈ ∂E1 ∩ Ec
2. By Lemma 3.2 and Proposition 3.1 we have

u(x0) ∈ u(∂E1) = {λ∗ + (1− β)α}. (24)

On the other hand
u(x0) ∈ u(Ec

2) ⊂ (−∞, λ∗]

which is in contradiction with (24). Hence u1 = u a.e. in Ω \ (Z ∪ Ō0).

Now let Σ be a connected component of Z. By the admissibility assumption, int(u(O∞)) = ∅
and u is continuous. Therefore u must be constant on Σ. Since u = u1 in Ω \ (Z ∪ Ō0) and
u1 minimizes (6), u = u1 a.e. in Σ. The proof is now complete. �
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