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Abstract. We survey recent mathematical progress in Conductivity Imaging that
is based on minimal interior knowledge of the Current Density field.

1. Introduction

The classical Electrical Impedance Tomography (EIT) problem seeks to obtain
quantitative information on the electrical conductivity σ of a body from multiple
boundary measurements of voltages and corresponding currents. Its extensive study
has led to major mathematical advances on uniqueness and reconstruction methods
for Inverse Problems with boundary data. See the excellent reviews [8], [7], and [13].
However, by now it is well understood that the problem is exponentially ill-posed,
yielding images of low resolution away from the boundary [11], [33].

A new class of Inverse Problems seeks to significantly improve both the quantitative
accuracy and the resolution of traditional Inverse Boundary Value Problems by using
data which can be determined in the interior of the object. These have been dubbed
Hybrid Methods, as they usually involve the combination of two different kinds of
physical measurements. See, for instance, [16], [34], [9], [3],[12],[2],[4],[5], [47], [22]
and further references below.

In this brief review, we present recent progress on such an approach for electric
conductivity imaging, based on internal measurement of current densities. Such
measurements have been possible since the early 1990 due to the pioneering work
[17], [43] at the University of Toronto. The idea was to use Magnetic Resonance
Imaging (MRI) in a novel way, to determine the magnetic flux density B induced
by an applied current. We give a short description of this Current Density Imaging
(CDI) technique in the Appendix.

We wish to stress that the mathematical inversion methods we present below do not
necessarily depend on MRI: our discovery that it is possible to obtain high resolution
images of conductivity from knowledge of the magnitude |J| of just one current density
field may lead to simpler physical methodologies to obtain such data (see for instance
[27]).

Two subclasses of conductivity imaging methods have been developed based on
[17], [43]: the ones discussed here which use interior knowledge of the current density
vector field (CDII), and the ones which use the measurement of only one component
of the magnetic field, known as Magnetic Resonance Electric Impedance Tomography
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(MREIT) [39, 41, 24, 28, 46]. The main advantage of MREIT over CDII methods
is that they do not require two rotations of the subject (currently needed to obtain
the current density field, see also the Appendix). While performing well in numerical
simulations and experiments (with the aid of various ad hoc procedures), it is not
known that these methods have unique solutions, except in some restrictive cases
[29], [30].

The first work proposing to use CDI to image electrical conductivity was [48]. In
[15] a perturbation method recovered the conductivity in the linearized case. Using
the fact that J is normal to equipotential lines, the method in [25] recovered two
dimensional conductivities. In [20] Seo et al. reduced the conductivity imaging prob-
lem to the Neumann problem for the 1-Laplacian (this will be detailed in Section
2); their examples of non- uniqueness and non-existence for this degenerate elliptic
problem show that knowledge of the applied current at the boundary together with
the magnitude of current density field inside is insufficient data to determine the
conductivity. Instead, Seo et al proposed the “J- substitution” algorithm based on
knowledge of the magnitude of two current density fields |J1|, |J2|; see also [19]. This
algorithm has been shown in [21] to be convergent and, consequently, the conduc-
tivity is uniquely determined by the knowledge of the magnitude of two currents in
the interior and of the currents at the boundary. The idea of using two non-parallel
currents goes back to [42, Sec. 2.6.3]. In [40] the problem is reduced to a first order
system of PDEs and several numerical reconstructions based on solving this system
are proposed. In [18] Nachman et al. found a simple explicit formula for ∇ ln(σ) at
each point in a region where two transversal current density vectors have been mea-
sured. This yielded an effective Current Density Impedance Imaging (CDII) method.
(This formula, together with the reconstruction results from phantom experiments
had been submitted in a patent application in 2003.) This reconstruction formula
has been discovered independently by Lee in [26]. In [14] reconstructions based on
experimental data were carefully validated against bench measurements. We refer
the reader to that paper for convincing evidence that, unlike in EIT, the resolution
in CDII is maintained away from the boundary.

What if only the magnitude |J| of just one current is known? In the following
sections we describe the results on this problem from [35],[36],[37] and [38]. The
key fact is that equipotential surfaces minimize the surface area induced by the
Riemannian metric conformal to the Euclidean one g = |J|2/(d−1)I, where d is the
dimension of the space. This approach reduces the conductivity imaging problem
to a variational problem associated to the 1-Laplacian in the Riemannian metric g
obtained from the given data.

