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ABSTRACT. We consider the problem of identifying a complex valued
coefficient γ(x, ω) in the conductivity equation ∇ · γ(·, ω)∇u(·, ω) = 0
from knowledge of the frequency differentials of the Dirichlet-to-Neumann
map. For a frequency analytic γ(·, ω) =

∑∞
k=0(σk + iϵk)ω

k , in three

dimensions and higher, we show that dj

dωj Λγ(·,ω)

∣∣∣
ω=0

for j = 0, 1, ..., N

recovers σ0, ...σN and ϵ1, , , , ϵN . This problem arises in frequency dif-
ferential electrical impedance tomography of dispersive media.

1. INTRODUCTION

Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with Lipschitz boundary Γ.
For some ω0 > 0 and c > 0, let γ ∈ C([0, ω0];L

∞(Ω)) be complex valued
satisfying

Re(γ(x, ω)) ≥ c > 0, (x, ω) ∈ Ω× [0, ω0].(1)

For each fixed ω and f ∈ H1/2(Γ) the Dirichlet problem

(2) ∇ · γ(·, ω)∇u(·, ω) = 0 in Ω, u(·, ω)|Γ = f,

has a unique solution. The Dirichlet-to-Neumann map

Λγ(·,ω) : H
1/2(Γ) → H−1/2(Γ)

is a bounded operator defined by

(3) Λγ(·,ω)(f) := n · γ(·, ω)∇u(·, ω)|Γ,
where n is the outer normal to the boundary. Moreover the map

ω 7→ Λγ(·,ω) ∈ C([0, ω0];L(H
1
2 (Γ), H− 1

2 (Γ))),

where L(H 1
2 (Γ), H− 1

2 (Γ)) denotes the space of linear operators endowed
with the strong topology.

The Calderón problem refers to the determination of γ(·, ω) from Λγ(·,ω),
for each fixed frequency ω. At ω = 0 this is the original question in
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[6], which has been mostly settled in the affirmative: In dimensions n ≥
3, of direct relevance here, we mention the breakthrough result in [22],
where Λγ(·,0) is shown to uniquely determine γ(·, 0), and the reconstruc-
tion method in [16]. Although not stated, these results extend to ω ̸= 0,
case in which the coefficient γ(·, ω) becomes complex valued. The analo-
gous two dimensional problem (also at ω = 0) was cracked in [17], refined
in [3] (with reconstruction in [14]) and completely settled in [1]. The break-
through result in [5] settles in two dimensions the uniqueness part: Λγ(·,ω)
uniquely determines γ(·, ω) for each fixed ω (an earlier result [9] assumed
γ = σ0(x) + iωϵ0(x) with sufficiently small ωϵ0). For an understanding on
the breadth of development of the Calderón problem we refer to the reviews
[7], [4], [10], [2], and [23].

Recent biomedical advances [11, 12, 13, 18, 19] allow to measure dis-
crepancies in boundary data at different frequencies, and produce images
based on such differential data. Given that biological materials have fre-
quency dependent electric-magnetic properties (they are dispersive) [8] and
only one image is produced from multiple frequencies, the following ques-
tions arise:

What can be determined from the frequency derivative

dk

dωk
Λγ(·,ω)

∣∣∣∣
ω=ω0

for a fixed order k ̸= 0, or for several orders? Can one expect quantitative
information from multi-frequency data? What do the images represent?

We address these questions when the coefficient γ(·, ω) depends analyt-
ically in ω in dimensions three or higher. In [21] the authors considered
the case k = 1 and the ansatz γ = σ0(x) + iωϵ1(x) specific to media with
frequency-independent electrical properties (i.e., non-dispersive).

