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Abstract.
Frequency sounding of layered media is modelled by a hyperbolic problem. Within the framework

of this model, we formulate an inverse problem. Applying the Laplace transform and introducing the
impedance function, the latter is first reduced to the inverse boundary value problem for the Riccati
equation and then to the Cauchy problem for a first order quadratic equation. The advantage of such
transformations is that the quadratic equation does not contain an unknown coefficient. For a specific
class of data, it is shown that the Cauchy problem is uniquely solvable. Based on the asymptotic
behavior of solutions to both the Riccati and quadratic equations, a stable reconstruction algorithm
is constructed. Its feasibility is demonstrated in computational experiments.
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1. Introduction. The method of frequency sounding was first introduced and
developed by Tikhonov [19, 20] and Cagniard [7] in geophysical prospecting of the
Earth’s crust using electromagnetic waves emitted by natural sources and measuring
the surface impedance or admittance. Later on, the method was generalized and
applied to a wide variety of problems in areas that include remote sensing, medical
imaging, nondestructive testing and evaluation, marine acoustics and electromagnet-
ics, etc. We refer to [10] and the references therein for a survey on the applications
of the method.

In this paper, we consider the problem of acoustic frequency sounding of layered
media. An acoustic pulse is emitted at z = 0 and propagated through the Epstein
layer [8], i.e., the half-space z > 0 is filled with an inhomogeneous medium whose
sound speed is variable in the interval (0, L) and it is constant c(z) = c0 for z ≥ L.

The propagation and scattering of the pulsed acoustic wave in such a medium
can be modelled by the hyperbolic problem

c−2(z)Utt(z, t)− Uzz(z, t) = 0, z > 0, t > 0,(1.1)
U(z, 0) = Uz(z, 0) = 0,(1.2)
U(0, t) = δ(t),(1.3)
|U(z, t)| ≤ Ceσ0t, ∀t > 0,(1.4)

where C = const > 0 and σ0 > 0 is a known frequency. We formulate the following
Inverse Problem I. Let the function U(z, t) satisfies the hyperbolic problem

(1.1)-(1.4). Given the function Uz(0, t) = Ψ(t), t > 0, c0 and L, find the variable
sound speed c(z) in (0, L).

Traditionally, via the Fourier transform, one first reduces the wave equation (1.1)
to the Helmholtz equation containing the refraction coefficient n(z) = c0/c(z) and
then study the inverse problem for this equation. In the mathematics literature there
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are several methods available for solving the inverse problem for the Helmholtz equa-
tion, which may be subdivided into three groups as follows.

The methods from the first group (see, e.g., [4], [5], [6], [18]) utilize the trace
(asymptotic) formulae. For instance, in [5] the combination of the Riccati equation
and trace formulae resulted in a system of integro-differential equations with respect to
both the unknown impedance function and scattering potential inside the layer. This
system was numerically solved by the forth order Runge-Kutta scheme, and the global
convergence result was established for a sufficiently smooth scattering potential. In
the second group of methods (see, e.g., [17]), the reconstruction was based on reducing
the Riccati equation to an equivalent Volterra integral equation via the nonlinear Riesz
transform. This ensured the global convergence. In the third group (see, e.g. [11]),
the integral transformation

u(x, ω) =
∫ ∞

0

e−
√

iωtU(z, t)dt

was used to formulate an inverse problem for a family of the second order differential
equations and to develop the convexification method. This method was shown to have
the global convergence to a minimum norm solution only if the ultra-wide band data
is used. However, such a condition is more exceptional than typical in practice.

Unlike the methods indicated above, in the proposed approach, we reduce the
Inverse Problem I to an inverse problem for a family of Riccati equations. The latter
problems is solved via reducing to the Cauchy problem for the first order quadratic
differential equation for the sequence valued maps. This reduction is advantageous,
because the latter equations do not contain the unknown refraction coefficient. Al-
though it is similar to the techniques indicated in [5] and [11], the proposed approach is
distinctive. Unlike in [5], the asymptotic behavior of solutions to the Cauchy problem
is determined from the solution of a first order differential equation for sequence-
valued maps. This allow for avoiding computations at large frequencies. Unlike in
[11], we are not concerned with a minimum norm solution resulted from solving a
constrained minimization problem, but rather solve for the exact solution.

