
Conductivity imaging by the method of

characteristics in the 1-Laplacian

Alexandru Tamasan† and Johann Veras‡
†‡Department of Mathematics, University of Central Florida, Orlando, FL, USA

E-mail: †tamasan@math.ucf.edu, ‡jveras@knights.ucf.edu

Abstract. We consider the problem of reconstruction of a sufficiently smooth planar

conductivity from the knowledge of the magnitude |J | of one current density field inside

the domain, and the corresponding voltage and current on a part of the boundary.

Mathematically, we are lead to the Cauchy problem for the the 1-Laplacian with

partial data. Different from existing works, we show that the equipotential lines are

characteristics in a first order quasilinear partial differential equation. The conductivity

can be recovered in the region flown by the characteristics originating at parts of the

boundary where the data is available. Numerical experiments show the feasibility of

this alternative method.
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1. Introduction

In this paper we present a novel reconstruction method in Current Density based

Impedance Imaging (CDII): Let Ω ⊂ R2 be a simply connected, bounded domain with

piecewise smooth boundary, and σ be a sufficiently smooth conductivity in Ω bounded

away from zero and infinity. A current g with
∫
∂Ω gds = 0 is normally injected at the

boundary. Up to an additive constant, the voltage potential u distributes according to

the solution of the Neumann problem

∇ · σ∇u = 0, σ∂νu|∂Ω = g, (1)

where ν is the outer unit normal to the boundary. The current density field J is

uniquely defined by Ohm’s law J = −σ∇u, regardless of the constant. We assume

that its magnitude |J | is known in Ω (or some subregion). Currently, knowledge of J

inside can be obtained from a technique developed in [26] based on magnetic resonance

measurements, but new techniques seek to employ acoustic measurements [28].

For clarity, we convene that properties referring to a boundary arc concern only the

interior points. Properties pertaining to its end points are to be specified separately. We

assume that the voltage u is measured on a boundary arc Γ on which the non-stationary

condition

|∂τ (u|Γ)| > 0 (2)

holds, where τ is the unit tangent. At a corner point both sided tangential derivatives

are to satisfy (2). At the end points ∂τu|Γ (or one sided derivative if it is a corner point)

may vanish.

The CDII problem of concern here is the reconstruction of σ inside Ω from (partial)

knowledge of |J | inside, and the values of f , and g along Γ. This problem belongs to the

recently developed class of imaging methods from dual physics. Among the works which

considered interior knowledge of current density for conductivity imaging we mention

[29], [14], [15], [16], [13], [17], [25] and references below; see [24] for a survey on Current

Density Imaging from minimal data. In [19] and [18] the interior knowledge of one

component of the magnetic field is employed; see [27] for comprehensive references in

this direction. Recent works for conductivity imaging from dual physics consider some

electro-acoustic or magneto-acoustic measurements, see [20], [5],[4], [10], and [6].

By taking the absolute value in Ohm’s law and plugging it into the conductivity

equation in (1), the conductivity imaging problem becomes the Cauchy problem for the

1-Laplacian (in the metric |J |2ds):

∇ · |J |
|∇u|

∇u = 0, u|Γ = f, ∂νu|Γ = g, (3)

where ν is the outer unit normal to the boundary.

The work [14] is the first to employ the 1-Laplacian in conductivity imaging in

conjunction with Neumann boundary conditions. As shown in there, the Neumann

problem can have none to multiple solutions, to conclude that one current density field

by itself, in general, cannot determine the conductivity inside. To remedy this, in [21]
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the Cauchy problem (3) is considered and sufficient conditions on the boundary voltage

are found to recover the conductivity stably. Further work in [22] and [25] consider

the Dirichlet problem for the 1-Laplacian to show that boundary voltage on the entire

boundary together with |J | inside uniquely determine σ (this is in any dimension d ≥ 2).

In two dimensions the result is extended to imaging from partial data [23].

A marked difference from the approach in [21] is that in here one first injects a

current, rather than maintain a specific voltage. As in [14], the current g satisfies

g|Γ+ > 0, g|Γ− < 0, and, g|∂Ω\Γ± = 0, (4)

where Γ± are two connected arcs. This applied current pattern is important since it

yields

inf
Ω

|∇u| > 0, (5)

see [2, 3].