For some r, c > 0, let us define the class Ar,c of functions γ(x, ω) such
that

Re(γ(x, ω)) =
∞∑
n=0

σn(x)ω
n, Im(γ(x, ω)) =

∞∑
n=1

ϵn(x)ω
n,(4)

where σ0 ∈ C1,1(Ω) is real valued and constant near the boundary with

0 < c−1 ≤ σ0(x) ≤c,(5)

and σk, ϵk ∈ C1,1
0 (Ω) are real valued and compactly supported in Ω with∥∥∥∥σkσ0

∥∥∥∥
∞

≤ r,

∥∥∥∥ ϵkσ0
∥∥∥∥
∞

≤ r, ∀k ≥ 1.(6)

Note that ω 7→ γ(·, ω) is analytic in |ω| < 1/r with values in L∞(Ω),
We prove the following:
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Theorem 1.1. Let n ≥ 3 and Ω ⊂ Rn be open with C1,1 boundary. Assume
that γ ∈ Ar,c, for some r, c > 0 and N ≥ 1 be fixed. Then dk

dωkΛγ(·,ω)

∣∣∣
ω=0

for k = 0, ..., N , uniquely determine σ0, σ1, ..., σN , and ϵ1, ..., ϵN inside Ω.

Consequently, we also obtain:

Corollary 1.1. Let n ≥ 3 and Ω ⊂ Rn be open with C1,1 boundary. As-
sume γ ∈ Ar,c, for some r, c > 0. Then the map ω 7→ Λγ(·,ω) given in an
arbitrarily small neighborhood of some fixed ω0 ∈ [0, (1 + 2r)−1) recovers
γ on Ω× [0, r−1).

The proof of Theorem 1.1 is based on the complex geometrical optic
solutions of Sylvester-Uhlmann in [22], whose existence is recalled below
to establish notations. For k, η, l ∈ Rn with k · η = k · l = k · η = 0, and
|η|2 = |k|2

4
+ |l|2, consider the vectors

ξ1(η,k, l) := η − i

(
k

2
+ l

)
, ξ2(η,k, l) := −η − i

(
k

2
− l

)
,(7)

which satisfy ξ1 · ξ1 = ξ2 · ξ2 = 0, |ξ1|2 = |ξ2|2 = 2
(∣∣k

2

∣∣2 + |l|2
)

, and
ξ1 + ξ2 = −ik. The result is stated in the equivalent form:

Existence of CGOs (Theorem 2.3, [22]): Let n ≥ 3, and σ0 ∈ C1,1(Rn)
be constant outside Ω . For −1 < δ < 0 there are two constants R,C > 0
dependent only on δ, ∥∆√

σ0/
√
σ0∥L∞(Ω), and Ω such that the following

holds: For ξj ∈ Cnas in (7) with |l| > R, there exist wj := w(· , ξj) ∈
H1

loc(Rn) solutions in Rn of

∇ · σ0∇wj = 0

of the form

(8) wj(x) = ex·ξjσ
−1/2
0 (1 + ψj(x)),

with

(9) ∥ψj∥L2
δ
≤ C

|ξj|
, j = 1, 2,

where ∥f∥2
L2
δ
:=
∫
Rn |f(x)|2(1 + |x|2)δdx.

The assumptions on the coefficients may be relaxed as follows. The
boundary values σ0|Γ and ∂σ0

∂n

∣∣
Γ

can be recovered from Λγ(·,0) as shown
in [16] for this regularity (and earlier in [15] and [22] for C∞-regular).
Then σ0 can be extended outside Ω with preserved regularity while making
it constant near the boundary Γ̃ of a neighborhood of the original domain.
Similarly, the compact support assumption on σn, ϵn, for n = 1, 2, ... can
be replaced by the knowledge of the boundary values of σn|Γ,ϵn|Γ, ∂σn

∂n

∣∣
Γ
,

and ∂ϵn
∂n

∣∣
Γ
. With the same proof as in [17], the Dirichlet-to-Neumann map
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Λγ(·,ω) transfers from Γ to Γ̃ and we can consider the problem on the larger
domain.

2. A FREQUENCY RANGE FOR ANALYTIC DEPENDENCE

In this section we show analytic dependence of the map ω 7→ Λγ(·,ω)
in the space of linear operators from H1/2(Ω) to H−1/2(Ω) endowed with
the strong topology, and introduce two operators needed in the proof of
Theorem 1.1.