It should be mentioned that, assuming c ∈ C2(0,∞) and introducing a new
variable v(x, t) = U(z(x), t)/S(x), where S(x) =

√
c(z(x))/c0 and

x(z) =
∫ z

0

c−1(y)dy,

the hyperbolic problem (1.1)-(1.3) can be transformed to the problem

vtt(x, t)− vxx(x, t)− a(x)v(x, t) = 0, x > 0, t > 0,

v(x, 0) = vx(x, 0) = 0,

v(0, t) = δ(t),

with a(x) = S′′(x)/S(x)− 2(S′(x)/S(x))2. In [16], Romanov studied the problem of
recovering the coefficient a(x) from the given function vx(0, t) = Ψ(t)c(0)−δ(t)c′(0)/2
for t ∈ [0, 2l] under the assumption

vx(l, t) + Hv(l, t) = 0,

where H is a constant. Our formulation of the problem is different, because the
presence of the Epstein layer requires the transmission condition

vx(l, t) + c−1
0 vt(l, t) = 0.
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Moreover, in the proposed approach, knowledge of c(0) and c′(0) is not required.
It should also be mentioned that there is a relationship between the inverse prob-

lem studied in [16] and the inverse Sturm-Liouville problem that was extensively
studied during the last five decades (see, e.g., [9], [12], [13], [14], [15],[1]).

In this paper we identify a class of data for which the sound speed c(z) can be
recovered in the Epstein layer. Based on the asymptotic behavior of the solutions to
the Cauchy problem, we develop a stable reconstruction algorithm.

The paper is outlined as follows. In the section 2, we reduce both the forward
problem of acoustic frequency sounding of layered media to an initial value problem
for a parametric family of the Riccati equations and formulate the inverse problem for
the latter. In the section 3, we derive an auxiliary Cauchy and conduct the asymptotic
analysis of the solutions to both the Riccati and Cauchy problems. In the section 4, we
establish the existence and uniqueness results for the Cauchy problem. The section 5
concerns the numerical experiments demonstrating the computational feasibility of
the proposed approach. Finally, the section 6 concludes the paper.

2. The Riccati formalism. Since the function U(z, t) is of the exponential
order, we apply the Laplace transform

ũ(z, σ) =
∫ 0

∞
e−σtU(z, t)dt, z > 0, σ > σ0

to the hyperbolic problem (1.1)-(1.4) and obtain the parametric family of elliptic
boundary value problems

ũzz(z, σ)− σ2c−2(z)u(z, σ) = 0, z > 0, σ > σ0,(2.1)
ũ(0, σ) = 1,(2.2)

|ũ(x, σ)| ≤ C

σ − σ0
.(2.3)

Since c(z) = c0 for z > L, the traces of its solutions on the interval (0, L) satisfy the
transmission problem

ũzz(z, σ)− σ2c−2(z)u(z, σ) = 0, 0 < z < L, σ > σ0,(2.4)
ũ(0, σ) = 1,(2.5)
ũx(L, σ) + σc−1

0 ũ(L, σ) = 0.(2.6)

Introducing the dimensionless variables x = z/L, s = σL/c0, n(x) = c0/c(Lx) and
denoting

u(x, s) = ũ(Lx, c0s/L),

we arrive to the dimensionless problem

uxx(x, s)− s2n2(x)u(x, s) = 0, 0 < x < 1, s > s0,(2.7)
u(0, s) = 1,(2.8)
ux(1, s) + su(1, s) = 0,(2.9)

where s0 = σ0L/c0.
The existence of a unique solution to the above problem follows from classical

arguments. Also, the positivity of u(x, s) follows from the fact that a C2-function has
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no negative minima at the points where it is concave down. In frequency sounding, it
is not u but rather the surface admittance Y (s) = −ux(0, s)/u(0, s) that is observed.
This motivates introducing the impedance function

w(x, s) = −ux(x, s)
u(x, s)

, 0 ≤ x ≤ 1, s > s0.(2.10)

Then, the problem (2.7)-(2.9) can be reduced to a parametric family of final value
problems for the Riccati equation

wx(x, s) = w2(x, s)− s2n2(x), 0 < x < 1, s > s0,(2.11)
w(1, s) = s.(2.12)

Also, we have

w(0, s) = Lϕ(s),

where ϕ(s) is the Laplace transform of the data Uz(0.t) = Ψ(t). Thus, the Inverse
Problem I can be reformulated as follows.

