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Abstract. In the inverse stationary transport problem through anisotropic atten-
uating, scattering, and refractive media, the albedo operator stably determines the
gauge equivalent class of the attenuation and scattering coefficients.

1. Introduction

This paper concerns the problem of recovering the absorption and scattering prop-
erties of a refractive medium from boundary knowledge of the albedo operator. The
medium M ⊂ Rn, n ≥ 2, is a bounded domain with smooth boundary, endowed with
a known Riemannian metric g. The free moving particles travel through M along
the geodesics. In the stationary case the propagation of particles is modeled by the
linear transport equation

−Du(x, v)− a(x, v)u(x, v) +

∫

SxM

k(x, v′, v)u(x, v′) dωx(v
′) = 0.(1)

In the equation above u(x, v) denotes the density of particles at position x with
velocity v in SxM , the unit tangent sphere at x. The operator D is the derivative
along the geodesic flow: For a given point (x, v) ∈ SxM , if γ(x,v)(·) denotes the
geodesic starting at γ(x,v)(0) = x with initial velocity γ̇(x,v)(0) = v, then

Du(x, v) :=
∂

∂t

∣∣∣
t=0

u(~γ(x,v)(t)),(2)

where, for brevity, we use the notation ~γ(x,v)(t) = (γ(x,v)(t), γ̇(x,v)(t)). If g is Euclidean
then D is the directional derivative: Du(x, v) = v · ∇xu(x, v). The measure dωx(v

′)
in (1) is the volume form on SxM induced from the volume form on TxM (the
tangent space to M at x) determined by g at x. The resulting (Liouville) form on
SM is preserved under the geodesic flow of g, see [22]. The attenuation coefficient
a(x, v) in (1) quantifies the rate at which particles are lost from the point (x, v) in
phase space due to absorption and scattering into new directions. The scattering
coefficient k(x, v′, v) represents the probability that a particle at position x with
velocity v′ ∈ SxM will scatter to have new velocity v ∈ SxM .

The boundary measurements are described by the albedo operator A: Let Γ± =
∂±SM = {(x, v) ∈ ∂SM : ±〈v, νx〉 > 0} denote the “incoming” and “outgoing”
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bundles, where νx is the unit outer normal vector to the boundary ∂M at x and 〈·, ·〉
is the inner product, each with respect to g at x. The medium is probed with the
given radiation

u|Γ− = u−,(3)

and the exiting radiation is detected on Γ+. The albedo operator takes the incoming
flux to the outgoing flux at the boundary: Au− = u|Γ+ .

The inverse boundary value problem is to determine the coefficients a and k from
the knowledge of A.

When the attenuation a is isotropic (v-independent), there is a large collection
of uniqueness results under varying assumptions on the parameters; see [2] for a
comprehensive account, and [20] for a recent survey of numerical methods. The
works below are based on the singular decomposition of the Schwartz kernel of A, an
idea first introduced in [6] and [7]; see also [5]. In the Euclidean setting, uniqueness
of a(x) (dimensions two and above) and k(x, v′, v) (dimensions three and above) was
proven in [7] under some minimal restrictions guaranteeing only that the forward
problem is well-posed. For sufficiently small k this result was extended to dimension
two in [24]; see also [26, 27]. Stability results are proven in [24, 10, 21, 28] with
the most general result (in Euclidean geometry) in [3]. When no angular resolution
is measured in the outgoing flux, the singular decomposition of the new boundary
operator has been used to recover an isotropic coefficient a and the spatial part of k
in [10, 4].

The case of a Euclidean metric corresponds to transport in materials with a con-
stant index of refraction. If the index of refraction is isotropic, but varying, then
(1) can be derived as a limiting case of Maxwell’s equations with non-constant (but
isotropic) permeability, resulting in a metric which is conformal to the Euclidean
metric ([1]). For a general metric, we consider (1) as a model for transport in a
medium with varying, anisotropic index of refraction. When the attenuation is as-
sumed isotropic, uniqueness results in Euclidean geometry are extended to the Rie-
mannian metric setting in [11, 13, 14, 15]. There and here, the manifold is assumed
to be simple as follows.

Definition: (M, g) is called simple if it is strictly convex, and for any x ∈ M the
exponential map expx : exp−1

x (M) → M is a diffeomorphism. If M is two dimen-
sional we have the following additional assumption: Let κ be the maximum sectional
curvature of M . If κ > 0, then we also assume diam(M) < π/

√
κ.

The works mentioned above concern the media with an isotropic attenuation char-
acter. However, since the attenuation is a combination of absorption and loss of
particles due to scattering: a(x, v) = σ(x, v) +

∫
SxM

k(x, v, v′) dωx(v
′), even when the

absorption part is isotropic (σ = σ(x)), if k depends on two independent directions
the resulting attenuation is anisotropic. Evidence of anisotropy in biological tissue
has been observed experimentally, see [12].

When the attenuation coefficient is anisotropic, it is possible to have media of dif-
fering attenuation and scattering properties which yield the same albedo operator.
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Moreover the non-uniqueness is characterized by the action of a gauge transforma-
tion [23]: see (4) below. The same algebraic structure of non-uniqueness is valid in
refractive media [16].

In Theorems 4.1 and 4.2 we show the stability of the gauge equivalent classes
occurring in refractive media, thus extending the results from the Euclidean case
in [17]. We also generalize a stability result in [3] from Euclidean to Riemannian
geometry.

The algebraic structure of non-uniqueness in [23, 16] can be readily observed.
Indeed, if φ ∈ L∞(SM) is positive with 1/φ ∈ L∞(SM), Dφ ∈ L∞(SM) and such
that φ = 1 on ∂SM . Set

ã(x, v) = a(x, v)−D log φ(x, v), k̃(x, v′, v) =
k(x, v′, v)φ(x, v)

φ(x, v′)
.(4)

Then u satisfies (1) if and only if ũ = φu solves

−Dũ(x, v)− ã(x, v)ũ(x, v) +

∫

SxM

k̃(x, v′, v)ũ(x, v′) dωx(v
′) = 0.