Existence and uniqueness of solution for the conductivity problem (2)
with a complex coefficient has been known for some time; e.g., in [20] the
Lax-Milgram lemma is employed. Below we provide a solution which is
frequency-analytic. Since the solution of (2) is unique, the result below
also shows the analytic dependence of the solution of (2) for a frequency-
analytic coefficient.

Theorem 2.1. Let Ω ⊂ Rn, n ≥ 2, be a domain with Lipschitz boundary.
Consider the Dirichlet problem (2) for f ∈ H1/2(Γ) real valued and

γ(x, ω) := σ0(x) +
∞∑
k=1

(σk(x) + iϵk(x))ω
n,(10)

where σ0 is real valued satisfying (5) for some c > 0, and σk, ϵk ∈ L∞(Ω),
k ≥ 1, are real valued satisfying (6) for some r > 0. Then, for

|ω| < 1

1 + 2r
,(11)

the Dirichlet problem (2) has a unique solution u(·, ω) ∈ H1(Ω) with the
series representation

Re{u(x, ω)} =
∞∑
k=0

vk(x)ω
k, Im{u(x, ω)} =

∞∑
k=0

hk(x)ω
k(12)

absolutely convergent in H1(Ω), where h0 ≡ 0, v0 solves

∇ · σ0∇v0 = 0 in Ω, v0|Γ = f,(13)

and, for k = 1, 2, ..., the following recurrence holds:

∇ · σ0∇vk = −
k∑

j=1

∇ · (σj∇vk−j − ϵj∇hk−j) in Ω, vk|Γ = 0,(14)

∇ · σ0∇hk = −
k∑

j=1

∇ · (σj∇hk−j + ϵj∇vk−j) in Ω, hk|Γ = 0.(15)
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We stress here that the recurrence (14) and (15) uses the reality of the
Dirichlet boundary data f . The proof of the theorem is a consequence of
the estimate in Lemma 2.1 below. We start by a simple remark, which can
be justified by induction.

Remark 2.1. Let {ak}∞k=0 be a sequence of non-negatives and m > 0 such
that a1 ≤ a0 and

ak ≤ a0 +m(a1 + ...+ ak−1), ∀k ≥ 2.

Then

ak ≤ (1 +m)ka0, ∀k ≥ 0.

We denote by ∥ · ∥ the L2(Ω)-norm, and by ∥ · ∥1 the H1(Ω)-norm.

Lemma 2.1. Let v0 satisfy (13) and assume the sequences {vn}∞n=1, {hn}∞n=1

in H1(Ω) satisfy the corresponding problems (14) and (15). Then, for
k = 1, 2, ... we have

∥vk∥1 + ∥hk∥1 ≤ c(1 + 2r)k∥∇v0∥.(16)

Proof. Let k be a fixed positive index. Since vk|Γ = 0, by applying the
divergence theorem to (14) we estimate

∥
√
σ0|∇vk|∥2 = −

k∑
j=1

∫
Ω

(σj∇vk−j − ϵj∇hk−j) · ∇vkdx

≤ r

k∑
j=1

∫
Ω

σ0|∇vk−j · ∇vk|+ σ0|∇hk−j · ∇vk|dx

≤ r∥
√
σ0|∇vk|∥

k∑
j=1

(∥
√
σ0|∇vk−j|∥+ ∥

√
σ0|∇hk−j∥) ,

where the first inequality uses (6). Thus

∥
√
σ0|∇vk|∥ ≤ r

k∑
j=1

(∥
√
σ0|∇vk−j|∥+ ∥

√
σ0|∇hk−j∥) .

Similarly, using hk|Γ = 0 and the divergence theorem in (15) we obtain

∥
√
σ0|∇hk|∥ ≤ r

k∑
j=1

(∥
√
σ0|∇vk−j|∥+ ∥

√
σ0|∇hk−j∥) .