Inverse Problem 2. Let the function w(x, s) be a solution of the problem (2.11),
(2.12). Given the function w(0, s) for s > s0, find the refraction coefficient n(x).

3. Asymptotic analysis. In this section we conduct the asymptotic analysis
of problems for the Riccati equation (2.11), (2.12), as well as the auxiliary Cauchy
problems derived from the previous ones.

To establish the analyticity of the function w(x, s) in the s variable, assume that
s = s1 + is2 is a complex parameter. For some α ≥ 0 we denote by Hα the closed
half-plane,

Hα = {s ∈ C : <(s) ≥ α}.
For a C2-smooth refraction coefficient we show that the Riccati problem has a

unique solution at a sufficiently large frequency. Moreover, this solution is analytic in
s ∈ Hs0 uniformly in x ∈ [0, 1] for some s0 > 0. We denote by ‖ · ‖∞ the sup-norm of
bounded functions defined on [0, 1].

Theorem 3.1. For n ∈ C2[0, 1], n(x) ≥ n0 > 0 and n(1) = 1, consider the
problem (2.11), (2.12) for each s ∈ C. Let

M =
∥∥∥∥

n′

n

∥∥∥∥
∞

+
1
2

∥∥∥∥∥
(

n′

n

)′∥∥∥∥∥
∞

and s0 =
2M

n0
.(3.1)

Then for any s ∈ Hs0 the problem (2.11), (2.12) has a unique solution w(·, s) ∈
C3[0, 1] of the form

w(x, s) = sn(x) + h(x, s),(3.2)

where h(x, s) is a bounded continuous function defined on [0, 1]×Hs0 , such that

sup
[0,1]×Hs0

|h(x, s)| ≤ 2M,(3.3)

and its series representation

h(x, s) =
∞∑

n=1

hn(x)
(

1
s
− 1

2s0

)n

(3.4)
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converges absolutely and uniformly in x ∈ [0, 1].
Proof. By introducing the functions

w̃(x, s) = w(1− x, s), g(x, s) = h(1− x, s), b(x) = n(1− x), x ∈ [0, 1],

we transform the final value problems (2.11), (2.12) to the initial value problems
{ −w̃x(x, s) = w̃2(x, s)− s2b2(x), 0 < x < 1

w̃(0, s) = s.
(3.5)

Then, the ansatz (3.2) can be rewritten as

w̃(x, s) = sb(x) + g(x, s).(3.6)

Clearly, the function w̃ is a solution of (3.5) if and only if g solves the family of Riccati
problems

gx(x, s) + 2sb(x)g(x, s) + g2(x, s) = −sb′(x), 0 < x < 1,(3.7)
g(0, s) = 0.(3.8)

Solutions to the Cauchy problem (3.7), (3.8) are the fixed points of the Volterra
operator

F [g](x, s) = g0(x, s)−
∫ x

0

g2(t, s) exp
(
−2s

∫ x

t

b(τ)dτ

)
dt(3.9)

with

g0(x, s) = −s

∫ x

0

b′(t) exp
(
−2s

∫ x

t

b(τ)dτ

)
dt.

Integrating by parts, we obtain

g0(x, s) =−1
2

[
d

dx
(ln b)(x)− d

dx
(ln b)(0) exp

(
−2s

∫ x

0

b(τ)dτ)
)]

+
1
2

∫ x

0

(
d2

dt2
(ln b)(t)

)
exp

(
−2s

∫ x

t

b(τ)dτ

)
dt.