2. Minimal surfaces in a Riemannian metric determined by the data

Let Ω ⊂ Rd, d ≥ 2, be an open domain with connected, Lipschitz boundary ∂Ω.
The (unknonwn) conductivity σ is assumed isotropic, and essentially bounded away
from infinity and zero; we use the notation σ ∈ L∞

+ (Ω) to denote such functions.
Let J ∈ L2(Ω;Rd) be the current density field, u ∈ H1(Ω) be the induced electric
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potential and E = −∇u ∈ L2(Ω;Rd) be the induced electric field in Ω. Further
regularity will be assumed as stated in the theorems below.

From Ohm’s law (J = −σE) we have that, whenever |E| ̸= 0,

σ =
|J|
|E|

=
|J|
|∇u|

.(1)

If one can find the voltage potential from the data, then the formula (1) recovers the
conductivity σ.

In the absence of charge sources/sinks the conservation law ∇·J = 0 together with
(1) lead to the singular, quasilinear, degenerate elliptic equation

∇ ·
(

|J|
|∇u|

∇u

)
= 0.(2)

The equation (2) with the above derivation first appeared in [20]. Our starting
point was to realize its geometric significance:

Theorem 2.1 ([35]). If u ∈ C1(Ω) is an electric potential induced by the current
density J, and |J| > 0 in Ω, then the level sets Σλ := {x ∈ Ω : u(x) = λ} are
surfaces of zero mean curvature in the metric g = |J|2/(d−1)I. In particular they are
critical surfaces for the area functional

A(Σ) =

∫
Σ

|J|dS,(3)

where dS is the Euclidean surface measure.

It was shown in [37] that the equipotential surfaces are not just critical surfaces
but in fact they are area minimizers. (Note that A(Σ) is the area of Σ induced by the
metric g = |J|2/(d−1)I. Note also that the functional in (3) is not convex with respect
to the surface Σ.) The result relies on the co-area formula [32] and the proof adapts
ideas of Bombieri et al. in [6]. We describe (compact) perturbations of a level set of
u by the level set of an arbitrary functions v with the same trace at the boundary.

Theorem 2.2 ([37]). Let u ∈ C2,δ(Ω) be the electric potential inside a C1,δ-smooth
conductive body, generated while maintaining the voltage f ∈ C2,δ(∂Ω)at the bound-
ary, 0 < δ < 1. Assume |J| > 0 in Ω. Let λ ∈ Range(f) be such that (d−1)-Hausdorff
measure of the set f−1(λ) ∩ ∂Ω is zero (valid a.e. λ ∈ Range(f)).

Then, for any v ∈ C2(Ω) with v|∂Ω = f and |∇v| ̸= 0, we have

A(u−1(λ)) ≤ A(v−1(λ)),(4)

where A is defined in (3).

3. A minimizing property of the electric potential and admissible
data

Due to the degeneracy of (2), where the gradient is unbounded, and to its singular-
ity where the gradient vanishes, the notion of solution needs to be defined carefully.
The following example from [44] shows that if one considers solutions in the viscosity
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sense (see, e.g., [10]) then there is non-uniqueness in the Dirichlet problem for (2)
with |J | ≡ 1.

Let = {x ∈ R2 : (x1)
2 + (x2)

2 < 1} be the unit disk. The Dirichlet problem

∇ ·
(
|∇u(x)|−1∇u(x)

)
= 0, x ∈ D,(5)

u(x) = (x1)
2 − (x2)

2, x ∈ ∂D,

has a family of viscosity solutions (indexed in λ ∈ [−1, 1]):

(6) uλ(x) =


2(x1)

2 − 1, if |x1| ≥
√

1+λ
2
, |x2| ≤

√
1−λ
2
,

λ, if |x1| ≤
√

1+λ
2
, |x2| ≤

√
1−λ
2
,

1− 2(x2)
2, if |x1| ≤

√
1+λ
2
, |x2| ≥

√
1−λ
2
.