Since φ = 1 on Γ, u = ũ there, so the albedo operator A for the parameters (a, k) is

indistinguishable from the albedo operator Ã for the pair (ã, k̃), i.e. A = Ã. This
motivates the following definition in [23, 16].

Definition 1.1. Two pairs of coefficients (a, k) and (ã, k̃) are called gauge equivalent
if there exists a positive map φ ∈ L∞(SM) with 1/φ ∈ L∞(SM), Dφ ∈ L∞(SM),

and φ = 1 on Γ, such that (4) holds. We denote this equivalence by (a, k) ∼ (ã, k̃).

The relation defined above is reflexive since (a, k) ∼ (a, k) via φ ≡ 1; it is symmetric

since (a, k) ∼ (ã, k̃) via φ yields (ã, k̃) ∼ (a, k) via 1/φ; and it is transitive since

if (a, k) ∼ (ã, k̃) via φ and (ã, k̃) ∼ (a′, k′) via φ̃ then (a, k) ∼ (a′, k′) via φφ̃.
Therefore one has the multiplicative group of gauges acting transitively (since any
equivalent pair are related by some gauge φ [23, 16]) on the equivalent class of a pair
of coefficients. We denote the equivalence class of (a, k) by 〈a, k〉.

2. Transport of the data to a larger domain

Due to the method of proof, the total travel time of each particle in M has to be
uniformly bounded away from zero. This can be done without loss of generality by
doing the measurements away from the boundary ∂M . More precisely, let M0 be a
slightly larger domain strictly containing M . The metric g can be extended to g0 on
M0 in such a way that (M0, g0) still remains simple [25].

As in [17], we reduce the problem in M to one in M0: Let (a, k) and (ã, k̃) be
coefficients for which the forward problems in (M, g) are well-posed, and A and Ã
be their corresponding albedo operators. Defining a = ã = k = k̃ = 0 in M0 \M , the
forward problems in (M0, g0) are also well-posed and the albedo operators A0 and
Ã0 are well defined maps between functions on

Γ0
± := ∂±SM0 = {(x, v) ∈ ∂SM0 : ±〈v, νx〉 > 0}
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(now νx is the outer unit normal vector to ∂M0 at x, with respect to the extended
metric g0). As in [17], when the two forward problems for M are well-posed in Lp,
1 ≤ p ≤ ∞, the following isometric property holds:

‖A − Ã‖L(Lp(Γ−,dµ);Lp(Γ+,dµ)) = ‖A0 − Ã0‖L(Lp(Γ0
−,dµ0);Lp(Γ0

+,dµ0)).(5)

The measure dµ (and, analogously, dµ0) in (5) is defined as follows: Let dΣ2n−2 be
the volume form on Γ± obtained by the natural restriction of the volume form on
SM to Γ±. Then, by extending dΣ2n−2 as a homogeneous form of order n− 1 in |v′|,
we have that d|v′| dΣ2n−2(x′, v′) coincides with the volume form on SM ; see [22] for
details. We define

dµ(x′, v′) = |〈v′, νx′〉| dΣn−2(x′, v′).(6)

Remark: The proof of (5) is essentially identical to that in the Euclidean case
as presented in [17] due to the following invariant property of the form dµ: Fix
(x′0, v

′
0) ∈ Γ±. Let ∂Ω̃ be any surface so that the geodesic issued from (x′0, v

′
0) hits it

transversally. Then the geodesic flow defines a natural local “projection” near (x′0, v
′
0),

of Γ± onto Γ̃±. Let dµ̃ be the measure on Γ̃± defined analogously to (6). Then the
pull back of dµ̃ is dµ (see the proof of Lemma 4.2.2 in [22]). Given (x, v) ∈ SM , we
define the “forward/backward travel time to the boundary” functions

τ±(x, v) = min{t ≥ 0 : γ(x,v)(±t) ∈ ∂M0},
and let τ(x, v) = τ+(x, v) + τ−(x, v) be the total travel time of the free particle (of
velocity v at x) through M0. Since distg0(M,∂M0) > 0, we have

c0 := inf{τ(x, v) : (x, v) ∈ SM} > 0.(7)

Using the isometry property (5), we can considered the inverse problem in the larger
domain (M0, g0) with the albedo operators now acting between Γ0

±. Equivalently, for
the original problem in (M, g) we may work without loss of generality with coefficients
a, k of (a priori fixed) compact support in M .

To simplify notation, while still working in the larger domain, we drop the 0 index
throughout the remaining of the paper: thus M0 becomes M , Γ0

± becomes Γ±, etc.

3. The singular structure of the albedo operator’s kernel

In this section we recall the singular decomposition of the Schwartz kernel of the
albedo operator for the two cases separated by dimension.

We work within the class of admissible coefficients: For n ≥ 3

(a, k) ∈ L∞(SM)× L∞(SM,L1(SxM)),(8)

and for n = 2

(a, k) ∈ L∞(SM)× L∞(S2M),(9)

where S2M := {(x, v′, v) : x ∈ M, v′, v ∈ SxM}. Note that the gauge transformations
(4) preserve the admissible classes in (8) and (9).
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Moreover, either one of the following subcritical conditions that yield well-posedness
for the boundary value problem (1) and (3) is assumed to hold:

(10) ess sup(x,v)∈SM

∣∣∣∣τ(x, v)

∫

SxM

k(x, v, v′) dωx(v
′)

∣∣∣∣ < 1,

or

(11) a(x, v)−
∫

SxM

k(x, v, v′) dωx(v
′) ≥ 0, a.e. (x, v) ∈ SM ;

see, e.g., [3, 7, 8, 18, 19].
The right hand side of (1) defines a closed, unbounded operator on L1(SMR) with

the domain {u ∈ L1(SMR) : Du ∈ L1(SMR), u|Γ− = 0}; see [7, 16].
Proposition 3.1 below, which describes the terms in the expansion of the kernel

of A, is proven in [13], the Euclidean equivalent appearing in [7]. We denote by
δ{x′,v′}(x, v) the delta-distribution on Γ+ with respect to the measure dµ defined by

∫

Γ+

ϕ(x, v)δ{x′,v′}(x, v) dµ(x, v) = ϕ(x′, v′), ϕ ∈ C∞
c (Γ+).