Since <(s), b(x) > 0, the exponentials indicated above lie in the unit disk and

sup
[0,1]×Hs0

|g0(x, s)| ≤ M,

where M is defined in (3.1).
In the space of bounded continuous functions on [0, 1] × Hs0 with the sup-norm,
consider a closed ball B(g0; M) with the radius M at the center g0. Now we show
that the map F : B(g0; M) → B(g0; M) is contractive with respect to the Bielecki
norm

‖g‖λ = sup
[0,1]×[s0,∞)

|g(x, s)|e−λx,(3.10)

for λ > 2M .
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Indeed, for any s ∈ Hs0 , we have

|Fg(x, s)− g0(x, s)|≤
∫ x

0

|g(t, s)|2
∣∣∣∣exp

(
−2s

∫ x

t

b(τ)dτ

)∣∣∣∣ dt

≤ 4M2

∫ x

0

exp
(
−2<(s)

∫ x

t

b(τ)dτ

)
dt

=
2M2

<(s)b(x)

(
1− exp

(
−2<(s)

∫ x

0

b(τ)dτ

))

≤ 2M2

<(s)n0
≤ 2M2

s0n0
= M.

For g, g̃ ∈ B(g0; M), we also have

|Fg(x, s)− F g̃(x, s)|≤
∫ x

0

|g2(t, s)− g̃2(t, s)| exp
(
−2<(s)

∫ x

t

b(τ)dτ

)
dt

≤ 2M

∫ x

0

|g(t, s)− g̃(t, s)|e−λteλtdt ≤ 2M

λ
‖g − g̃‖λeλx,

from where we obtain

‖Fg − F g̃‖λ ≤ (2M/λ)‖g − g̃‖λ.

An application of the contraction mapping principle proves the existence and unique-
ness of the solution of (2.11) and (2.12). Because of the uniform bound in (3.3), the
asymptotic behavior at large frequencies is proven as well.

To prove the analyticity in s ∈ Hs0 , let us consider the first order system

∂g

∂x
(x, s) + 2sb(x)g(x, s) + g2(x, s) = −sb′(x),

∂l

∂x
(x, s) + 2[sb(x) + g(x, s)]l(x, s) + 2b(x)g(x, s) = −b′(x),

subject to the initial conditions g(0, s) = 0 and l(0, s) = 0. The second equation of
the system comes from the formal application of the operator ∂s = (∂s1 − i∂s2)/2 to
(3.7). This system has a unique solution in [0, 1] for all s ∈ Hs0 . More precisely, g is
the unique solution of (3.7) and (3.8), and the function l(x, s) is given by

l(x, s) = −
∫ x

0

[b′(t) + 2b(t)g(t, s)] exp
(
−2

∫ x

t

[sb(τ) + g(τ, s)]dτ

)
dt.(3.11)

Therefore g is holomorphic in s ∈ Hs0 and ∂sg(x, s) = l(x, s).
To prove the absolute convergence of the series (3.4), we notice that z → 1

z maps
the closed disk |z− 1

2s0
| ≤ 1

2s0
into Hs0 . This fact makes the map z → h(x, 1

z ) analytic
in the closed disk, and the Taylor expansion

h(x,
1
z
) =

∞∑
n=0

hn(x)
(

z − 1
2s0

)n

converges absolutely and uniformly in x ∈ [0, 1].
Remark 1. The asymptotic formula (3.2) can also be obtained from the WKB

solutions of the equation (2.7) by analogy with the method used in [11].
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Below, the parameter s is assumed to be real. Let w(x, s) be a solution of (2.11).
We introduce a new function

p(x, s) = −s2 ∂

∂s

(
w(x, s)

s2

)
.(3.12)

Since lims→∞ w(x, s) = 0, the quotient p(x, s)/s2 is integrable for each x ∈ (0, L) and

w(x, s)
s2

=
∫ ∞

s

p(x, ν)
ν2

dν.(3.13)

Differentiating the equation (2.11) and taking into account (3.13), one can show that
the function p satisfies the integro-differential equation

∂p

∂x
(x, s) = −2s2

(∫ ∞

s

p(x, ν)
ν2

dν

)[
s

(∫ ∞

s

p(x, ν)
ν2

dν

)
− p(x, s)

]
.(3.14)

Theorem 3.2. Let s0 and M be as defined in (3.1). The function p(x, s) is
represented as a series

p(x, s) = n(x) +
∞∑

n=1

(n + 1)pn(x)
sn

,(3.15)

which converges absolutely for s ≥ s0 and uniformly in x ∈ [0, 1]. Moreover, for
s ≥ 2s0 the following estimates hold

|p(x, s)− n(x)| ≤ 9M

s
,(3.16)

∣∣∣∣
∂p

∂s
(x, s)

∣∣∣∣ <
73M

2s2
.(3.17)

Proof. It follows from the asymptotic formula (3.2) that

p(x, s) = n(x)− ∂h

∂s
(x, s) +

2h(x, s)
s

,(3.18)

∂p

∂s
(x, s) =

∂2h

∂s2
(x, s) +

2
s

∂h

∂s
(x, s)− 2h

s2
(x, s).