Now apply Remark 2.1 for ak = ∥√σ0|∇vk|∥ + ∥√σ0|∇hk|∥ and m = 2r
to obtain
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∥
√
σ0|∇vk|∥+ ∥

√
σ0|∇hk|∥ ≤ (1 + 2r)k∥

√
σ0|∇v0|∥.(17)

Since vk, hk ∈ H1
0 (Ω) the estimate (16) follows from the lower and upper

bounds on σ0 in (5).
�

Proof. [of Theorem 2.1] We seek the solution in the ansatz

u(x, ω) := v0(x) +
∞∑
n=1

(vn(x) + ihn(x))ω
n(18)

and then the recurrence in (14) and (15) is obtained by identifying the same
order coefficients in a formal series. It is in here that the reality of the
Dirichlet boundary data f (hence of v0) is used.

We construct the sequences {vn}, {hn} inductively by solving the Dirich-
let problems (14) and (15). Part of the inductive step, the right hand hand
sides (in divergence form) of the equations in (14) and (15) belong toH−1(Ω).
Thus the recurrence is well defined to construct v0 ∈ H1(Ω) and the two
sequences {vn}∞n=1 and {hn}∞n=1 in H1

0 (Ω).
The estimate (16) and |ω| < 1/(1 + 2r) shows

∥u∥1 ≤ c∥v0∥1
∞∑
n=0

(1 + 2r)kωk <∞.(19)

Therefore u(·, ω) defined in (18) is inH1(Ω). A direct calculation involving
(14) and (15) shows that it solves the Dirichlet problem (2) for

γ(x, ω) := σ0(x) +
∞∑
k=1

(σk(x) + iϵk(x))ω
n.

�
As a consequence of the theorem above we can explicit the real and imag-

inary part of the operators dk

dωkΛγ(·,ω)

∣∣∣
ω=0

(f) for a real valued f as follows.

Corollary 2.1. Let γ(x, ω) be as in the Theorem 2.1 and f ∈ H1/2(Γ)
be real valued. Then, with h0 ≡ 0, v0 solution of (2), and vk and hk,
k = 1, 2, ... given by the recurrences (14) and (15), we obtain

1

k!
Re
{

dk

dωk
Λγ(·,ω)

∣∣∣∣
ω=0

(f)

}
=

k∑
j=0

(
σj
∂vk−j

∂n
− ϵj

∂hk−j

∂n

)∣∣∣∣
Γ

,(20)

1

k!
Im
{

dk

dωk
Λγ(·,ω)

∣∣∣∣
ω=0

(f)

}
=

k∑
j=0

(
σj
∂hk−j

∂n
+ ϵj

∂vk−j

∂n

)∣∣∣∣
Γ

.(21)
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Proof. For ω < (1 + 2r)−1 < r−1 the series in (10) defining γ is absolutely
convergent inL∞(Ω), and the series (18) defining u is absolutely convergent
in H1(Ω). Therefore the two series below

γ(·, ω)∂u(·, ω)
∂n

=
∞∑
k=0

ωk

k∑
j=0

(
σj
∂vk−j

∂n
− ϵj

∂hk−j

∂n

)

+ i
∞∑
k=0

ωk

k∑
j=0

(
σj
∂hk−j

∂n
+ ϵj

∂vk−j

∂n

)
are absolutely convergent in H−1/2(Γ). The formulas (20) and (21) now
follow by differentiation in ω.

�
The proof of Theorem 1.1 requires applications of dk

dωkΛγ(·,ω)

∣∣∣
ω=0

to traces
of the complex (valued) geometrical optics solutions. However, if the Dirich-
let data in (13) is complex valued, the formulas (20) and (21) no longer hold
for vk and hk obtained by the recurrence (14) and (15) . In order to preserve
this compatibility we extend the real and imaginary part of dk

dωkΛγ(·,ω)

∣∣∣
ω=0

by complex linearity: For k ≥ 0 and real valued f, g ∈ H1/2(Γ) we define
R(k), I(k) : H1/2(Γ) → H−1/2(Γ) by

R(k)(f + ig) :=
1

k!
Re
{
dkΛγ(·,ω)

dωk

∣∣∣∣
ω=0

(f)

}
+

i

k!
Re
{
dkΛγ(·,ω)

dωk

∣∣∣∣
ω=0

(g)

}
,

(22)

I(k)(f + ig) :=
1

k!
Im
{
dkΛγ(·,ω)

dωk

∣∣∣∣
ω=0

(f)

}
+

i

k!
Im
{
dkΛγ(·,ω)

dωk

∣∣∣∣
ω=0

(g)

}
.

