A CALDERON PROBLEM WITH FREQUENCY-DIFFERENTIAL
DATA IN DISPERSIVE MEDIA
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ABSTRACT. We consider the problem of identifying a complex valued
coefficient v(x,w) in the conductivity equation V - y(-,w)Vu(-,w) =0
from knowledge of the frequency differentials of the Dirichlet-to-Neumann
map. For a frequency analytic v(-,w) = >_p—, (0 + iex)w , in three
dimensions and higher, we show that -£-A_ . ) forj=0,1,...,N
=0

recovers oy, ...on and €1, ,,,€xn. This problem arises in frequency dif-
ferential electrical impedance tomography of dispersive media.

1. INTRODUCTION

Let 2 C R", n > 2, be a bounded domain with Lipschitz boundary I".
For some wy > 0 and ¢ > 0, let v € C([0,wp]; L>=(£2)) be complex valued
satisfying

(1) Re(y(z,w)) > ¢ >0, (z,w) € Q x [0, wp].
For each fixed w and f € H'/?(I") the Dirichlet problem
() V~7(~,w)Vu(~,w) =01in Q? u(',w)|p :f7

has a unique solution. The Dirichlet-to-Neumann map
Aoy HYAT) — HVA(D)
is a bounded operator defined by

3) Ay (f) =m0 (L w) V(- w)lr,
where n is the outer normal to the boundary. Moreover the map

Wi Aowy € C(0,wol; L(H?(T), H-2(T))),

where £(Hz=(I'), H=2(T")) denotes the space of linear operators endowed
with the strong topology.

The Calderdn problem refers to the determination of (-, w) from A, (. .,
for each fixed frequency w. At w = 0 this is the original question in
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[6], which has been mostly settled in the affirmative: In dimensions n >
3, of direct relevance here, we mention the breakthrough result in [22],
where Ay is shown to uniquely determine (-, 0), and the reconstruc-
tion method in [16]. Although not stated, these results extend to w # 0,
case in which the coefficient (-, w) becomes complex valued. The analo-
gous two dimensional problem (also at w = () was cracked in [17], refined
in [3] (with reconstruction in [14]) and completely settled in [1]. The break-
through result in [5] settles in two dimensions the uniqueness part: A,
uniquely determines (-, w) for each fixed w (an earlier result [9] assumed
v = oo(x) + iwep(x) with sufficiently small wep). For an understanding on
the breadth of development of the Calderén problem we refer to the reviews
[71, [4], [10], [2], and [23].

Recent biomedical advances [11, 12, 13, 18, 19] allow to measure dis-
crepancies in boundary data at different frequencies, and produce images
based on such differential data. Given that biological materials have fre-
quency dependent electric-magnetic properties (they are dispersive) [8] and
only one image is produced from multiple frequencies, the following ques-
tions arise:

What can be determined from the frequency derivative

dk

o)
w=wp

for a fixed order k # 0, or for several orders? Can one expect quantitative
information from multi-frequency data? What do the images represent?

We address these questions when the coefficient (-, w) depends analyt-
ically in w in dimensions three or higher. In [21] the authors considered
the case £ = 1 and the ansatz v = oy(z) + iwe; (z) specific to media with
frequency-independent electrical properties (i.e., non-dispersive).

For some r, ¢ > 0, let us define the class A, . of functions y(z,w) such
that

4  Re(y(zr,w)) = Z on(r)w",  Im(y(z,w)) = Z €n(T)w™,

n=1

where oy € C11(Q) is real valued and constant near the boundary with

(5) 0<c ! <o) <,
and oy, ¢, € Cy' () are real valued and compactly supported in € with
(6) R < |22 < VB> L

90 |00 90 || 0o

Note that w — ~y(-,w) is analytic in |w| < 1/r with values in L>(£2),
We prove the following:
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Theorem 1.1. Let n > 3 and ) C R™ be open with C*! boundary. Assume
that v € A, ., for some r,c > 0 and N > 1 be fixed. Then d(i_kkA’y(-,w)

w=
fork =0,..., N, uniquely determine oy, 01, ...,0n, and €1, ..., €y inside €.
Consequently, we also obtain:

Corollary 1.1. Let n > 3 and Q0 C R" be open with CY' boundary. As-
sume v € A, for some r,c > 0. Then the map w — A given in an
arbitrarily small neighborhood of some fixed wy € [0, (1 + 2r)~') recovers
yonQ x [0,r7h).