Replacing h in (3.18) with its absolutely convergent series representation (3.4) and
combining terms of the same order, we obtain the series (3.15). The factor (n + 1) in
(3.15) is merely a scaling.

If s ≥ 2s0 = 4M/a0, then sb(t) + g(t, s) ≥ sa0 − 2M ≥ sa0/2 > 0. The bounds

sup
[0,1]×[2s0,∞)

∣∣∣∣
∂h

∂s
(x, s)

∣∣∣∣ ≤
5M

s
,(3.19)

sup
[0,1]×[2s0,∞)

∣∣∣∣
∂2h

∂s2
(x, s)

∣∣∣∣ ≤
65M

2s2
(3.20)

can be obtained from the relations

∂g

∂s
(x, s) = −

∫ x

0

b′(t) + 2b(t)g(t, s)
2sb(t) + 2g(t, s)

· d

dt

{
exp

(
−2

∫ x

t

[sb(τ) + g(τ, s)]dτ

)}
dt,
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∂2g

∂s2
(x, s) =

∫ x

0

2b(t)gs(t, s) + g2
s(t, s)

sb(t) + g(t, s)
· d

dt

{
exp

(
−2

∫ x

t

[sb(τ) + g(τ, s)]dτ

)}
dt

and from the fact that

d

dt

{
exp

(
−2

∫ x

t

[sb(τ) + g(τ, s)]dτ

)}
> 0.

The estimates (3.16) and (3.17) follow directly from (3.3), (3.19) and (3.20).

4. Existence and uniqueness of a solution to the Cauchy problem. In
the previous section, it was shown that introducing the new variables w and q and
performing the transformations u → w → p, one can reduce the second-order elliptic
equation (2.7) to the integro-differential equation (3.14). The most attractive feature
of the latter is that it does not contain the unknown refraction coefficient n(x). The
entire information about n(x) is contained in the boundary data

p(0, s) = −Ls2 ∂

∂s

(
ϕ(s)
s2

)
.

Therefore, solving efficiently the Cauchy problem for (3.14) is crucial. Motivated by
the series representation (3.15), we seek the solution in the form

p(x, s) =
∞∑

n=0

(n + 1)pn(x)
sn

,(4.1)

where

p(0, s) =
∞∑

n=0

(n + 1)bn

sn
(4.2)

More precisely, we look for the solutions in the Banach space X of the sequence valued
maps x → p(x) = (p0(x), p1(x), p2(x), ...) with the norm

‖p‖a = sup
n≥1

sup
x∈[0,1]

|pn(x)|a−n(1 + x)−n < ∞,

where a > 0 is constant to be specified below.
Since

∣∣∣∣∣
∞∑

n=0

(n + 1)pn(x)
sn

∣∣∣∣∣ ≤ C

∞∑
n=0

(n + 1)
(

2a

s

)n

,

the series (4.1) converges uniformly for s ≥ s0 > 2a and 0 ≤ x ≤ 1. Because of the
uniform continuity, substituting (4.1) in (3.14), we obtain the equivalent initial value
problem for the map x → p(x)

p′n(x) =
2

n + 1

n∑

k=0

(k + 1)pk+1(x)pn−k(x),(4.3)

pn(0) = bn, (n = 0, 1, 2, ...)
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The following theorem establishes the existence and uniqueness results.
Theorem 4.1. Let the initial data bn in the problem (4.3) satisfies the condition

|bn| ≤ Ran, n ≥ 0,(4.4)

for some a and R > 0 with

16Ra < 1.(4.5)

Then the problem (4.3) has a unique solution, which can obtained by Picard successive
approximations with the initial approximation b = (b0, b1, ...).