(23)

Proposition 2.1. Let R(k), I(k) : H1/2(Γ) → H−1/2(Γ) be as defined in
(22) and (23). Then

R(k)(f + ig) =
k∑

j=0

(
σj
∂vk−j

∂n
− ϵj

∂hk−j

∂n

)∣∣∣∣
Γ

(24)

I(k)(f + ig) =
k∑

j=0

(
σj
∂hk−j

∂n
+ ϵj

∂vk−j

∂n

)∣∣∣∣
Γ

,(25)

where h0 ≡ 0, v0 solves

∇ · σ0∇v0 = 0, v0|Γ = f + ig

and hk and vk are defined inductively by the recurrence (14) and (15) for
k ≥ 1.
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Proof. The identities hold when g ≡ 0 by Corollary 2.1. The left hand sides
of (24) and (25) are complex linear by definition. But the right hand side
is also complex linear since the sequences{hk} and {vk} produced by the
recurrence (14) and (15) are complex linear with the Dirichlet data.

�

3. PROOF OF THEOREM 1.1 AND ITS COROLLARY

In this section we assume the hypotheses in Theorem 1.1. The proof is
inductive and relies on the basic identities in the lemma below which relate
the quantities

Qr
N :=

∇ · (∇σN − σN∇ lnσ0)

σ0
,(26)

Qi
N :=

∇ · (∇ϵN − ϵN∇ lnσ0)

σ0
, for N ≥ 1,(27)

with the boundary operator R(N) in (22), respectively I(N) in (23), and
some interior data previously determined in the inductive step.

In the following lemma σj, ϵj for j = 1, ..., N , need not be compactly
supported in Ω, and σ0 need not be constant near the boundary, but rather
its normal derivative be vanishing at the boundary.

Lemma 3.1. Let w1, w2 ∈ H1(Ω) be σ0-harmonic. Then∫
Ω

∇ · (∇σ1 − σ1∇ lnσ0)w1w2dx = 2

∫
Γ

R(1)[w1]w2ds

−
∫
Γ

(σ1
∂(w1w2)

∂n
− ∂σ1
∂n

w1w2)ds,(28)

and, for N ≥ 2,∫
Ω

∇ · (∇σN − σN∇ lnσ0)w1w2dx

= 2

∫
Γ

R(N)[w1]w2ds−
∫
Γ

(σN
∂(w1w2)

∂n
− ∂σN

∂n
w1w2)ds

− 2
N−1∑
j=1

∫
Ω

(σj∇vN−j − ϵj∇hN−j)∇w2dx.(29)

Also∫
Ω

∇ · (∇ϵ1 − ϵ1∇ lnσ0)w1w2dx = 2

∫
Γ

I(1)[w1]w2ds

−
∫
Γ

(ϵ1
∂(w1w2)

∂n
− ∂ϵ1
∂n

w1w2)ds,(30)



A CALDERÓN PROBLEM FOR DISPERSIVE MEDIA 9

and, for N ≥ 2,∫
Ω

∇ · (∇ϵN − ϵN∇ lnσ0)w1w2dx = 2

∫
Γ

I(N)[w1]w2ds

−
∫
Γ

(
ϵN
∂(w1w2)

∂n
− ∂ϵN

∂n
w1w2

)
ds

− 2
N−1∑
j=1

∫
Ω

(σj∇hN−j + ϵj∇vN−j) · w2dx.(31)

Proof. From Proposition 2.1,

R(N)[w1] =
N∑
j=0

(
σj
∂vN−j

∂n
− ϵj

∂hN−j

∂n

)
(32)

where v0 = w1, h0 = ϵ0 = 0, and vj, hj , j = 1, ..., N are defined recursively
in (14) and (15).