Throughout the paper Ck,α(Ω), α ∈ (0, 1), denotes the space of differentiable

functions with α-Hölder continuous k-th derivative, for some 0 < α < 1. If α = 1

then the k-th derivative is assumed Lipschitz. The conductivity reconstruction is based

on the following local existence and uniqueness result.

Theorem 1.1 Let Ω ⊂ R2 be a domain with piecewise Lipschitz boundary, and Γ be a

smooth boundary arc. Assume that |J | ∈ C1,1(Ω∪ Γ) is positive in a neighborhood of Γ.

Let g ∈ C1(Γ), and f ∈ C2(Γ) be such that

|fτ | > 0, inside Γ, (6)

where fτ denotes the tangential derivative. Then there is a neighborhood Ω̃ of Γ, in

which (3) has a unique solution u ∈ C1(Ω̃) with |∇u| ̸= 0.

Assume that |J | is known in a sub-domain Ω̃ ⊂ Ω adjacent to Γ. Then the

conductivity can be determined in a part of the domain as described by the result

below.

Theorem 1.2 Let Ω ⊂ R2 be a simply connected domain with piecewise C3,α-smooth

boundary, σ ∈ C2,α(Ω) be a smoothly varying conductivity with unknown values inside

Ω but known boundary values. A current g ∈ C1,α(∂Ω) satisfying (4) is applied at the

boundary, and the voltage potential u|Γ is measured along a boundary arc Γ to satisfy

(2). Assume that the magnitude of the current density field |J | generated by the injected

current is known in a subdomain Ω̃ ⊂ Ω with Γ∩ ∂Ω̃ ̸= ∅. Then the conductivity can be

uniquely recovered in the region spanned by the characteristics that originate on Γ∩ ∂Ω̃
and stay within Ω̃.

Different from the method in [21], we show that the voltage potential u is constant

along the characteristics of a quasilinear first order differential equation, see (9) below.

As a direct consequence of the smooth dependence on the data (see, e.g., [12]) of solutions

of initial value problems for systems of ordinary differential equations (ODE’s), we show

that the method is conditionally stable in a compact subset of the region flown by the

characteristics.
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Theorem 1.3 (Conditional Stability) Let Ω ⊂ R2 be a simply connected domain

with piecewise C3,α-smooth boundary, and σ ∈ C2,α(Ω) be an unknown conductivity.

Let u be the solution of (1) for some applied current g satisfying (4), Γ be an arc at

the boundary such that (2) holds on Γ, and |J | := σ|∇u| be known in Ω. Assume that

g̃ ∈ C1(∂Ω), f̃ ∈ C2(Γ) , and |J̃ | ∈ C1,1(Ω) are “noisy data” such that

max{∥∂τ (u|Γ)− f̃τ∥C1(Γ), ∥g− g̃∥C1(∂Ω), ∥∇ ln |J |−∇ ln |J̃ | ∥Lip(Ω)} ≤ η,(7)

for some η > 0 small enough. Let ũ be defined along the characteristics for the noisy

data g̃, f̃ , |J̃ | as in (16). Let ΩΓ ⊂ Ω be the intersection of the domains spanned by

characteristics originating at Γ for the two sets of data. Then, at each point in ΩΓ∣∣∣∣∣σ − |J̃ |
|∇ũ|

∣∣∣∣∣ ≤ ω(η),

for some map ω : [0, ϵ) → [0,∞) with ω(η) → 0 as η → 0, which depends on

∥∇ ln |J |∥Lip(Ω), ∥g∥C1(Γ), ∥f |Γ∥C2(Γ), and the modulus of continuity of σ.

The reconstruction methods described in the proof of the theorems above are

implemented in Section 3. Complete and incomplete interior data results are presented.

The algorithms are based on the numerical solutions of the Cauchy problem for the

characteristic system and the spline interpolation.

2. The method of reconstruction

In this section we prove Theorems 1.1, 1.2, and 1.3.