The proof of Theorem 1.1 is based on the complex geometrical optic
solutions of Sylvester-Uhlmann in [22], whose existence is recalled below
to establish notations. For k,n,1 € R* withk-n=k-1=k.-n =0, and
In|? = % + |1|%, consider the vectors

(7) fl(”:kal) :n_z(g—'—l)a 52(777ka1) = —U—i(g—l)7
which satisfy & - & = & - & = 0, [§]2 = [&]2 = 2 <‘1§“2 + |l[2>, and
&1 + & = —ik. The result is stated in the equivalent form:

Existence of CGOs (Theorem 2.3, [22]): Let n > 3, and oy € C''(R™)
be constant outside ). For —1 < § < 0 there are two constants R,C > (0
dependent only on 0, |A\/00/\/00|| L), and Q such that the following
holds: For §; € C"as in (7) with |1] > R, there exist w; = w(- ,&;) €

H} _(R™) solutions in R" of
V-ooVw; =0
of the form
(8) wj(x) = e”gjao_lﬂ(l + (),
with
C .
(9) ”w]HLﬁ < e J= 1727
191

where || f1|7; = [ 1f(@)]*(1 + |2[*) da.

The assumptions on the coefficients may be relaxed as follows. The
boundary values op|r and %‘F can be recovered from A, ) as shown
in [16] for this regularity (and earlier in [15] and [22] for C"*°-regular).
Then o can be extended outside €2 with preserved regularity while making
it constant near the boundary I" of a neighborhood of the original domain.
Similarly, the compact support assumption on o, €,, forn = 1,2,... can
be replaced by the knowledge of the boundary values of o,,|r,€,|r, %er }r’

and %e—r’; - With the same proof as in [17], the Dirichlet-to-Neumann map
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A transfers from I to I" and we can consider the problem on the larger
domain.

2. A FREQUENCY RANGE FOR ANALYTIC DEPENDENCE

In this section we show analytic dependence of the map w — A,
in the space of linear operators from H'/2(Q) to H~/2(2) endowed with
the strong topology, and introduce two operators needed in the proof of
Theorem 1.1.

Existence and uniqueness of solution for the conductivity problem (2)
with a complex coefficient has been known for some time; e.g., in [20] the
Lax-Milgram lemma is employed. Below we provide a solution which is
frequency-analytic. Since the solution of (2) is unique, the result below
also shows the analytic dependence of the solution of (2) for a frequency-
analytic coefficient.

Theorem 2.1. Let 2 C R™, n > 2, be a domain with Lipschitz boundary.
Consider the Dirichlet problem (2) for f € H'/*(T") real valued and

(10) Y(z,w) = o¢(z) + Z(Uk(x) + deg(x))w",
k=1

where oy is real valued satisfying (5) for some ¢ > 0, and oy, €, € L>(1),
k > 1, are real valued satisfying (6) for some r > 0. Then, for

(11) Jw| <

the Dirichlet problem (2) has a unique solution u(-,w) € H'(Q) with the
series representation

(12) Re{u(z,w)} = ka(x)wk, Im{u(z,w)} = Z hy(2)wF

absolutely convergent in H'(Q), where hy = 0, vq solves
(13) V- O'()VUO =0in Q, U0|F = f,

and, for k = 1,2, ..., the following recurrence holds:

k

(14) V-0oVup ==Y V- (0;Vurj — Vhi) in Q, vlr =0,
j=1
k

(15) V-0oVhy=—3 V- (0;Vhij+€;Vvp_;)inQ, hglr = 0.

=1
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We stress here that the recurrence (14) and (15) uses the reality of the
Dirichlet boundary data f. The proof of the theorem is a consequence of
the estimate in Lemma 2.1 below. We start by a simple remark, which can
be justified by induction.

Remark 2.1. Let {ay}2 , be a sequence of non-negatives and m > 0 such
that a1 < ag and

ar < ag+m(ay + ... +ar_1), Vk>2.
Then
ar < (14+m)kay, VE>0.
We denote by || - || the L*(2)-norm, and by || - ||; the H(€)-norm.