Upon multiplication of (32) by w2 and integration by parts we obtain∫
Γ

R(N)[w1]w2ds =
N∑
j=0

∫
Γ

(
σj
∂vN−j

∂n
− ϵj

∂hN−j

∂n

)
w2ds

=

∫
Ω

w2∇ ·

(
N∑
j=0

(σj∇vN−j − ϵj∇hN−j)

)
dx

+
N∑
j=0

∫
Ω

(σj∇vN−j − ϵj∇hN−j) · ∇w2dx

=

∫
Ω

σ0∇vN · ∇w2dx+
N−1∑
j=1

∫
Ω

(σj∇vN−j − ϵj∇hN−j) · ∇w2dx

+

∫
Ω

σN∇w1 · ∇w2dx

=
N−1∑
j=1

∫
Ω

(σj∇vN−jdx− ϵj∇hN−j) · ∇w2dx+

∫
Ω

σN∇w1 · ∇w2dx,

(33)

where in the third equality we use the recurrence (14), and for the last equal-
ity we use the facts that w2 is σ0-harmonic and vN ∈ H1

0 (Ω). Note that for
N = 1 the identity (33) reduces to∫

Γ

R(1)[w1]w2ds =

∫
Ω

σ1∇w1 · ∇w2dx.(34)
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Since σ0 ∈ C1,1(Ω), wj also solves

∆wj = −∇ lnσ0 · ∇wj, j = 1, 2.(35)

By using the general identity 2∇w1 · ∇w2 = ∆(w1w2) − w1∆w2 −
w2∆w1, and (35) we get

2

∫
Ω

σN∇w1 · ∇w2dx =

∫
Ω

σN(∆(w1w2)− w1∆w2 − w2∆w1)dx

=

∫
Ω

σN(∆(w1w2) +∇ lnσ0 · ∇(w1w2))dx

=

∫
Γ

(
σN

∂(w1w2)

∂n
− ∂σN

∂n
w1w2

)
ds+

∫
Ω

(∆σN)w1w2dx

+

∫
Ω

σN∇ lnσ0 · ∇(w1w2)dx

=

∫
Γ

(
σN

∂(w1w2)

∂n
− ∂σN

∂n
w1w2

)
ds+

∫
Γ

σN
∂ lnσ0
∂n

w1w2ds

+

∫
Ω

∇ · (∇σN − σN∇ lnσ0)w1w2dx

=

∫
Γ

(
σN

∂(w1w2)

∂n
− ∂σN

∂n
w1w2

)
ds

+

∫
Ω

∇ · (∇σN − σN∇ lnσ0)w1w2dx,(36)

where, for the last equality, the vanishing of the second boundary integral
accounts for σ0 being constant near the boundary Γ.

The use of (34), respectively (36), in (33) proves the identity (28), re-
spectively (29).

The identity (31) follows similarly: An integration by parts and use of
(15) yield

∫
Γ

I(N)[w1]w2ds =
N−1∑
j=1

∫
Ω

(σj∇hN−j + ϵj∇vN−j) · w2dx+

∫
Ω

ϵN∇w1∇w2dx,

(37)

and the calculation in (36) with ϵN replacing σN shows

2

∫
Ω

ϵN∇w1 · ∇w2dx =

∫
Γ

(
ϵN
∂(w1w2)

∂n
− ∂ϵN

∂n
w1w2

)
ds

+

∫
Ω

∇ · (∇ϵN − ϵN∇ lnσ0)w1w2dx, .(38)

By using (38) in (37) we obtain (31).
�
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We prove Theorem 1.1 by induction on the order of derivative in fre-
quency. We will employ the basic identities in the lemma above with w1, w2

being the CGO solutions in (8). Recall the dependence of w1 and w2 on the
vectors η,k, l, which we do not made explicit to keep the formulas readable.

Case N = 0: Assume that Λγ(·,0) is known, then we appeal to [16, Lem-
mae 2.7 and 2.12 b)] to conclude that Λγ(·,0) recovers the traces wj|Γ for
j = 1, 2, and to [16, Theorem 5.1] to recover coefficient σ0 in Ω.