Proof.
Let B(b; R) ⊂ X be the closed ball with the radius R and the center at b, such

that any p ∈ B(b;R) has ‖p‖a ≤ ‖b‖a + R ≤ 2R, or

|pn(x)| ≤ 2Ran(1 + x)n, n ≥ 0.

Solutions p of the problem (4.3) are the fixed points of the Volterra operator T : X →
X defined for all n ≥ 0 by

(Tp)n(x) = bn +
2

n + 1

n∑

k=0

(k + 1)
∫ x

0

pk+1(t)pn−k(t)dt.

We first show that T : B(b;R) → B(b; R). Indeed, for any p ∈ B(b; R) we have

|(Tp− b)n(x)| ≤ 2
n + 1

n∑

k=0

(k + 1)
∫ x

0

|pk+1(t)| · |pn−k(t)|dt

≤ 2(2R)2an+1

n + 1

n∑

k=0

(k + 1)
∫ x

0

(1 + t)n+1dt

≤ 4R2an+1(1 + x)n+2.

From where

‖(Tp− b)‖a ≤ 16R2a ≤ R.

Now we show that the operator T is also a contraction on B(b;R). Indeed, for
p,q ∈ B(b; R) and n ≥ 0 we estimate

|(Tp− Tq)n(x)| ≤ 2
n + 1

n∑

k=0

(k + 1)
∫ x

0

|pk+1(t)− qk+1(t)| · |pn−k(t)|dt

+
2

n + 1

n∑

k=0

(k + 1)
∫ x

0

|pn−k(t)− qn−k(t)| · |qk+1(t)|dt

≤4Ran+1(1 + x)n+2‖p− q‖a.

Therefore, the operator T is contractive with a Lipschitz constant bounded by 16Ra <
1. An application of the contraction mapping principle on the ball B(b; R) ⊂ X
finishes the proof.

Remark 2. The assumptions (4.4) and (4.5) can be replaced by

|bn| < 1
16

an−1, n ≥ 0,(4.6)
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for some a > 0. In particular, we need |b1| < 1/16 regardless of the value of a.
However, different choices of a can relax the requirement on b0 at the expense of
faster decay on bn’s for n ≥ 2. This property is due to a scaling symmetry in the
integro-differential equation (3.14). For µ > 0, let Sµ be the scaling operator defined
by

[Sµp](x, s) = µp(x, µs).

By changing the variables in the integrals in (3.14), we establish the following scaling
lemma.

Lemma 4.2. If p(x, s) is a solution of the integro-differential equation (3.14),
then Sµp(x, s) is also a solution for any µ > 0.

Clearly, if the coefficients (b0, b1, ..., bn, ...) correspond to the initial data for a
solution p, then the coefficients (µb0, b1, b2/µ, ...) correspond to the initial data for
a solution Sµp and the class of initial data for which the system (4.3) has a unique
solution is thus enlarged.

5. Numerical experiments. The results indicated in the previous sections
serve as a basis for the algorithm development. In this section we present some
results of numerical experiments demonstrating the computational feasibility of the
reconstruction algorithm.

To simulate the data w(0, s) = −ux(0, s)/u(0, s), for a given n(x), we solve nu-
merically the forward problem (2.7)-(2.9) by the finite-difference method. The s-
parametric family of the three-diagonal systems of linear equations resulted from
approximating the differential operator of the second order on a grid was solved by a
special form of the Gauss method for the systems with three-diagonal matrices.

We tested both asymptotic formulae (3.2) and (3.15) by performing the trans-
formations (2.10) and (3.12) for three different frequency bands [s1, s2] as follows.
The parameter s1 > s0 was first chosen. Then its upper bound was determined as
s2 = βs1, β > 1. The three types of the data are: (1) the narrow band (NB) data
(for β = 1.5), (2) the wide band (WB) data (for β = 15), and (3) the ultra-wide band
(UWB) data (for β = 150). Figures 5.1 and 5.2 show the graphs of the functions
w(x, s2)/s2 and p(x, s2) for all types of the data. It can be seen from these figures
that in accordance with (3.2) and (3.15), both functions w(x, s)/s and p(x, s) converge
to the refraction coefficient n(x) as s →∞.