Lemma 2.1. Let v satisfy (13) and assume the sequences {v, }5°;, {h, 22,
in HY(Q) satisfy the corresponding problems (14) and (15). Then, for
k=1,2,... we have

(16) okl + [l < (1 + 2r)F(| Vo]

Proof. Let k be a fixed positive index. Since v|r = 0, by applying the
divergence theorem to (14) we estimate

k
Ve Tull? = =3 [ (0,90~ ¢ Vhe) - Vods
j=1 7%
k
< TZ / 00| Vug_; - V| + 00| Vhy_; - Vug|de
j=17¢

k
< rllvaol Vol Y - (e Vorjlll + Voo Vi) ,
j=1

where the first inequality uses (6). Thus

k
Ivaol Vol < 7Y (Iv/ao Vol + Vool Vi) -
j=1

Similarly, using hx|r = 0 and the divergence theorem in (15) we obtain

k

IVl VAl <> (Vo Vol + V&0l Vhk—l]) -

J=1

Now apply Remark 2.1 for ax = ||/oo|Vui||| + ||v/70| VRk||| and m = 2r
to obtain



6 SUNGWHAN KIM AND ALEXANDRU TAMASAN

A7) Vool Vol | + Voo Vil < (1 + 2r)* ||/ Voo .

Since vy, hy, € Hol(Q) the estimate (16) follows from the lower and upper
bounds on oy in (5).
O

Proof. [of Theorem 2.1] We seek the solution in the ansatz

(18) u(z,w) = vo(z) + Z(vn(x) + ihy(z))w"

and then the recurrence in (14) and (15) is obtained by identifying the same
order coefficients in a formal series. It is in here that the reality of the
Dirichlet boundary data f (hence of v) is used.

We construct the sequences {v,, }, {h, } inductively by solving the Dirich-
let problems (14) and (15). Part of the inductive step, the right hand hand
sides (in divergence form) of the equations in (14) and (15) belong to H~1((2).
Thus the recurrence is well defined to construct vy € H'(2) and the two
sequences {v, }°°, and {h, }°, in H ().

The estimate (16) and |w| < 1/(1 + 2r) shows

[ullr < cllvolly Z(l + 2r)Fwk < oo.
n=0

(19)

Therefore u(-, w) defined in (18) is in H*(£2). A direct calculation involving
(14) and (15) shows that it solves the Dirichlet problem (2) for

)+ Z oz z))w".

+ ZEk

y(r,w) = oo(x

U

As a consequence of the theorem above we can explicit the real and imag-

inary part of the operators d‘i—kkAA,(.yw) (f) for areal valued f as follows.
w=0

Corollary 2.1. Let y(x,w) be as in the Theorem 2.1 and f € H'Y?(T)
be real valued. Then, with hg 0, vy solution of (2), and vy, and hy,

k= 1,2,... given by the recurrences (14) and (15), we obtain
dk i 8vk_j 8hk_j
(20) ERe{d — A )wzo(f)}:jzo(aj e )
1 dk i ahk_j 8Uk_j
@) Im g o= . (= (o +e5

=0
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Proof. Forw < (1+2r)~! < r~! the series in (10) defining  is absolutely
convergent in L°°(€2), and the series (18) defining w is absolutely convergent
in H'(£2). Therefore the two series below

0 oh
Z Z( Uk]_ J a’;]>
k

e
J=

are absolutely convergent in H~/ 2(T"). The formulas (20) and (21) now
follow by differentiation in w.

v(-, w)

O

The proof of Theorem 1.1 requires applications of A to traces

v(w)
of the complex (valued) geometrical optics solutions. However ift the Dirich-
let data in (13) is complex valued, the formulas (20) and (21) no longer hold
for v;, and Ay obtained by the recurrence (14) and (15) . In order to preserve

A° A

w=0
by complex linearity: For k > 0 and real valued f,g € H'/?(I") we define
R®) TR HY2(T) — H-Y2(T) by
(22)

this compatibility we extend the real and imaginary part of dwk ()

1 d*A . ; dEA .
RWU+m»=—&{—4&ﬂ (ﬁ}+ &{—4&ﬂ (@}
k! dwt | o k! dw* | o

(23)
, 1 d*A. ) d¥ A,
10 +ig) = gy { 2| () gm{ 2| @]

Proposition 2.1. Let R*® TW) . HY2(T) — H-Y%(T) be as defined in
(22) and (23). Then

k
0 Ohy_;
(24) D (f +ig) = Z<g] gf;ﬂ_ ; 6]:1]>

8hk —j 8vk_j
o;
7 On K on
where hg = 0, vy solves

V-0oVug =0, wlr=f+ig

T

(25) f +1ig)

Y

T

QM?T

and hy and vy are defined inductively by the recurrence (14) and (15) for
E>1.