Case N = 1: Assume that R(1) and I(1) are known. By using the CGO
solutions w1, w2 in (30), and accounting for the compact support of σ1, ϵ1,
we get ∫

Rn

e−ix·kQr
1(x)(1 + ψ1(x))(1 + ψ2(x))dx =

∫
Γ

R(1)[w1]w2ds.(39)

Due to the decay estimate (9), the left hand side in (39) has a limit with
|l| → ∞, thus so does the right hand side, and the Fourier transform F [Qr

1]
is determined. The Fourier inversion yields

Qr
1 = F−1

[
lim

|l|→∞

∫
Γ

R(1)[w1]w2ds

]
,

Starting with (30) and proceeding similarly with the boundary data I(1), we
find by Fourier inversion the L∞(Ω)-function

Qi
1 = F−1

[
lim

|l|→∞

∫
Γ

I(1)[w1]w2ds

]
.

In the case N = 1 we note that d
dω

∣∣
ω=0

Λγ(·,ω) uniquely determines the
quantities Qr

1 and Qi
1, independent of knowledge of the DtN map Λγ(·,0).

However, since σ0 is known, we can also recover σ1 and ϵ1 as the unique
solutions of the respective Dirichlet problems:

∆σ1 −∇σ1 · ∇ lnσ0 − σ1∆ ln σ0 = σ0Q
r
1 in Ω, σ1|Γ = 0,(40)

∆ϵ1 −∇ϵ1 · ∇ lnσ0 − ϵ1∆ ln σ0 = σ0Q
i
1 in Ω, ϵ1|Γ = 0.(41)

The inductive step: Assume that σ0, and σj, ϵj , j = 1, ..., N − 1 have
been determined, and R(N), I(N) are known. Below we reconstruct σN and
ϵN .

By solving the recurrence (14) and (15) starting with v0|Γ = w1|Γ, we
can determine vj, hj ∈ H1

0 (Ω) for j = 1, ..., N − 1 (recall v0 = w1 and
h0 = 0).
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Since σN is assumed compactly supported in Ω, the identity (29) yields∫
Rn

e−ix·kQr
N(x)(1 + ψ1(x))(1 + ψ2(x))dx

= 2

∫
Γ

R(N)[w1]w2ds− 2
N−1∑
j=1

∫
Ω

(σj∇vN−j − ϵj∇hN−j)∇w2dx.(42)

Note that the right hand side of (42) is known. Due to the decay estimate
(9) the left hand side of (42) has a limit with |l| → ∞, thus so does the right
hand side, and the Fourier transform F [Qr

N ] is recovered from

F [Qr
N ] (k) = lim

|l|→∞

{∫
Γ

R(N)[w1]w2ds

−2
N−1∑
j=1

∫
Ω

(σj∇vN−j − ϵj∇hN−j)∇w2dx

}
.(43)

By Fourier inversion in (42), we recovered Qr
N ∈ L∞

0 (Ω).
By a similar reasoning starting from (31) with w1, w2 being the CGO

solutions in (8), we determine Qi
N ∈ L∞

0 (Ω).
Finally, the coefficients σN and ϵN , are recovered as the unique solution

to the respective Dirichlet problems:

∆σN −∇σN · ∇ lnσ0 − σN∆ lnσ0 = σ0Q
r
N in Ω, σN |Γ = 0,(44)

∆ϵN −∇ϵN · ∇ lnσ0 − ϵN∆ lnσ0 = σ0Q
i
N in Ω, ϵN |Γ = 0.(45)

This finishes the proof of Theorem 1.1.
For the proof of the corollary, we note that the analyticity of the map

ω → Λγ(·,ω) allows for each derivative dk

dωkΛγ(·,ω) at ω = 0 to be determined

from the derivatives dj

dωjΛγ(·,ω)

∣∣∣
ω0

, j ≥ 0, taken at any other frequency ω0

within the domain of analyticity [0, (1 + 2r)−1).

4. ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for the construc-
tive criticism, which uncover a gap in a previous version.

REFERENCES
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