Similarly, δ{x}(y) is the delta distribution on M supported at x.
If x, y ∈ M let v(x, y) ∈ SxM denote the tangent vector at x of the unit speed

geodesic joining x to y (uniquely defined since M is simple), and d(x, y) be the Rie-
mannian distance between x and y. Denote the total attenuation along the geodesic
from x to y by

E(x, y) := exp
{
−

∫ d(x,y)

0

a
(
~γ(x,v(x,y))(t)

)
dt

}
.(12)

Note that γ̇(y,v(y,x))(d(y, x) − s) = −γ̇(x,v(x,y))(s), so when a depends on direction,
E(x, y) 6= E(y, x).

Proposition 3.1. [13] Let (M, g) be a smooth simple Riemannian manifold of di-
mension n ≥ 3. Assume that (a, k) are admissible and subcritical so that the forward
problem is well-posed. Then the albedo operator A : L1(Γ−, dµ) → L1(Γ+, dµ) is
bounded and its Schwartz kernel α(x, v, x′, v′), considered as a distribution on Γ+

parameterized by (x′, v′) ∈ Γ−, has the expansion α = α0 + α1 + α2, where

α0 = E
(
γ(x,v)(−τ−(x, v)), x

)
δ{~γ(x′,v′)(τ(x′,v′))}(x, v),(13)

α1 =

∫ τ+(x′,v′)

0

∫ τ−(x,v)

0

E(y(s), x)E(x′, z(t))k(z(t), ż(t), ẏ(s))δ{y(s)}(z(t)) ds dt(14)

y(s) = γ(x,v)(s− τ−(x, v)), z(t) = γ(x′,v′)(t),

α2 ∈ L∞(Γ−; L1(Γ+, dµ)).(15)

We note that k(z(t), ż(t), ẏ(s)) is only defined on the support of the integrand,
namely when y(s) = z(r).

When n = 2 the left hand side of (1) defines an unbounded operator of domain
{u ∈ L∞(SM) : Du ∈ L∞(SM), u|Γ− = 0}. Provided that (9) holds, and we have
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subcriticality (10) or (11), this operator has a bounded inverse in L∞(SM), see [14],
and the singular decomposition of the albedo kernel is more explicit as follows.

Given (x, v, x′, v′) ∈ Γ+ × Γ−, define χ : Γ+ × Γ− → {0, 1} by χ(x, v, x′, v′) = 1
if there exist 0 ≤ s = s(x, v, x′, v′) ≤ τ−(x, v) and 0 ≤ t = t(x, v, x′, v′) ≤ τ+(x′, v′)
such that γ(x,v)(s − τ−(x, v)) = γ(x′,v′)(t) (i.e., the geodesics intersect in M), and
χ(x, v, x′, v′) = 0 otherwise. When χ(x, v, x′, v′) = 1, let ψ(x, v, x′, v′) be the angle
between the tangent vectors of these geodesics at the point of intersection.

Proposition 3.2. [14] Let (M, g) be a two dimensional simple Riemannian mani-
fold. Assume that (a, k) are admissible and that (9) holds. Then the albedo operator
A : L∞(Γ−, dµ) → L∞(Γ+, dµ) is bounded and its Schwartz kernel α(x, v, x′, v′), con-
sidered as a distribution on Γ+ parameterized by (x′, v′) ∈ Γ−, has the expansion
α = α0 + α1 + α2, where

α0 = E
(
γ(x,v)(−τ−(x, v)), x

)
δ{~γ(x′,v′)(τ(x′,v′))}(x, v),

α1 = χ(x, v, x′, v′)E(x′, γ(x′,v′)(t))E(γ(x′,v′)(t), x)J k
(
~γ(x′,v′)(t), γ̇(x,v)(s− τ−(x, v))

)

| sin(ψ(x, v, x′, v′))| ,

0 ≤ α2χ ≤ C‖k‖2
L∞(S2M)

(
1 + log

1

| sin(ψ(x, v, x′, v′))|
)
.

Here, J = J (x, v, x′, v′) is a function uniformly bounded 0 < m1 ≤ J ≤ m2 < ∞ on
Γ+ × Γ− (see [14, Proposition 4]).

4. Statement of the main results

Let (Ba, ‖ · ‖Ba) and (Bk, ‖ · ‖Bk
) be Banach spaces in which the attenuation and,

respectively, the scattering kernel are considered, (a, k), (ã, k̃) ∈ Ba×Bk. The distance
∆ between equivalence classes with respect to Ba × Bk is defined by the infimum of
the distances between all possible pairs of representatives:

∆(〈a, k〉, 〈ã, k̃〉) := inf
(a′,k′)∈〈a,k〉, (ã′,k̃′)∈〈ã,k̃〉

max{‖a′ − ã′‖Ba , ‖k′ − k̃′‖Bk
}.

The following norms are used throughout

‖a‖∞ = ess sup(x,v)∈SM |a(x, v)|,

‖k‖∞,1 = ess sup(x,v′)∈SM

∫

SxM

|k(x, v′, v)| dωx(v),

‖k‖∞ = ess sup(x,v′,v)∈S2M |k(x, v′, v)| ,

‖k‖1 =

∫

M

∫

SxM

∫

SxM

|k(x, v′, v)| dx dωx(v
′) dωx(v).