8 SUNGWHAN KIM AND ALEXANDRU TAMASAN

Proof. The identities hold when g = 0 by Corollary 2.1. The left hand sides
of (24) and (25) are complex linear by definition. But the right hand side
is also complex linear since the sequences{hy} and {vy} produced by the

recurrence (14) and (15) are complex linear with the Dirichlet data.
O

3. PROOF OF THEOREM 1.1 AND ITS COROLLARY

In this section we assume the hypotheses in Theorem 1.1. The proof is
inductive and relies on the basic identities in the lemma below which relate
the quantities

V- (Voy —onVinog)

(26) Qy = ;
00

27) Qi = V- (Vey - eNVIMO), for N > 1,
00

with the boundary operator RN in (22), respectively ZY) in (23), and
some interior data previously determined in the inductive step.

In the following lemma o, ¢; for 7 = 1,..., N, need not be compactly
supported in €2, and oy need not be constant near the boundary, but rather
its normal derivative be vanishing at the boundary.

Lemma 3.1. Let wy,wy € H'(Q) be og-harmonic. Then

/ V- (Voy — 01V Inog)wiwydr = 2 / R(l)[wl]wgds
Q r

(28) — /<013(w1w2) - &lelwg)ds,
r

on on
and, for N > 2,

/V : (VUN - O'Nv In Uo)wlwgd[E
Q

0 0
:2/FR(N)[w1]w2ds—/F(0N (lglan) — ;rjlvwlwg)ds

N-1
(29) -2 Z / (O'jV’UN,j - Gthij) V’U)gdl’
j=1 7%

Also
/ V- (Ve — 6V Inog)wiwedr = 2/1(1)[w1]w2d$
Q r

6(w1w2) 661
(30) — /F<€1@—n - %wlwg)ds,
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and, for N > 2,

/V - (Vey — enVInog)wjwadr = Z/I(N) (w1 |wads
Q r

_/ O(wywy) B Oen p
- EN an 81’1 wW1W2 S

N-1
(31) —22/(0’th1\[j—FEjV’UNj)‘U)QdQ?.

j=1 7%
Proof. From Proposition 2.1,

N
Oun_; Ohn_;

(V) - ZON—y NG

@ R (o)

where vy = wy, hy = €9 = 0,and v;, h;, j = 1, ..., N are defined recursively
in (14) and (15).
Upon multiplication of (32) by w, and integration by parts we obtain

al ov oh
RV ds — Z YUN—j  YIN—j d
/r o Juads j_O/F (0] on % on ) s

N
= / wyV - (Z(UJVUN—J‘ - EthN—j)> dx
Q

J=0

N
+ Z /{; (O’jVUN,j - EthN,j) : ngdx
j=0

N—-1
— / ooVoy - Vgda + ) / (0;Vun_j — €;Vhy_;) - Vwadz
Q =10

+ / onVw; - Vwadr
Q
(33)

N—-1
=) / (0;Vuy_jdz — €;Vhy_;) - Vwsdz + / onVw, - Vwsdz,
=1 /9 Q

where in the third equality we use the recurrence (14), and for the last equal-
ity we use the facts that w, is og-harmonic and vy € HJ(2). Note that for
N =1 the identity (33) reduces to

(34) /R(l)[wl]wgds = / o1Vw; - Vwsydz.
r Q
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Since oy € CH1(Q), w; also solves
(35) ij = —VIDO'O : ij, j = 1,2

By using the general identity 2Vw; - Vws = A(wjws) — wiAwy —
woAwq, and (35) we get

Q/UNle - Vwydr = / on(A(wiwy) — w1 Awe — weAwy )dx
Q Q

= / on(A(wywy) + Vinog - V(wyws))de
Q

:/ UNE)(wlwg) — aONwlwg ds+/(AaN)w1w2dx
r an 81’1 Q

+/0NV11100 - V(wyws)dx
Q

1
:/ aNa(w1w2) — aanlwg ds—i—/oNa H00w1w2d8
r On on r On

+ / V- (Von — onVInog)wwedz
Q

_/ 8(?1)11(]2)_80’]\[ d
e N on on 12)

(36) + / V- (Voy — onVInog)wiwedz,
Q

where, for the last equality, the vanishing of the second boundary integral
accounts for o( being constant near the boundary I'.