Proof of Theorem 1.1: We first assume existence and address the local uniqueness

question. Let ui ∈ C1(Ωi ∪ Γ), i = 1, 2, be two solutions of (3) defined nearby Γ such

that |∇ui| > 0. Let s 7→ (x0(s), y0(s)) be the Euclidean arc-length parametrization of

Γ. The assumption (2) yields

fτ (x0(s), y0(s)) := ⟨x′0(s), y′0(s)⟩ · ∇ui(x0(s), y0(s)) ̸= 0, i = 1, 2. (8)

Since |∇ui| ̸= 0 in Ω1 ∩ Ω2, which is a simple connected neighborhood of Γ, the

argument functions θi = arg(∇ui) are C1(Ω1 ∩ Ω2)-smoothly defined for i = 1, 2. Since

ui are solutions of the 1-Laplacian in (3), it is easy to see that they satisfy

−(sin θ)θx + (cos θ)θy + (ln |J |)x cos θ + (ln |J |)y sin θ = 0. (9)

To simplify notation in what follows we let

θ0(s) := arg(fτ∂τ + g∂ν)|(x0(s),y0(s)), (10)

where {∂τ , ∂ν} is the positively oriented orthonormal frame of the unit tangent and

normal vector on Γ.

Now let t 7→ (xi(t, s), yi(t, s)) be the (Euclidean arc-length) parametrization of

the equipotential maps ui(xi(t, s), yi(t, s)) = f(s), i = 1, 2. Then the map t 7→
(xi(t, s), yi(t, s), θi(t, s)) solves the corresponding characteristic system

dx
dt

= − sin θ
dy
dt

= cos θ
dθ
dt

= −(ln |J |)x cos θ − (ln |J |)y sin θ,
(11)
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subject to the initial conditions

x(0, s) = x0(s), y(0, s) = y0(s), θ(0, s) = θ0(s), (12)

where θ0 defined in (10).

Uniqueness in the initial values problem for ODE implies that (x1(t, s), y1(t, s)) =

(x2(t, s), y2(t, s)) whenever (xi(t, s), yi(t, s)) ∈ Ω1∩Ω2. Therefore u1 and u2 are constant

on each other level sets. Since they also coincide at t = 0, they coincide in the region

spanned by the family of curves t 7→ (x1(t, s), y1(t, s)), 0 < s < Length(Γ).

The necessary and sufficient condition for an arbitrary curve γ : s 7→ (x0(s), y0(s))

to be non-characteristic for (9) is for the determinant∣∣∣∣∣ − sin θ0(s) x′0(s)

cos θ0(s) y′0(s)

∣∣∣∣∣ ̸= 0. (13)

By the hypothesis (8), the curve Γ is non-characteristic for the equation (9), and the pair

(s, t) defines local coordinates near Γ, which yield that u1 = u2 in an open neighborhood

of Γ. A monodromy argument extends the region of uniqueness to a maximal, simply

connected set, see also (15).

To prove the local existence for solutions to the Cauchy problem (3) consider the

problem (11) subject to the initial conditions

x(0, s) = x0(s), y(0, s) = y0(s), θ(0, s) = θ0(s), (14)

where s 7→ (x0(s), y0(s)) is the arc-length parametrization of Γ, and θ0(s) is defined in

(10).

The hypothesis fτ > 0 at Γ together with the smoothness assumptions on the

boundary data yields a C1-smoothly defined argument map arg(fτ∂τ + g∂ν) along Γ.

Since the right hand side of (11) is Lipschitz, for each s there exists a unique solution

t 7→ (x(t, s), y(t, s), θ(t, s)) with t in some interval [0, β(s)). Moreover, since the initial

conditions are C1-smooth in parameter s, the solutions are also C1 in the parameter s

(they are already C1,1 in t), see [12]. Define the sub-domain

Ω0 := {(x(t, s), y(t, s)) ∈ Ω̃ : s ∈ (0, length(Γ)), t ∈ (0, β(s))}, (15)

the function u in Ω0 by

u(x(t, s), y(t, s)) := f(x0(s), y0(s)), (16)

and the discriminant

∆(t, s) :=

∣∣∣∣∣ − sin θ(t, s) xs(t, s)

cos θ(t, s) ys(t, s)

∣∣∣∣∣ =
∣∣∣∣∣ xt(t, s) xs(t, s)

yt(t, s) ys(t, s)

∣∣∣∣∣ . (17)