Case n ≥ 3: Define the class

UΣ,ρ := {(a, k) as in (8) : ‖a‖∞ ≤ Σ, ‖k‖∞,1 ≤ ρ}.
Theorem 4.1. Let (M, g) be simple Riemannian manifold of dimension n ≥ 3. Let

(a, k), (ã, k̃) ∈ UΣ,ρ be such that the corresponding forward problems are well posed.
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Then

∆(〈a, k〉, 〈ã, k̃〉) ≤ C‖A − Ã‖L(L1(Γ−,dµ);L1(Γ+,dµ)),

where ∆ is with respect to L∞(SM)×L1(S2M), and C is a constant depending only
on Σ, ρ, n, and c0 in (7). More precisely, there exists a representative (a′, k′) ∈ 〈a, k〉
such that

‖a′ − ã‖∞ ≤ C‖A − Ã‖L(L1(Γ−,dµ);L1(Γ+,dµ)),(16)

‖k′ − k̃‖1 ≤ C‖A − Ã‖L(L1(Γ−,dµ);L1(Γ+,dµ)).(17)

Case n = 2: From Proposition 3.2 above recall the Schwartz kernel of the albedo
operator in the form

α = A0(x, v)δ{~γ(x′,v′)(τ(x′,v′))}(x, v) + β

where

A0(x, v) = E
(
γ(x,v)(−τ−(x, v)), x

) ∈ L∞(Γ+)

β(x, v, x′, v′)χ| sin ψ(x, v, x′, v′)| ∈ L∞(ΓR
+ × ΓR

−).

We define

‖A‖∗ = max{‖A0‖∞, ‖βχ| sin ψ|‖∞}.(18)

By using the Remark in Section 2, the proof in [17] carries through verbatim to show
that ‖A−Ã‖∗ is preserved when transported from the boundary of the inner domain
M to the boundary of the larger domain.

Define the class

VΣ,ρ :=
{
(a, k) as in (9) : ‖a‖∞ ≤ Σ, ‖k‖∞ ≤ ρ

}
.

Theorem 4.2. Let (M, g) be a two dimensional simple Riemannian manifold. For
any Σ > 0 there exists ρ > 0 depending only on Σ and (M, g) such that the following

holds: if (a, k), (ã, k̃) ∈ VΣ,ρ then

∆(〈a, k〉, 〈ã, k̃〉) ≤ C‖A − Ã‖∗
where ∆ is with respect to L∞(SM)×L∞(S2M) and C is a constant depending only
on Σ and (M, g).

Note that ρ sufficiently small already yields a subcritical regime as in (10).

5. Preliminary estimates

In this section we extend a result from the Euclidean to Riemannian setting; see
[3, Theorem 3.2] for contrast. In addition, the proof below allows for discontinuous
coefficients, which is needed when transporting the albedo operator to the larger
domain (and no boundary knowledge of the coefficients is available).
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Lemma 5.1. There is a family of maps φε,x′0,v′0 ∈ L1(Γ−, dµ), for (x′0, v
′
0) ∈ Γ− and

ε > 0, such that ‖φε,x′0,v′0‖L1(Γ−,dµ) = 1 and, for any f ∈ L∞(Γ−, dµ) given,

lim
ε→0

∫

Γ−
φε,x′0,v′0(x

′, v′)f(x′, v′) dµ(x′, v′) = f(x′0, v
′
0),(19)

whenever (x′0, v
′
0) is in the Lebesgue set of f . In particular, (19) holds for almost

every (x′0, v
′
0) ∈ Γ−.

For a measurable function f on Rn, The Lebesgue set of f is

Lf :=
{
x : lim

r→0

1

|Br(x)|
∫

Br(x)

|f(y)− f(x)| dy = 0
}

where Br(x) is the ball of radius r centered at x, and where | · | denotes Lebesgue
measure. We point out that if ∈ L1

loc(Rn), then |Rn \ Lf | = 0 ([9, Theorem 3.20]).

Proof. For (x′0, v
′
0) ∈ Γ− and ε > 0 sufficiently small, let (x′, v′) : U ×W ⊂ Rn−1 ×

Rn−1 → ∂SM with x′(U) ⊂ ∂M be a coordinate chart near (x′0, v
′
0) = (x′(0), v′(0)).

Let dΣ2n−2(x′, v′) =
√

g− du dw be the local coordinate expression for the volume
element (see (6)). For (x′, v′) ∈ Γ−, define

φε,x′0,v′0(x
′, v′) =

1

|〈νx′ , v′〉|
1√

g−(x′, v′)
ϕε(u(x′))ϕε(w(x′, v′)),

where ϕ(u) ≡ 1/(ωn−1) for |u| < 1, ϕ(u) ≡ 0 for |u| ≥ 1, and ϕε(u) = ε−n+1ϕ(u/ε).
By ωn−1 we denoted the volume of the unit ball in Rn−1. Then, for any ε > 0,∫

ϕε(u)du = 1 and, by using (6), we obtain
∫

Γ−
φε,x′0,v′0(x

′, v′)f(x′, v′) dµ(x′, v′)

=

∫

Γ−
ϕε(u(x′))ϕε(w(x′, v′))f(x′, v′)

1√
g−(x′, v′)

dΣn−2(x′, v′)

=

∫

R2n−2

ϕε(u)ϕε(w)f(x′(u), v′(u,w)) du dw.

Apply the equality above to f ≡ 1 to get ‖φε,x′0,v′0‖L1(Γ+,dµ) = 1. The conclusion
follows from the approximation of identity for Lp maps, see, e.g., [9, Theorem 8.15].

¤

Consider F : {x′ ∈ ∂M} × {y ∈ M} × {w ∈ SyM} → R defined by

F (x′, y, w) = E(x′, y)E
(
y, γ(y,w)(τ+(y, w))

)
,(20)

with E as in (12). F (x′, y, w) represents the total attenuation along the broken
geodesics from x′ → y → γ(y,w)(τ+(y, w)).

Let (a, k), (ã, k̃) be admissible pairs as in (8). Recall that, after the extension of the
domain, the coefficients have fixed compact support away from the boundary ∂M .
All the operators bearing the tilde refer to (ã, k̃) and are defined in a similar way to
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the ones for (a, k), i.e., Ã is the albedo operator corresponding to (ã, k̃). Recall that
n is the dimension of the space. To simplify notation let

‖A − Ã‖ := ‖A − Ã‖L(L1(Γ−,dµ);L1(Γ+,dµ)).