However, it is only the solution corresponding to λ = 0 that minimizes the functional∫
Ω
|∇u(x)|dx over the space of maps with bounded variation BV (D) and the given

trace on ∂D in (5).
Rather then try to solve the Dirichlet problem for (2), we consider instead the

functional defined for an arbitrary v ∈ H1(Ω) by

F [v] :=

∫
Ω

|J(x)||∇v(x)|dx.(7)

Formally the Euler-Lagrange for (7) is the 1-Laplacian (2). It turns out that the
variational approach is well suited to our inverse problem: If u ∈ H1(Ω) is the voltage
potential induced by a current density field J generated while maintaining a boundary
voltage f ∈ H1/2(∂Ω), then u minimizes F among all the competitors v ∈ H1(Ω)
with trace f at the boundary [36, Proposition 1.2]. Indeed, if σ ∈ L∞

+ (Ω) is the
unknown conductivity (such that J = −σ∇u), then

F [v] =

∫
Ω

σ|∇u| · |∇v|dx ≥
∫
Ω

σ|∇u · ∇v|dx

≥
∫
Ω

σ∇u · ∇vdx =

∫
∂Ω

σ
∂u

∂ν
vds = ⟨Λσf, f⟩ = F [u].(8)

The example (5) above shows that the minimization of the functional (7) for an
arbitrary data |J| in Ω and f at the boundary may lead to solutions which do not
represent a voltage potential (since their gradients vanish in open sets while |J| ≡ 1
does not). This motivates the following definition on the data: A pair (f, a) ∈
H1/2(∂Ω)×L2(Ω) is called admissible if there exists a positive map σ ∈ L∞

+ (Ω) such
that, if u ∈ H1(Ω) is the weak solution of ∇ · σ∇u = 0, u|∂Ω = f, then

(9) |σ∇u| = a;

σ is called a generating conductivity and u is the corresponding potential for the pair
of data (f, a) .

The example (5) above shows that the smooth pair ((x1)
2 − (x2)

2, 1) is not admis-
sible since u0 (the solution for λ = 0 in (6)) is the unique minimizer over BV (Ω) with
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prescribed boundary data [45] and, for any σ ∈ L∞
+ (Ω), the equation (9) cannot hold

in the square [− 1√
2
, 1√

2
]× [− 1√

2
, 1√

2
].

Thus, the mere existence of a minimizer u ∈ H1(Ω) for the functional in (7) is not
sufficient to conclude existence of a generating conductivity. However, if we also have
|J|/|∇u| ∈ L∞

+ (Ω) then the data is admissible [36, Proposition 1.2].
The result below gives the unique determination of a (Hölder continuous) conduc-

tivity from admissible data by using the minimization problem for the functional in
(7); W 1,1

+ (Ω) denotes the space of maps in L1(Ω) with gradient in L1(Ω), and with a
negligible set of singular points.

Theorem 3.1 ([36]). Let Ω ⊂ Rd, d ≥ 2, be a domain with connected, C1,α- boundary
and let (f, |J|) ∈ C1,α(∂Ω)×Cα(Ω) be an admissible pair generated by some unknown
Cα(Ω) -conductivity. Assume that |J| > 0 a.e. in Ω. Then the minimization problem

(10) argmin
{
F [u] : u ∈ W 1,1

+ (Ω)
∩

C(Ω), u|∂Ω = f
}
,

has a unique solution u0. Moreover, σ0 = |J|/|∇u0| is the unique conductivity in
Cα(Ω) for which |J | is the magnitude of the current density while maintaining the
voltage f at the boundary.

Based on the results in [1], for simply connected planar domains there is a simple
sufficient condition to ensure a non-vanishing current density field: we say that a map
on the connected boundary is almost two-to-one if the set of local maxima is either
one point or one connected arc. In two dimensions, the above uniqueness result can
thus be simplified to:

Corollary 3.2 ([36]). Let Ω ⊂ R2 be a simple connected domain with C1,α- boundary,
(f, |J|) ∈ C1,α(∂Ω) × Cα(Ω) be an admissible pair with f almost two-to-one. Then
there is a unique positive conductivity in Cα(Ω) for which |J| is the magnitude of
the current density corresponding to the voltage f on the boundary. Moreover, the
corresponding potential u0 is the unique solution to the minimization problem (10).

4. Reconstruction methods

4.1. Level set methods. In two dimensions, the level sets are geodesics. For smooth
data (f, |J|) ∈ C2,δ(∂Ω)× C1,δ(Ω), they solve the geodesic system

ẍ = −ẋ2 |J|x
|J| (x, y)− 2ẋẏ |J|y

|J| (x, y) + ẏ2 |J|x|J| (x, y),(11)

ÿ = ẋ2 |J|y
|J| (x, y)− 2ẋẏ |J|x

|J| (x, y)− ẏ2 |J|y|J| (x, y),

where the dot denotes differentiation with the parameter d
dt
.