Since Γ is non-characteristic at every point, the equation (13) yields ∆(0, s) ̸= 0,

for all s ∈ (0, Length(Γ)). Continuity of ∆ implies that

∆(t, s) ̸= 0, in {(s, t) : s ∈ (0, length(Γ)), t ∈ [0, β̃(s))},

for some β̃(s) ≤ β(s). Let us define

Ω1 := {(x(s, t), y(t, s)) ∈ Ω0 : ∆(t, s) ̸= 0}. (18)
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By differentiating in t and s (16) we get that

∇u(x(s, t), y(s, t)) = −fτ (x0(s), y0(s))
∆(t, s)

⟨cos θ(t, s), sin θ(t, s)⟩. (19)

In particular
∇u(x, y)
|∇u(x, y)|

= ⟨cos θ(x, y), sin θ(x, y)⟩, (x, y) ∈ Ω̃.

Since θ solves (9) then u solves the 1-Laplacian in Ω1. A rotation of coordinates gives

that ∂νu = g at Γ. ⊓⊔
Note that the formula (13) says that the tangent at the boundary must not to

be perpendicular to the ∇u(γ(s)), or that the tangent must be transversal to the

equipotential line of u at the point (x0(s), y0(s)).

Proof of Theorem 1.2: Since u solves the Cauchy (3), it remains to show that our

assumptions are sufficient to yield ∇ ln |J | ∈ Lip(Ω). Indeed, since the boundary ∂Ω is

piecewise C2,α, σ ∈ C2,α(Ω), and g ∈ C1,α(∂Ω) by the elliptic regularity (see e.g. [11])

of solutions o (1) yields u ∈ C3,α(Ω). Consequently, we obtain |J | ∈ C2,α(Ω). Moreover,

since σ is bounded away from zero, and no singularities present due to the choice of the

applied current, we also obtain minΩ |J | > 0. Therefore ∇ ln |J | ∈ C1,α(Ω) ⊂ Lip(Ω). ⊓⊔
The absence of singular points as in (5) makes the result [21, Lemma 3.1] still valid:

Each equipotential set is a smooth curve of finite length and with the two endpoints

at the boundary. In particular each point inside lies on a unique equipotential line

which reaches the boundary. If |J | is known in the entire domain Ω, then (by the

uniqueness of solution in the initial value problem for ODEs,) the method recovers the

entire equipotential line originating at Γ.

Proof of Theorem 1.3: In the followings, we distinguish the quantities corresponding

to the “noisy data” (g̃, J̃ , f̃), by using a tilde (̃·) in their notation. For example ∆̃ denotes

the discriminant in (17) corresponding to the noisy data.

Note that g̃ need not satisfy the pattern in (4). Instead by choosing η in (7) such

that

0 < η < min{min
Γ

(fτ ),min
Ω

|∇ ln |J ||}

we obtain f̃τ > 0 on Γ, and |J̃ | > 0 in Ω. In particular ln |J̃ | ∈ C1,1(Ω), which suffices to

solve locally the Cauchy problem (3) associated with g̃ on ∂Ω, f̃ ∈ Γ, and |J̃ | in Ω. More

precisely, the initial problem (11) and (12) yields a solution t 7→ (x̃(t, s), ỹ(t, s), θ̃(t, s)),

for each s ∈ (0, Length(Γ)) and t ∈ (0, β̃(s)). Here β̃(s) represents the Euclidean length

of the characteristic originating at the point (x0(s), y0(s)) ∈ Γ.

We estimate the error at

(x∗, y∗) := (x(t, s), y(t, s)) = (x̃(t̃, s̃), ỹ(t̃, s̃)),

an arbitrary point in ΩΓ. To simplify notations, we refer to a point in ΩΓ in the

coordinates defined by the characteristics. For example

|J |(t, s) := |J |(x(t, s), y(t, s)), |J |(t̃, s) := |J |(x̃(t̃, s), ỹ(t̃, s̃)),
|∇u|(t, s) := |∇u|(x(t, s), y(t, s)), |∇ũ|(t̃, s̃) := |∇ũ|(x̃(t̃, s̃), ỹ(t̃, s̃)).
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Using the definition in (19) we get∣∣∣∣∣σ(t, s)− |J̃ |
|∇ũ|

(t̃, s̃)