Theorem 5.2. Let (a, k), (ã, k̃) be as in (8). For almost every (x′0, v
′
0) ∈ Γ− the

following estimates hold: For n ≥ 2,

∣∣∣e−
∫ τ+(x′0,v′0)

0 a(~γ(x′0,v′0)(s)) ds − e
− ∫ τ+(x′0,v′0)

0 ã(~γ(x′0,v′0)(s)) ds
∣∣∣ ≤ ‖A− Ã‖.(21)

For n ≥ 3, with y(t) = γ(x′0,v′0)(t),

∫ τ+(x′0,v′0)

0

∫

Sy(t)M

|k − k̃|(y(t), ẏ(t), w)F (x′0, y(t), w) dωy(w) dt

≤ ‖A− Ã‖+ ‖F − F̃‖∞
∫ τ+(x′0,v′0)

0

∫

Sy(t)M

k̃(y(t), ẏ(t), w) dωy(w) dt.(22)

Proof. Let (x′0, v
′
0) ∈ Γ− be arbitrarily fixed and let φε,x′0,v′0 ∈ L1(Γ−) be defined as

in Corollary 5.1. To simplify the formulas, since (x′0, v
′
0) is fixed, in the following we

drop this dependence from the notation φε = φε,x′0,v′0 .
Let A = A0 +A1 +A2 be the decomposition of the albedo operator given by

Aif(x, v) =

∫

Γ−
αi(x, v, x′, v′)f(x′, v′) dµ(x′, v′), i = 0, 1, 2,

where αi, i = 0, 1, 2 are the Schwartz kernels in Proposition 3.1.
Let φ ∈ L∞(Γ+) with ‖φ‖∞ ≤ 1. Since ‖φε‖L1(Γ−) = 1, the mapping properties of

the albedo operator imply that
∣∣∣∣
∫

Γ+

φ(x, v)[A− Ã]φε(x, v) dµ(x, v)

∣∣∣∣ ≤ ‖A− Ã‖.(23)

Next we evaluate each of the three terms in
∫

Γ+
φ(x, v)[A − Ã]φε(x, v) dµ(x, v) by

using the decomposition in Proposition 3.1 and Fubini’s theorem.
The first term is evaluated using the formula (13):

I0(φ, ε) :=

∫

Γ+

φ(x, v)[A0 − Ã0]φε(x, v) dµ(x, v) =

∫

Γ−
φ
(
~γ(x′,v′)(τ+(x′, v′))

)
φε(x

′, v′)

×
[
e−

∫ τ+(x′,v′)
0 a(~γ(x′,v′)(s)) ds − e−

∫ τ+(x′,v′)
0 ã(~γ(x′,v′)(s)) ds

]
dµ(x′, v′).

Since the integrand above is in L∞(Γ−) by applying (19), we get for almost every
(x′0, v

′
0) ∈ Γ−

I0(φ)(x′0, v
′
0) := lim

ε→0
I0(φ, ε)

= φ
(
~γ(x′0,v′0)(τ+(x′0, v

′
0))

)(
e
− ∫ τ+(x′0,v′0)

0 a(~γ(x′0,v′0)(s)) ds − e
− ∫ τ+(x′0,v′0)

0 ã(~γ(x′0,v′0)(s)) ds
)
.(24)
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To evaluate the second term we use the formula (14) and let y = y(x′, v′, t) =
γ(x′,v′)(t):

I1(φ, ε) :=

∫

Γ+

φ(x, v)[A1 − Ã1]φε(x, v) dµ(x, v)

=

∫

Γ−
φε(x

′, v′) dµ(x′, v′)
{∫ τ+(x′,v′)

0

∫

SyM

φ
(
~γ(y,w)(τ+(y, w))

)

×
[
F (x′, y, w)k(y, ẏ, w)− F̃ (x′, y, w)k̃(y, ẏ, w)

]
dw dt

}
.

Apply again (19) for the continuous integrand above to obtain for almost every
(x′0, v

′
0) ∈ Γ−: with y = y(x′0, v

′
0, t)

I1(φ)(x′0, v
′
0) := lim

ε→0
I1(φ, ε)

=

∫ τ+(x′0,v′0)

0

∫

SyM

φ
(
~γ(y,w)(τ+(y, w))

)

× [
F (x′0, y, w)k(y, ẏ, w)− F̃ (x′0, y, w)k̃(y, ẏ, w)

]
dωy(w) dt,(25)

or I1(φ) = I1,1(φ) + I1,2(φ) with

I1,1(φ) =

∫ τ+(x′0,v′0)

0

∫

SyM

φ
(
~γ(y,w)(τ+(y, w))

)
F (x′0, y, w)(k − k̃)(y, ẏ, w) dωy(w) dt,

(26)

|I1,2(φ)| ≤
∫ τ+(x′0,v′0)

0

∫

SyM

|F − F̃ |(x′0, y, w)k̃(y, ẏ, w) dωy(w) dt.

(27)

Consider the third term

I2(φ, ε) =

∫

Γ+

φ(x, v)[A2 − Ã2]φε(x, v) dµ(x, v)

=

∫

Γ−
φε(x

′, v′) dµ(x′, v′)
{∫

Γ+

φ(x, v)(α2 − α̃2)(x, v, x′, v′) dµ(x, v)
}

.

By (15), the map (x′, v′) 7→ ∫
Γ+

φ(x, v)(α2 − α̃2)(x, v, x′, v′) dµ(x, v) is in L∞(Γ−),

and then, by (19), we get for almost every (x′0, v
′
0) ∈ Γ−

I2(φ)(x′0, v
′
0) := lim

ε→0
I2(φ, ε) =

∫

Γ+

φ(x, v)(α2 − α̃2)(x, v, x′0, v
′
0) dµ(x, v).(28)

The left hand side of (23) has three terms. We move the third term to the right hand
side (with absolute values) and take the limit with ε → 0 to get

|I0(φ) + I1(φ)|(x′0, v′0) ≤ ‖A− Ã‖+ I2(|φ|)(x′0, v′0), a.e. (x′0, v
′
0) ∈ Γ−,(29)

for any φ ∈ L∞(Γ+) with ‖φ‖∞ = 1.
We note that the negligible set on which the inequality above does not hold may

depend on φ. We will consider a countable sequence of functions φ, and since the
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countable union of negligible sets is negligible, the inequality (29) holds almost every-
where on Γ−, independently of the term in the sequence. This justifies the argument
below for almost every (x′0, v

′
0) in Γ−.