The Cauchy boundary value problems for (11) recovers the equipotential lines
originating on an arc Γ of the boundary and, via (1), recovers the conductivity in
the region Ω̃ spanned by these equipotential lines. This is a stable method. The
following result is an immediate extension of Theorem 3.1 in [35], where is stated for
almost two-to-one boundary voltage and Γ a maximal arc of monotony.
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Theorem 4.1. Let Ω ⊂ R2 be a simply connected, bounded domain with a piecewise
C1-smooth boundary and Γ ⊂ ∂Ω. Given f ∈ C2(Γ), g ∈ C1(Ω), and |J| ∈ C1(Ω) ∩
C2(Ω), there exists a uniquely defined subregion Ω̃ ⊂ Ω and a unique pair (σ, u) ∈
C2(Ω̃) × C2(Ω̃) such that u is σ-harmonic and σ|∇u| = |J| in Ω̃, and u|Γ = f and
∂νu|Γ = g . Moreover, if f is almost two-to-one and Γ is a maximal arc of monotony,
then the above holds with Ω̃=Ω.

The reconstruction based on Theorem 4.1 needs both the Dirichlet and Neumann
data along Γ but, in contrast to the results in [25], only uses the magnitude |J|.

Numerical results based on simulated data are shown in Section 5; see Figures 1
through 4.

Another method is based on the Dirichlet boundary value problem associated with
(11). This only requires the interior data to be measured, while a desired voltage
potential is maintained at the boundary. It has yielded the following uniqueness
results for problems with partial data, which are important in applications.

Theorem 4.2 ([37]). Let Ω ⊂ R2 be a simply connected domain with C2,δ-boundary,
0 < δ < 1. For i = 1, 2 let σi ∈ C2,δ(Ω), ui be σi-harmonic with ui|∂Ω ∈ C2,δ(∂Ω)
almost two-to-one, and |Ji| = |σi∇ui|. For α < β let

(12) Ωα,β := {x ∈ Ω : α < u1(x) < β} and Γ := Ωα,β ∩ ∂Ω.

(i) Assume u1|Γ = u2|Γ and |J1| = |J2| in Ω. Then

u1 = u2 in Ωα,β and

σ1 = σ2 in Ωα,β.

(ii) Assume u1|Γ = u2|Γ and |J1| = |J2| in the interior of Ωα,β. Then

{x ∈ Ω : α < u2(x) < β} = Ωα,β,(13)

u1 = u2 in Ωα,β and(14)

σ1 = σ2 in Ωα,β.(15)

The above results are constructive. The inversion method is based on solving two
point boundary value problems to find geodesics joining pairs of equipotential points
at the boundary. While for general manifolds with boundary the system (11) may
not be uniquely solvable, using admissibility, the fact that the required geodesics are
equipotential curves and the maximum principle we obtain the following result.(Note
that this does not state that the metric g = |J|2I is simple, since uniqueness is only
shown for geodesics joining equipotential pairs of boundary points.)

Theorem 4.3 ([37]). Let Ω ⊂ R2 be a simply connected domain with C2,δ-boundary,
0 < δ < 1. Let (f, |J|) ∈ C2,δ(∂Ω) × C1,δ(Ω) be an admissible pair with f almost
two-to-one and let (x0, y0), (x1, y1) ∈ ∂Ω be such that f(x0, y0) = f(x1, y1). Then the
system (11) subject to the boundary conditions

(x(0), y(0)) = (x0, y0) and (x(1), y(1)) = (x1, y1),(16)
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has a unique solution γ : [0, 1] → Ω, γ(t) = (x(t), y(t)). Moreover, the map u : Ω → R
is constant along γ:

(17) (u ◦ γ)(t) = λ, t ∈ [0, 1].

Since solutions of (11) and (16) depend only on the values of |J| near the curve,
we obtain partial reconstruction of σ from incomplete interior data. Assume that |J|
is only known in a subregion Ω̃ that contains regions of the type

(18) Ωα,β := {x ∈ Ω : α < u(x) < β},

for some unknown values α’s and β’s. We stress here that this property of Ω̃ need not
be assumed a priori: the method determines from the data if Ω̃ contains regions of the
type (18), and, if so, recovers all the (maximal) intervals (α, β), their corresponding
Ωα,β and the conductivity therein. If Ω̃ does not contain regions of type (18), then the
incomplete interior data is insufficient to recover the conductivity in any subregion.