The use of (34), respectively (36), in (33) proves the identity (28), re-
spectively (29).

The identity (31) follows similarly: An integration by parts and use of
(15) yield
(37)

N-1
/Z(N)[wl]wgds = Z/ (0;Vhn_j +€;Vun_;) - wadz + / en Vwi Vwadz,
r = o Q

and the calculation in (36) with €y replacing oy shows

2/ enVw; - Vwadz :/ (ENa(wle) — aENwlwg) ds
Q r

on on
(38) + / V- (Vey — exVinog)wywedz, .
Q

By using (38) in (37) we obtain (31).
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We prove Theorem 1.1 by induction on the order of derivative in fre-
quency. We will employ the basic identities in the lemma above with w;, wy
being the CGO solutions in (8). Recall the dependence of w; and ws on the
vectors 7, k, 1, which we do not made explicit to keep the formulas readable.

Case N = 0: Assume that A,. ) is known, then we appeal to [16, Lem-
mae 2.7 and 2.12 b)] to conclude that A.. ) recovers the traces w;j|p for
7 =1,2, and to [16, Theorem 5.1] to recover coefficient o in €.

Case N = 1: Assume that R™") and Z(") are known. By using the CGO
solutions wy, wy in (30), and accounting for the compact support of o1, €1,
we get

(39) / QY1+ g (1)1 + () = /F RO Juads.

Due to the decay estimate (9), the left hand side in (39) has a limit with
1] — oo, thus so does the right hand side, and the Fourier transform F[Q"]
is determined. The Fourier inversion yields

Qr=F"! L lim /R(l)[wl]wgds} :
r

1| =00

Starting with (30) and proceeding similarly with the boundary data Z(), we
find by Fourier inversion the L>°({2)-function

Q, =F! {lim /I(l)[wl]des] :
r

[1]—o00

In the case N = 1 we note that %L:o A () uniquely determines the
quantities Q] and @}, independent of knowledge of the DtN map A,(. ).

However, since oy is known, we can also recover o, and €; as the unique
solutions of the respective Dirichlet problems:

(40) Aoy — Vo, -Vinog—o01Alnoy = 0pQ7in 2, o1|r =0,
41) Ae; — Ve -Vinog — eiAlnoy = 0pQ% in Q, e|p = 0.

The inductive step: Assume that 0y, and 0j,¢;, 7 = 1,..., N — 1 have
been determined, and R™Y), 7™ are known. Below we reconstruct oy and
EN.

By solving the recurrence (14) and (15) starting with vo|r = wy|T', we
can determine v;, h; € Hy(Q2) for j = 1,..., N — 1 (recall vy = w; and
ho = 0).
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Since o is assumed compactly supported in €2, the identity (29) yields

| e an @+ w1+ vale)ds

) =2 / RO funJuwsds — 23 / (0,V 0y — eV hy ) Vanda.
r — Jo

Note that the right hand side of (42) is known. Due to the decay estimate
(9) the left hand side of (42) has a limit with |I| — oo, thus so does the right
hand side, and the Fourier transform F[Q'y] is recovered from

@W(—hm{/R [wr]uwsds

(43) —22 / (ajva_j—ethN_j)vadx}.
— JQ

By Fourier inversion in (42), we recovered Q' € Li°(12).

By a similar reasoning starting from (31) with w;, ws being the CGO
solutions in (8), we determine Q% € L3°(1).

Finally, the coefficients o and €y, are recovered as the unique solution
to the respective Dirichlet problems:

(44) Aoy —Von-Vinoy—onyAlnoyg=0¢Qy inQ, onlr=0,
(45) Aey —Ven-Vinog —eyAlnoy = 0@y in Q, eylr = 0.

This finishes the proof of Theorem 1.1.
For the proof of the corollary, we note that the analyticity of the map
w — Ay allows for each derlvatlve Av(nw) at w = 0 to be determined

from the derlvatlves d—/\y(.,w) o J 2 0, taken at any other frequency wy

dwi
0
within the domain of analyticity [0, (1 + 2r)~1).
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