The reconstruction algorithm is based on two facts. On one hand, following (3.13)
and (3.15), we know that the data

w(0, s) = s2

∫ ∞

s

p(0, ν)
ν2

dν(5.1)

has a converging series representation:

w(0, s) = sb0 + b1 +
b2

s
+

b3

s2
+

b4

s3
+ ... +

bn+1

sn
+ ...(5.2)

On the other hand, we have the initial value problem for the system of the first order
ODEs (4.3)

p′0(x) = 2p0p1,(5.3)
p′1(x) = p1p1 + 2p0p2,

p′2(x) =
2
3
(p1p2 + 2p2p1 + 3p0p3),
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Fig. 5.1. The function w(x, s2)/s2 for the different data: (1) the NB data (dotted), (2) the
WB data (dashed), (3) the UWB data (dashed/dotted). The graph of the refraction coefficient n(x)
is shown by the solid line.

p′3(x) =
1
2
(p1p3 + 2p2p2 + 3p0p4),

...................................................,

p′n(x) =
2

n + 1
(p1pn + 2p2pn−1 + ... + npnp1 + (n + 1)pn+1p0),

..................................................,

p0 = b0, p1 = b1, ..., pn = bn, ...

These facts motivate the following reconstruction procedure. We first fit the given
data w(0, s) by truncating the series in the right-hand side in (5.2) up to the (n+2)-nd
term. As a result, we obtain the coefficients b0, b1, ...., bn+1. The main difficulty in
solving the system (5.3) is that the n-th ODE contains the term pn+1 in the right-
hand side. To overcome this difficulty, we assign pn+1(x) ≈ bn+1 and truncate the
system (5.3) by the n-th equation. The resulting system is then solved by the Runge-
Kutta method of the forth order. Once the coefficients p0, p1, ..., pn are found, an
approximate refraction coefficient is determined as

n(x) ' p0(x).

However, Theorem 4.1 is valid provided that the coefficients bn satisfy (4.6). Due
to (5.2), such an assumption restricts the class of refractions coefficients for which
the reconstruction procedure is meaningful. To provide the consistency, we simulated
a refraction coefficient n within the range condition (4.6). For a given sequence
{b0, b1, ..., bn+1} satisfying (4.6) we solved the system (5.3) and assign n(x) = p0(x).
The refraction coefficient shown with a solid line in Figure 5.3 is obtained from the
finite sequence b0 = 1, b1 = 1/2, b2 = 1/32, b3 = 1/128, b4 = 1/512.
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Fig. 5.2. The function p(x, s2) for the different data: (1) the NB data (dotted), (2) the WB
data (dashed), (3) the UWB data (dashed/dotted). The graph of the refraction coefficient n(x) is
shown by the solid line.

Given the refraction coefficient n(x), we solved the forward problem (2.7)-(2.9)
to simulate the data w(0, s). Then, following the reconstruction procedure, we did a
non-linear least squares fit to a function indicated in (5.2). In particular, we used the
Levenberg-Marquardt algorithm, which combined the steepest descent and inverse-
Hessian function fitting method. Figure 5.3 shows the results of the reconstruction
for the three types of the frequency data used in the fitting step.

6. Conclusions. We proposed a new approach for solving the inverse problem
of frequency sounding of layered media. Unlike the existing methods, we reduce an
original inverse problem to a family of the Cauchy problems for the Riccati equation
and then to the Cauchy problem for a first order differential equation for the sequence
valued maps. The latter equation does not contain the unknown coefficient. We stud-
ied the asymptotic behavior of solutions to both the Riccati and quadratic equations
and established the existence and uniqueness results for the reduced inverse problem
with the specified data. Moreover, we developed a reconstruction algorithms based
on the analyticity (in the s variable) of the data. Utilizing the Runge-Kutta method
of the forth order, this algorithm is fast and easy to implement. The numerical re-
sults have shown that an accurate reconstruction of the refraction coefficient can be
obtained for a specific class of the data.
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Fig. 5.3. Reconstruction of the refraction coefficient from: (1) the NB data (dotted), (2)
the WB data (dashed), (3) the UWB data (dashed/dotted). The graph of the simulated refraction
coefficient n(x) is shown by the solid line.
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