In (29), we shall choose two sequences of φ to conclude the two estimates of the
lemma. First we show the estimate (21) by choosing φm ∈ L∞(Γ+) which are 1 in
a shrinking neighborhood of (x0, v0) := ~γ(x′0,v′0)(τ+(x′0, v

′
0)). First, define φm(x0, v) to

be the indicator function for the set {v ∈ Sx0M : ‖v− v0‖g(x0) < 1/m}, then extend
φm by

φm(x, v) =

{
0 if d∂M(x, x0) ≥ 1/m,

φm(x,P(v; x, x0)) if d∂M(x, x0) < 1/m

where P(v; x, x0) is the parallel transport of v ∈ SxM from x to x0. Then (24) gives

I0(φm) = e
− ∫ τ+(x′0,v′0)

0 a(~γ(x′0,v′0)(s)) ds − e
− ∫ τ+(x′0,v′0)

0 ã(~γ(x′0,v′0)(s)) ds

independently of m. From (25) we have limm→∞ I1(φm) = 0 since for any t, the
support of φ

(
~γ(y(t),w)(τ+(y, w))

)
in w ∈ Sy(t)M shrinks to ẏ(t). From (28) we also

have limm→∞ I2(|φm|) = 0, since the support shrinks to one point. We use here the
corollary of (15) that (α2 − α̃2)(·, ·, x′0, v′0) ∈ L1(Γ+), for a.e. (x′0, v

′
0) ∈ Γ−.

Next we prove the estimate (22). Recall that now n ≥ 3. For m > 0, let N(x′0,v′0),q ⊂
M be the tubular neighborhood of the geodesic y(t) = γ(x′0,v′0)(t), 0 ≤ t ≤ τ+(x′0, v

′
0),

of radius 1/m. We now define a sequence φm ∈ L∞(Γ+). Set φm(x, v) = 0 if
x ∈ N(x′0,v′0),q; note that I0(φm) = 0 for all m. For (x, v) ∈ Γ+ with x 6∈ N(x′0,v′0),q,
φq(x, v) = 0 if the geodesic z(s) = γ(x,v)(s), −τ−(x, v) ≤ s ≤ 0 does not intersect
N(x′0,v′0),q. When γ(x,v)(·) does intersect N(x′0,v′0),q, let 0 ≤ t(x, v) ≤ τ+(x′0, v

′
0) and

−τ−(x, v) ≤ s(x, v) ≤ 0 be such that

dg

(
y(t(x, v)), z(s(x, v))

)
= min

s,t
{dg(y(t), z(s)}

and define

φm(x, v) = sgn(k − k̃)
(
y(t(x, v)), ẏ(t(x, v)),P(

ż(s(x, v)); z(s(x, v)), y(t(x, v))
))

.

Notice that when (x, v) is of the form ~γ(y(t),w)(τ+(y(t), w)), w ∈ Sy(t)M , that is (x′0, v
′
0)

and (x, v) are the beginning and end of a single-scattering broken geodesic, φm(x, v)

takes the sign of k − k̃ at the point of scattering. Note also that the support of φm

shrinks to a negligible set in Γ+ as m →∞ since n ≥ 3.
Now apply the estimate (29) to φm and use I0(φm) = 0 to get

|I1,1(φm)|(x′0, v′0) ≤ ‖A− Ã‖+ I2(|φm|)(x′0, v′0) + |I1,2(φm)|(x′0, v′0).
Since the support of φm shrinks to a set of measure zero in Γ+ as m → ∞, we
get for almost every (x′0, v

′
0) ∈ Γ−, limm→∞ I3(|φm|)(x′0, v′0) = 0. Finally, noting

that |I1,1(φm)| = I1,1(φm) and applying (27), from (26) we obtain for almost every
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(x′0, v
′
0) ∈ Γ−

∫ τ+(x′0,v′0)

0

∫

Sy(t)M

|k − k̃|(y(t), ẏ(t), w)E(x′0, y)E
(
y(t), γ(y(t),w)(τ+(y(t), w))

)
dωy(w) dt

= lim
m→∞

I1,1(φm) ≤ ‖A− Ã‖+

∫ τ+(x′0,v′0)

0

∫

SyM

|F − F̃ |(x′0, y, w)k̃(y, ẏ, w) dωy(w) dt.

The estimate (22) in the theorem follows. ¤

6. Stability modulo gauge transformations

In this section we prove Theorem 4.1.
We start with two pairs (a, k), (ã, k̃) ∈ UΣ,ρ and let

ε := ‖A − Ã‖.
We shall find an intermediate pair (a′, k′) ∼ (a, k) such that (16) and (17) hold.

Define first the “trial” gauge transformation:

ϕ(x, v) := e−
∫ τ−(x,v)

0 (ã−a)(~γ(x,v)(s−τ−(x,v))) ds, a.e. (x, v) ∈ SM.(30)

Then ϕ > 0, ϕ|Γ− = 1, Dϕ(x, v) ∈ L∞(SM) and

ã(x, v) = a(x, v)−D log ϕ(x, v).(31)

Note, however, that ϕ|Γ+ is not equal to 1. We begin by estimating ϕ|Γ+ . By (21),
we have for almost every (x′0, v

′
0) ∈ Γ−

∣∣∣e−
∫ τ+(x′0,v′0)

0 a(~γ(x′0,v′0)(s)) ds − e
− ∫ τ+(x′0,θ′0)

0 ã(~γ(x′0,v′0)(s)) ds
∣∣∣ ≤ ε.