∣∣∣∣∣ ≤ |σ(t, s)− σ(t̃, s̃)|

+

∣∣∣∣∣|J |(t, s) |∆(t, s)|
|fτ (s)|

− |J̃ |(t̃, s̃) |∆̃(t̃, s̃)|
|f̃τ (s̃)|

∣∣∣∣∣ . (20)

The continuous dependence on the data of solutions of ODE’s bounds the first term in

the right hand side of (20) by some modulus of continuity ω(η) which depends on σ. By

triangle inequality it can be easily seen that the second term in the right hand side of

(20) is bounded by

|J |
|fτ |

∣∣∣∆− ∆̃
∣∣∣+ |J ||∆̃|

|fτ f̃τ |

∣∣∣f̃τ − fτ
∣∣∣+ |∆̃|

|f̃τ |

∣∣∣|J | − |J̃ |
∣∣∣ , (21)

where for brevity we dropped the arguments, but they are still as in (20). The C1-smooth

dependence on the data, yield that ∆ and ∆̃ defined in (17) depend continuously on

(fτ , g, |J |), respectively on (f̃τ , g̃, |J̃ |). In particular ∆, ∆̃ are bounded on compacta.

Recall also that fτ , f̃τ are bounded away from zero on Γ. Using (21), we conclude that

the second term of (20) is also bounded by some modulus of continuity ω(η). ⊓⊔
Since the modulus of continuity ω depends on σ, the Theorem 1.3 only shows

conditional stability.

3. Numerical results

In this section we present various numerical experiments with two different types

of conductivities to demonstrate the computational capabilities of the reconstruction

method above.
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Figure 1. The original conductivity distribution map: the four modes (left) and the

cross section of a human brain (right).
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3.1. Data

The magnitude of the current density |J | and the boundary voltage potential

measurement f for the numerical experiments are obtained numerically.

We solve the Neumann problem (1) for two different conductivities by using the

finite element method in MATLAB’s PDE toolbox. The domain Ω is the unit box

[0, 1] × [0, 1], and the boundary current g̃(0, y) = g̃(1, y) = 0, g̃(x, 1) = 1, and

g̃(x, 0) = −1 is applied at the boundary. The first conductivity map is smoothly defined

by the four modes function

σ(x, y) = 1 + 0.3 · (A(x, y)−B(x, y)− C(x, y)), (22)

where

A = 0.3 · [1− 3(2x− 1)]2 · e−9·(2x−1)2−(6y−2)2 ,

B =

[
3(2x− 1)

5
− 27 · (2x− 1)3 − [3 · (2y − 1)]5

]
· e−[9·(2x−1)2+9·(2y−1)2],

C = e−[3·(2x−1)+1]2−9·(2y−1)2 ;

see the left image in Figure 1. The second conductivity is a piecewise-smooth function

given by a CT image of a human brain, shown in Figure 1 on the right. The values of

the pixels of the CT image are scaled to model a conductivity distribution ranging from

1 to 1.8 S/m.

The gradient of the potential ∇u is computed via differentiation of interpolating

fifth degree Lagrange polynomials. The interior data |J | = σ|∇u| is computed in Ω and

in the sub-domain Ω1 = [0, 0.6] × [0.25, 0.701] for each of the aforementioned voltage

potentials. Finally, the boundary voltage potentials u|Γ = f and u|Γ1 = f1 are measured

on the arcs Γ = {0} × [0, 1], and Γ1 = {0} × [0.25, 0.701], respectively. See Figure 2

for the magnitude of the current density generated over Ω for the four modes and the

brain.
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y

Figure 2. Magnitude of the current density of the four modes (left) and the cross

section of a human brain (right) generated over the box [0, 1]× [0, 1].
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3.2. Numerical reconstruction of the conductivity

Here we describe the steps to reconstruct a conductivity map in Ω using the method

construed in section 2.

Step 1. Recall that in section 3.1 the injected current satisfies (4), hence θ = π
2
on

the line segment where the voltage potential is measured. Given |J | in a box [0, c]×[a, b],

we solve (11) using the adaptive Runge-Kutta-Fehlberg ODE solver form characteristics

subject to the initial conditions

xj(0) = 0, yj(0) = sj, θj(0) =
π

2
, (23)

where sj = a+ j b−a
m−1

, and j = 1, 2, . . . ,m.