The reconstruction procedure starts by extending |J| to all of Ω. To find the
equipotential curves which lie entirely in Ω̃ one solves (11) subject to (16), for each
pair of equipotential boundary points. If the solution lies in the interior of Ω̃, then it
is the correct level curve joining those two boundary points. If the calculated curve
passes outside Ω̃ (or touches its boundary) then it is dependent on the extension
of |J| and we discard it. An interval (α, β) of voltages defines a set Ωα,β as in (18)
provided that, for each λ ∈ (α, β), the calculated λ-equipotential curve lies entirely in
the interior of Ω̃. If Ω̃ contains no entire equipotential curves, then all the calculated
solutions will be discarded; see Figures 5 and 6.

4.2. Variational approaches. The reconstruction methods described in Section 4.1
recover u one level set at a time. The methods based on the minimization problem in
Theorem 3.1 recover all the equipotential sets at once. We use a nonnegative weight
a ∈ L2(Ω) to denote |J| in the functional (7).

Two methods have been proposed. The one in [36] is based on the following
minimization property.

Lemma 4.4. Assume that v ∈ H1(Ω) is such that a
|∇v| ∈ L∞

+ (Ω) and let u ∈ H1(Ω)

be the weak solution of  ∇ · a
|∇v|∇u = 0 in Ω,

u|∂Ω = v|∂Ω.

Then the following inequalities hold:

(19)

∫
Ω

a|∇u|dx ≤
∫
Ω

a|∇v|dx;

(20)

∫
Ω

a|∇u|dx ≥
∫
Ω

a

|∇v|
|∇u|2dx;
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1

2

∫
Ω

(
a|∇v| − a

|∇v|
|∇u|2

)
dx ≤

∫
Ω
(a|∇v| − a|∇u|) dx

≤
∫
Ω

(
a|∇v| − a

|∇v| |∇u|2
)
dx.(21)

We also have the identity:

(22)

∫
Ω

(
a|∇v| − a

|∇v|
|∇u|2

)
dx =

∫
Ω

a

|∇v|
|∇v −∇u|2dx.

Moreover, equality in either of (19) or (20) holds if and only if u = v.

Algorithm 1: Let (f, a) ∈ H1/2(∂Ω)× L2(Ω) be an admissible pair.
For un−1 ∈ H1(Ω) given such that a

|∇un−1| ∈ L∞
+ (Ω), define

(23) σn =
a

|∇un−1|
and construct un as the unique solution to ∇ · σn∇un = 0,

un|∂Ω = f.

Now iterate.
We need conditions to ensure that each iterate satisfies a

|∇un| ∈ L∞
+ (Ω). In two

dimensions, an almost two-to-one boundary voltage f is sufficient for this to hold,
and further a posteriori sufficient conditions ensure convergence [36]. Figure 7 and 8
show reconstructions based on Algorithm 1.

The second variational approach is based on the minimization problem for the
regularized functional defined for δ ≥ 0 and ϵ > 0 as

F δ
ϵ [u; a] =

∫
Ω

amax{|∇u|, δ}dx+ ϵ

∫
Ω

|∇u|2dx.(24)

For any (f, a) ∈ H1/2(∂Ω)× L2(Ω) (not necessarily admissible) the problem

min
{
F δ

ϵ [u; a] : u ∈ H1(Ω), u|∂Ω = f
}

(25)

has a unique solution [38, Proposition 5].
If the data is admissible and the interior data is essentially bounded away from

zero, then the following stability result holds.

Theorem 4.5 ([38]). Let (f, a) ∈ H1/2(∂Ω)× L2(Ω) be admissible, and assume

essinf(a) ≥ α,(26)

for some α > 0. Then there is a δ > 0 such that the followings hold:
(i) For any {an} ⊂ L2(Ω), a sequence with an → a in L2(Ω), if we choose ϵn ↓ 0

in such a way that

lim
n→∞

∥a− an∥2

ϵn
= 0,
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and, for each n, let uϵn be the solution of the minimization problem

uϵn = argmin{F δ
ϵn [u; an] : u ∈ H1(Ω), u|∂Ω = f}.

Then

lim inf
n→∞

F δ
ϵn [uϵn ; an] = lim inf

n→∞
F δ

0 [uϵn ; an] = min{F δ
0 [u; a] : u ∈ H1(Ω), u|∂Ω = f}

= min{F0
0 [u; a] : u ∈ H1(Ω), u|∂Ω = f}.

(ii) There is a subsequence {uϵk} convergent in Lq(Ω) to some u∗ ∈ Lq(Ω)∩BV (Ω),
1 ≤ q < d/(d− 1).

(iii) If u∗ ∈ H1(Ω)∩C(Ω) then u∗ is the potential corresponding to the pair (f, a).