Changing variables t = τ+(x′0, v
′
0) − s and denoting (x0, v0) = ~γ(x′0,v′0)(τ+(x′0, v

′
0)) we

get
∣∣∣e−

∫ τ−(x0,v0)

0 a(~γ(x0,v0)(t−τ−(x0,v0))) dt − e−
∫ τ−(x0,v0)

0 ã(~γ(x0,v0)(t−τ−(x0,v0))) dt
∣∣∣ ≤ ε.(32)

When (x′0, v
′
0) covers Γ− almost everywhere we get (x0, v0) covers Γ+ almost every-

where.
By the Mean Value theorem applied to u 7→ e−u we obtain the lower bound

∣∣∣e−
∫ τ−(x0,v0)

0 a(~γ(x0,v0)(t−τ−(x0,v0))) dt − e−
∫ τ−(x0,v0)

0 ã(~γ(x0,v0)(t−τ−(x0,v0))) dt
∣∣∣

= e−u0

∣∣∣
∫ τ−(x0,v′0)

0

(ã− a)
(
~γ(x0,v0)(t− τ−(x0, v0))

)
dt

∣∣∣ = e−u0| log ϕ(x0, v0)|

≥ e−diam(M)Σ| log ϕ(x0, v0)|(33)

where u0 = u0(x0, v0, a, ã) is a value between the two integrals appearing in the
exponents in the left hand side above, and ϕ is defined in (30).

From (32) and (33) we get the following estimate for the “trial” gauge ϕ:

| log ϕ(x, v)| ≤ ediam(M)Σε, a.e. (x, v) ∈ Γ+.(34)
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The “trial” gauge ϕ is not good enough since it does not equal 1 on Γ+. We alter
it to some ϕ̃ ∈ L∞(SM) with D log ϕ̃ ∈ L∞(SM) in such a way that ϕ̃|∂SM = 1.
More precisely, for almost every (x, θ) ∈ SM , we define ϕ̃(x, v) by

log ϕ̃(x, v) := log ϕ(x, v)− τ−(x, v)

τ(x, v)
log ϕ

(
~γ(x,v)(τ+(x, v))

)
.(35)

Since 0 ≤ τ−(x, v)/τ(x, v) ≤ 1 we get ϕ̃ ∈ L∞(SM), and clearly ϕ̃|∂SM = 1. Since
Dτ(x, v) = D log ϕ

(
~γ(x,v)(τ+(x, v))

)
= 0 and Dτ−(x, v) = 1,

D log ϕ̃(x, v) = D log ϕ(x, v)− log ϕ
(
~γ(x,v)(τ+(x, v))

)

τ(x, v)
∈ L∞(SM).(36)

Define now the pair (a′, k′) in the equivalence class of 〈a, k〉 by

a′(x, v) := a(x, v)−D log ϕ̃(x, v),(37)

k′(x, v′, v) :=
ϕ̃(x, v)

ϕ̃(x′, v′)
k(x, v′, v).(38)

Now A′, the albedo operator corresponding to (a′, k′), satisfies A′ = A, and

‖A′ − Ã‖ = ‖A − Ã‖ = ε.

Next we compare the pairs (a′, k′) with (ã, k̃) and show them to satisfy (16) and
(17). Using the definitions (31), (37), the relation (36), and the estimate (34) for ϕ
on Γ+, we have for almost every (x, v) ∈ SM :

|ã(x, v)− a′(x, v)| =
∣∣[ã− a](x, v) + [a− a′](x, v)

∣∣
= |D log ϕ̃(x, v)−D log ϕ(x, v)|

=

∣∣log ϕ
(
~γ(x,v)(τ+(x, v))

)∣∣
τ(x, v)

≤ ε
ediam(M)Σ

τ(x, v)
.(39)

Since the coefficients are supported away from ∂M (by construction of M) such that
(7) holds, following (39) we obtain the estimate (16) in the form

‖ã− a′‖∞ ≤ ε
ediam(M)Σ

c0

,(40)

with c0 from (7).
Up to this point, all the arguments above also work for two dimensional domains.

Next we prove the estimate (17). These arguments are specific to three or higher
dimensions. Recall the formula (20) adapted to a′: let x′ ∈ ∂M , y ∈ M and w ∈ SyM
and let v′ ∈ Sx′M, t > 0 be such that y = γ(x′,v′)(t). Then from (40),

|a′(x, v)| ≤ ε
ediam(M)Σ

τ(x, v)
+ Σ, and ‖a′‖∞ ≤ ε

ediam(M)Σ

c0

+ Σ,

so (using the first, and the fact that τ is constant along geodesics),

|F ′(x′, y, w)| = e−
∫ t
0 a′(~γ(x′,v′)(s)) dse−

∫ τ+(y,w)

0 a′(~γ(y,w)(s)) ds

≥ exp
(−2(εediam(M)Σ + diam(M)Σ

)
.(41)
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Using the non-negativity of ã and a′ we estimate

|[F̃ − F ′](x′, y, w)| ≤
∣∣∣e−

∫ t
0 ã(~γ(x′,v′)(s)) ds − e−

∫ t
0 ã(~γ(x′,v′)(s)) ds

∣∣∣

+
∣∣∣e−

∫ τ+(y,w)

0 a′(~γ(y,w)(s)) ds − e−
∫ τ+(y,w)

0 a′(~γ(y,w)(s)) ds
∣∣∣

≤
∣∣∣
∫ t

0

[ã− a′](~γ(x′,v′)(s)) ds
∣∣∣ +

∣∣∣
∫ τ+(y,w)

0

[ã− a′](~γ(y,w)(s)) ds
∣∣∣

≤ εediam(M)Σ
( t

τ(x′, v′)
+

τ+(y, w)

τ(y, w)

)
≤ 2εediam(M)Σ(42)

by (39). We now apply the lower bound for F ′ in (41), the upper bound for ‖F̃−F ′‖∞
from (42) and the hypothesis ‖k̃‖∞,1 ≤ ρ to the estimate (22) with respect to the

pairs (a′, k′) and (ã, k̃). With y(t) = γ(x′0,v′0)(t), we obtain

∫ τ+(x′0,v′0)

0

∫

Sy(t)M

|k − k̃|(y(t), ẏ(t), w) dωy(w) dt

≤ ε
(
1 + 2 diam(M)ρωn−1e

diam(M)Σ
)
exp

(
2 diam(M)

(
ε
ediam(M)Σ

c0

+ Σ
))

= ε C1, say.

Finally, integrating the formula above in (x′0, v
′
0) ∈ Γ− with the measure dµ(x′0, v

′
0),

we get

‖k̃ − k′‖1 ≤ εVol(∂M)ωn−1C1.