The third equation in (11) contains the derivative of ln |J | in the direction of the

unit vector η = ⟨cos θ, sin θ⟩:
dθ

dt
= −∂η ln |J |.

In order to decrease the error made in differentiating ln |J | we use the center difference

for the directional derivative:

∂η ln |J |(xj(tjk), yj(tjk)) =
1

2h

[
ln |J |(xjkj+h, y

jk
j+h)− ln |J |(xjkj−h, y

jk
j−h)

]
,

where

xjkj+h = xj(tjk) + h · cos θj(tjk),
xjkj−h = xj(tjk)− h · cos θj(tjk),
yjkj+h = yj(tjk) + h · sin θj(tjk),
yjkj−h = yj(tjk)− h · sin θj(tjk).

In all the numerical experiments the value of ln |J | (or |J |) at a point is interpolated
by the bi-quintic piecewise Lagrange polynomials for points away from the boundary,

and the bi-cubic or bi-linear interpolation for points near the boundary. For incomplete

interior data, we extend |J | outside the region [0, c]× [a, b] (where it is given) bi-linearly.

The characteristic curves that exit this region are cut off. See, for example, the curve

lying closest to the lower boundary in Figure 3.

Step 2. The characteristics are equipotential lines. The value of the potential

along each characteristic is determined by the measurement of the voltage potential at

the boundary. Let

γj(t) = (xj(t), yj(t)), j ∈ {1, 2, . . . ,m}, t ∈ [0, βj), (24)

denote the equipotential line, which solves (11) subject to (23), and

ζi(ξ) = (x̂i(ξ), ŷi(ξ)), ξ ∈ [0, αi), i ∈ {1, 2, . . . , n}, (25)

denote a smooth non-characteristic curve, which is transversal to each γj, j = 1, 2, . . . ,m.

At the point of intersection we have{
0 = ux

dxj

dt
+ uy

dyj
dt
,

uξ = ux
dx̂i

dξ
+ uy

dŷi
dξ
,
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Figure 3. The top images show the characteristics of the four modes (left) and

the brain (right) reconstructed from the interior data measured in [0, 1] × [0, 1]. The

bottom images show the characteristics for the four modes (left) and the brain (right)

reconstructed from the interior data measured in [0, 0.6]× [0.25, 0.701].

and

∇u =
uξ

dyj
dt

dx̂i

dξ
− dxj

dt
dŷi
dξ

⟨
dyj
dt
,−dxj

dt

⟩
. (26)

The non-characteristic curves of (25) are obtained by one dimensional interpolation in

between points lying on different characteristics, see the left illustration in Figure 4.

The derivative uξ at the node where γj intersects ζi, is computed via the Lagrange

polynomial interpolation along ζi.

In the particular case in which the characteristic curves are graphs, say
∣∣∣dxj

dt

∣∣∣ > 0,

j = 1, 2, . . . ,m, a different method is employed to compute the gradient: the first

component of each characteristic is regarded as the independent variable x and the other

components can be expressed as functions yj = ϕj(x) and θj = ψj(x), j = 1, 2, . . . ,m.

Thus, letting xk = k c
n−1

, k = 1, 2, . . . , n we approximate the value of the functions

{yj = ϕj(x)}mj=1 and {θj = ψj(x)}mj=1 at equally spaced points via fifth degree piecewise

Lagrange polynomials. For simplicity, we denote the interpolated point of the jth

characteristic at xk by (xk, ykj , θ
k
j ). We construct a curve ζk(ξ) = (x̂k(ξ), ŷk(ξ)) as in
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Figure 4. The left image illustrates an example of a set of constructed non-

characteristic (solid line) curves as in (25) with selected points (solid dots) on the

characteristic curves (dashed lines). The right image shows an example of a set of

constructed non-characteristic curves (solid line) by selecting the points of interpolation

(solid dots) on the characteristic curves (dashed lines) which can be described by

functions. The reconstructed conductivities of the four modes and the brain, shown in

Figure 5, were constructed on the characteristics computed as in step 1 of section 3.2

with non-characteristic and characteristic curves as in the the right image using (28).