5. Reconstruction from simulated data

5.1. Equipotential lines methods. We simulate a conductivity σ using a CT-
image of a human torso. The density distribution in the original CT image has been
scaled to a conductivity distribution ranging from 1 to 1.8 S/m, see Figure 1.

Figure 1. The original conductivity distribution to be reconstructed.

Partial Cauchy data: To implement to method based on Theorem 4.1, we con-
sider two experiments. They use the same conductivity but the interior data |J|
shown in Figure 2 is generated by solving two distinct Dirichlet problems. On the
left the boundary voltage is almost two-to-one, while on the right it is not.

The equipotential lines (characteristics) are calculated by solving the initial value
problem for (11) with Cauchy data on the left side of the rectangle. Figure 3 on the
left shows the equipotential lines from the corresponding two experiments. Note that
when |J| is generated by boundary data which does not satisfy the almost two-to-one
condition, the equipotential lines originating on the left side of the rectangle do not
fill the lower right corner of the rectangle.

Figure 4 shows reconstructed conductivities in the four experiments. The two
pictures on the left are based on noiseless and noisy data, with an almost two-to-one
boundary voltage. The two pictures on the right are based on noiseless and noisy
data and a boundary voltage which is not almost two-to-one. The lower right hand
corner show meaningless computational artifacts.

Dirichlet data: The reconstruction based on Theorem 4.3 solves a family of two
point boundary value problems for the system (11). The interior data |J| generated by
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Figure 2. Interior data |J|: On the left the boundary voltage is almost
2-1, while on the right it is not.

Figure 3. Interior data |J|: On the left the boundary voltage is almost
2-1, while on the right it is not.

the almost two-to-one boundary data has been used (Left image in Figure 2). Figure 5
shows the calculated characteristics for full interior data and partial boundary data.
Figure 6 shows the reconstructed conductivity from partial interior and boundary
data.

5.2. Variational Method. Numerical reconstructions here are based on the Algo-
rithm 1. Figure 7 shows the original conductivity (to be reconstructed) on the left,
and various iterates in the Algorithm 1. Figure 8 shows a slice through the middle
of the rectangle for the various iterates.

6. Appendix: Current Density Imaging

In this section we briefly describe the way the interior data is currently acquired
using a Magnetic Resonance Imager [43].
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Figure 4. Reconstructed conductivities. Left two pictures: noiseless
(left) and noisy data; almost 2-1 case. Right two pictures: noiseless
(left) and noisy data; non almost 2-1 case.

Figure 5. Equipotential lines calculated by solving two point bound-
ary value problems(left) and the triangulated area spanned by these
lines (right).

In the three dimensional space, orient the z-axis along the main static magnetic
field of the MRI. Upon injecting a low frequency current I+, the induced magnetic
field B = (Bx, By, Bz) alters the resonance frequency of protons. Intuitively, the main
static magnetic field is modified by the additional Bz. This produces a phase change
in the rotating transverse component of the magnetic resonance signalM , represented
as a complex number. More precisely, the phase change in the transversal plane z = z0
is proportional with the component Bz and the duration T of the injected current:

M+(x, y, z0) = M(x, y, z0)e
iγBz(x,y,z0)T+iφ0 ;

here φ0 is the phase due to the original magnetic field (in the absence of the applied
current) and γ (the so-called gyromagnetic ratio) is known. By applying the inversely
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Figure 6. Reconstructed conductivity from partial interior and
boundary data: noiseless (two pictures on the left) and noisy (two
pictures on the right).

Figure 7. From the left: 1st image is the original conductivity , 2nd
image is the first iterate, 3rd image is the fifth iterate and 4th image
is the fiftieth iterate in Algorithm 1.

polarized current I− for the same duration T , one obtains

M−(x, y, z0) = M(x, y, z0)e
−iγBz(x,y,z0)T+iφ0 .

Therefore, one can recover Bz from the MRI phase image as

Bz(x, y, z0) =
1

2γT
Im log

(
M+(x, y, z0)

M−(x, y, z0)

)
,

where log denotes an analytic branch of the complex logarithm. In practice, one uses
a “phase unwrapping” algorithm to determine a continuous branch.

With two rotations of the object one determines all the components of B and the
current density field is then calculated based on Ampere’s law, J = 1

µ0
∇×B, where

µ0 is the magnetic constant.
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Figure 8. The vertical slices of variations of conductivity over the
unit one reconstructed from the noiseless data: crosses - the initial
approximation, squares - after 5 iterates, diamonds - after 50 iterates,
and stars - after 100 iterates. The latter coincides with the simulated
conductivity.
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