Theorem 4.1 holds now with C = max{Vol(∂M)ωn−1C1, e
diam(M)Σ/c0}.

7. Stability of the equivalence classes in two dimensions

We prove here Theorem 4.2, making use of the results of [14].

Let (a, k), (ã, k̃) ∈ VΣ,ρ be given with ‖A − Ã‖∗ = ε. As before, define the pair
(a′, k′) in the equivalence class of 〈a, k〉 by (37) and (38). Then the corresponding
albedo operator A′ = A and, thus,

‖A′ − Ã‖∗ = ‖A − Ã‖∗ = ε, and ‖(β̃ − β′)| sin ψ|‖∞ ≤ ε.(43)

The estimate (40) holds as in the case n ≥ 3. Now

ϕ̃(x, v)

ϕ̃(x′, v′)
= e−

∫ τ−(x,v)

0 (a′−a)(~γ(x,v)(s−τ−(x,v))) ds+
∫ τ−(x′,v′)
0 (a′−a)(~γ(x′,v′)(s−τ−(x′,v′))) ds.(44)

From (34) and (39), with y(s) = γ(x,v)(s− τ−(x, v)),

∣∣∣
∫ τ−(x,v)

0

(a′ − a)(y, ẏ) ds
∣∣∣ ≤

∫ τ−(x,v)

0

(|a′ − ã|+ |ã− a|)(y, ẏ) ds

≤
∫ τ−(x,v)

0

ε
ediam(M)Σ

τ(y, ẏ)
ds + εediam(M)Σ ≤ 2εediam(M)Σ;



Stability of the gauge equivalent classes 15

the same estimate holds for the second exponent in (44). Thus, from the definition
(38) and (44) we obtain

ϕ̃(x, v)

ϕ̃(x′, v′)
≤ exp

{
4εediam(M)Σ

}
=⇒ ‖k′‖∞ ≤ ρ exp

{
4εediam(M)Σ

}
.(45)

Let

Ẽ1(y, w′, w) := Ẽ
(
γ(y,w′)(−τ−(y, w′)), y

)
Ẽ

(
y, γ(y,w)(τ+(y, w))

)

be the total attenuation along the broken geodesic due to one scattering at (y, w′, w) ∈
S2M . Then (41) and (42) say

|E ′
1(y, w′, w)| ≥ exp

(−2(εediam(M)Σ + diam(M)Σ)
)

= C1, say, and(46)

‖Ẽ1 − E ′
1‖ ≤ 2εediam(M)Σ.(47)

The terms αj in the expansion of the albedo kernel in Proposition 3.2 are the
traces of distributions φj defined on SM ×Γ−; see [14]. The φj are the kernels of the
operators J , KJ and (I −K)−1K2J (j = 0, 1, 2, respectively) where

Jf−(x, v) = E(γ(x,v)(−τ−(x, v)), x)f−(~γ(x,v)(τ−(x, v))),

Kf(x, v) =

∫ τ−(x,v)

0

E
(
x, γ(x,v)(t− τ−(x, v))

)
T1f

(
~γ(x,v)(t− τ−(x, v))

)
dt, with

T1f(x, v) =

∫

SxM

k(x, v′, v)f(x, v′) dωx(v
′).

Let γ be the trace operator on L∞(Γ+), which is shown in [14] to be well-defined.
Let (x, v, x′, v′) ∈ Γ+×Γ− be such that the geodesics γ(x,v)(·) and γ(x′,v′)(·) intersect

at (y, w′, w) ∈ S2M . By Proposition 3.2 above,

E ′
1(k̃ − k′) = (E ′

1 − Ẽ1)k̃ + (Ẽ1k̃ − E ′
1k
′)

= (E ′
1 − Ẽ1)k̃ + (β̃ − β′)| sin ψ|+ (γφ′2 − γφ̃2)| sin ψ|,

and so by (43), (45), (46) and (47),

C1|k̃ − k′| ≤ 2εediam(M)Σρ + ε + |γφ′2 − γφ̃2|| sin ψ|.(48)

Now

|γφ′2 − γφ2| = γ(I −K ′)−1K ′2φ′0 − γ(I − K̃)−1K̃2φ̃0

= γ(I −K ′)−1
(
K ′2φ′0 − K̃2φ̃0

)
+ γ(I − K̃)−1(K ′ − K̃)(I −K ′)−1K̃2φ̃0

= γ(I −K ′)−1
(
K ′2 − K̃2

)
φ′0 + γ(I −K ′)−1K̃2(φ′0 − φ̃0)

+ γ(I − K̃)−1(K ′ − K̃)(I −K ′)−1K̃2φ̃0.(49)

Lemma 9 of [14] estimates the first of these terms:

‖γ(I −K ′)−1
(
K ′2 − K̃2

)
φ′0‖∞ ≤ C2‖k′ − k̃‖∞(‖k′‖∞ + ‖k̃‖∞)(1− log | sin ψ|).(50)
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For the second we appeal to Proposition 7, and its proof, in [14]. Instead of using
the estimate ‖E‖∞ ≤ 1, we use (42); together with the fact that (I−K ′)−1 preserves
L∞, we readily obtain

‖γ(I −K ′)−1K̃2(φ′0 − φ̃0) ≤ C3‖k̃‖2
∞‖E ′ − Ẽ‖∞ ≤ C3ρ

22εediam(M)Σ.(51)

The final term in (49) is estimated in [14, Lemma 10]:

‖γ(I − K̃)−1(K ′ − K̃)(I −K ′)−1K̃2φ̃0‖∞ ≤ C4‖k′ − k̃‖∞ρ2(1 + ρ).(52)

Combining (48), (50), (51) and (52), for a new constant C, we obtain

‖k′ − k̃‖∞ ≤ Cε + Cρ‖k′ − k̃‖∞
and so if ρ < 1/C, we obtain the final estimate

‖k′ − k̃‖∞ ≤ C

1− Cρ
ε =: C̃ε.

Theorem 4.2 is now proven for a constant which is the maximum of the C̃ above
and exp(diam(M)Σ)/c0 (see (40)).
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