(25) by fixing k and selecting (xk, ykj )
m
j=1 as the points for interpolation (see the right

illustration in Figure 4), so that dx̂k

dξ
= 0, dŷk

dξ
= 1, and uξ = uy. Using the first two

equations in (11) and the curve ζk at the j
th point (xk, ykj , θ

k
j ), the formula (26) becomes

∇u =
uy

sin θkj

⟨
cos θkj , sin θ

k
j

⟩
. (27)

Note that since yj = ϕj(x) for j = 1, 2, . . . ,m, then 0 < θ < π for every (x, ϕj(x)) in Ω,

in particular sin θkj never vanishes.

Step 3. One recovers the conductivity by (26). In the specific case in which the

equipotential curves are graphs the conductivity at (xk, ykj ) is also given by

σ(xk, ykj ) =
|J |(xk, ykj )
uy(xk, ykj )

sin θkj . (28)

Note that in the case of graphs uy ̸= 0. The reconstructions in Figure 5 are done using

formula (28).

The reconstruction method requires differentiation of the interior data, and the

reconstructed potential. In the case of rough data, such as the brain experiment (see

Figure 2), we use regularized differentiation, as explained below.

The interior data is convoluted with the two dimensional triangle function

Tϵx,ϵy(x, y) =


(
1−|x|
ϵ2x

)
·
(

1−|y|
ϵ2y

)
, if |x| ≤ ϵx and |y| ≤ ϵy

0 , otherwise

before differentiation by directional central difference. The reconstructed values of the

potential are not available on a rectangular grid, which forces us to convolute u indirectly
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Figure 5. The top images show the reconstruction of the four modes (left) and

the brain (right) reconstructed from the interior data measured in [0, 1] × [0, 1]. The

bottom images show the partial reconstruction of the four modes (left) and the brain

(right) from the data measured in [0, 0.6] × [0.25, 0.701]. The l1 relative error for the

reconstruction of the four modes and the brain from complete data are 0.18% and

1.37%, respectively.

by ∫ ∞

−∞

∫ ∞

−∞
Φ(α, β)Tϵx,ϵy(u− α, x− β)dαdβ,

where x 7→ (x,Φ(u0, x)) is the parametrization of the equipotential curve with voltage

potential u0.

We stress that in this paper we only regularize the differentiation of the magnitude

of the current density but not of the voltage potential generated numerically by solving

(1). Moreover, in the case of smooth data, like in the four modes experiment, we did

not use any regularization in the differentiation. The l1-relative error

1

mn

m∑
j=1

n∑
i=1

|σ − σ̃|
σ

(x(tji), y(tji))

in the reconstruction of the brain from the complete interior data is 0.0137, and from

incomplete interior data is 0.0149. The l1-relative error of the reconstruction of the four
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modes from the complete interior data is about 0.0018, and from incomplete data is

0.0028. See the Figure 5 for reconstructions from complete and incomplete data.

4. Concluding remarks

We presented a new planar conductivity reconstruction method in CDII based on solving

the Cauchy problem for the 1-Laplacian with partial data. We show that equipotential

lines are characteristics of a corresponding first order quasilinear PDE. In particular

this emphasizes the specific (parabolic) character of the 1-Laplacian, namely that the

solution on one side of the characteristic does not influence the solution on the other

side. This fact was observed previously in [21], where the equipotential lines were shown

to be geodesics in an appropriate Riemannian metric.

If |J | is known in the entire domain Ω, then (by the uniqueness of solution in

the initial value problem for ODEs,) the method recovers the entire equipotential line

originating at Γ. From the weak maximum principle, in order for the characteristics to

span the full domain it is necessary that

Range(f |Γ) = Range(u|∂Ω). (29)

From the strong maximum principle, the maximum occurs on Γ+ where the normally

applied current is negative , while the minimum occurs on Γ−, where the current

is positive. Thus finding the maximum and minimum voltage entails measuring the

potential on Γ±. This is problematic in practice since Γ± are precisely where the

electrodes are placed. However, if Γ± tend to a point (of injection), then the voltage on

each of the two arcs of ∂Ω \ Γ± covers all of the voltage potential inside.

If, as considered in [21], instead of injecting a current, one maintains an almost

two-to-one (i.e., each values is taken twice with the exception of the connected maxima

and minima) boundary voltage and measures the exiting normal current at an arc Γ

satisfying (29), then the method here also recovers the conductivity everywhere inside

Ω.
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