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Abstract. We consider the problem of recovering a sufficiently smooth isotropic conductivity
from interior knowledge of the magnitude of the current density field |J | generated by an imposed
voltage potential f on the boundary. In any dimension n ≥ 2, we show that equipotential sets are
global area minimizers in the conformal metric determined by |J |. In two dimensions, assuming
the boundary voltage is almost two-to-one, we prove uniqueness of the minimization problem. This
yields two results on reconstruction from incomplete data. In the first case, |J | is known in all of Ω
but the almost two-to-one f is know only on subintervals of the boundary. The second case assumes
|J | known only in an appropriate subdomain Ω̃: our method works provided that Ω̃ contains entire
equipotential curves joining boundary points. Based on solving two point boundary value problems
for the geodesic system, we give a procedure to determine whether Ω̃ satisfies this property, to
construct the equipotential curves lying entirely in the interior of Ω̃, and to obtain the conductivity in
the region spanned by these curves. We also conduct a numerical study to illustrate the computational
feasibility of the method.
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1. Introduction. We consider the problem of reconstructing an isotropic con-
ductivity σ when knowledge of the magnitude of one current density |J | generated by
an imposed voltage f on the boundary is only partially available. The voltage poten-
tial u is the unique solution of the Dirichlet problem for the conductivity equation

∇ · σ∇u = 0, u|∂Ω = f, (1.1)

and the current density field is defined by Ohm’s law: J = −σ∇u. Currently, interior
knowledge of J is obtained from magnetic resonance measurements as discovered in
[26], but recent engineering advances show that magneto-acoustic measurements in
biological tissue can also recover J ([28]).

The classical problem of electrical impedance tomography is exponentially ill-
posed, yielding images of low resolution away from the boundary ([21], [8]). In an
earlier paper [22] we have shown that knowledge of one |J | in the interior yields stable
reconstruction and increases both the quantitative accuracy and the resolution. In
this paper, for two dimensional models, we show that such a reconstruction is local,
in the sense that knowledge of |J | in an appropriate subregion yields the conductivity
in that subregion. We will describe below precisely what subregions are appropriate.

Among the first works which considered interior data in conductivity imaging
we mention [29], [13], [14], [15], [12], and [17]. The papers [19] and [18] use the
interior knowledge of one component of the magnetic field; see [27] for comprehensive
references in this direction. Recent work combines electrical impedance tomography
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with ultrasound, electro-acoustic or magneto-acoustic measurements, see [20], [3],[2],
[9],[4].

In [22], we first proposed a reconstruction method which uses the interior knowl-
edge of the magnitude of one current density field |J |. The reconstruction was based
on the fact that, in the absence of singularities, equipotential sets have zero mean
curvature (i.e. are minimal surfaces) in the metric g = |J |2/(n−1)I conformal to the
Euclidean metric; n is the dimension of the domain. The equipotential surfaces are
critical points for the functional

E(Σ) =
∫

Σ

|J |dS, (1.2)

where dS is the induced Euclidean surface measure. Note that E(Σ) is the area of Σ
in the Riemannian metric g described above.

In section 2 of this paper (Theorem 2.6) we prove a stronger result: equipotential
sets are in fact minimizers of E(Σ). We stress that E in (1.2) is not convex in Σ.

If the interior data |J | is known throughout Ω and f is known on the entire
boundary, the authors show in [23] that the voltage potential u is a minimizer of the
functional

∫

Ω

|J | · |∇v|dx, (1.3)

subject to v ∈ W 1,1(Ω) with v = f at the boundary ∂Ω. Moreover, u is the unique
minimizer among v ∈ W 1,1(Ω) with |∇v| > 0 a.e. in Ω and v = f at the boundary
and one can determine it by a minimization algorithm. A structural stability result
for the minimization of the functional in (1.3) can be found in [24]. Formally, the
Euler-Lagrange equation for the non-smooth functional in (1.3) is the generalized
1-Laplacian. This is in contrast with the work in [3], [2] and [9], where different
problems with interior data lead to the generalized 0-Laplacian.

In section 3 we present a new reconstruction method for two dimensional models,
which yields two new results. In both cases the imposed boundary voltage f is assumed
almost two-to-one (see [1, 22], or section 3).

In the first result |J | is known throughout Ω, but f is only known on parts of
the boundary. More precisely, if some interval (α, β) of boundary voltages is twice
contained in the known values of f , then we can recover the conductivity in the
subregion

Ωα,β := {x ∈ Ω : α < u(x) < β}. (1.4)

We give a procedure to determine this region from the data.
In the second result |J | is only known in a subregion Ω̃. Our method works if

Ω̃ contains regions of the type (1.4) for unknown values α’s and β’s. For example, if
∂Ω̃ includes the arc of maxima (or minima) of f , then this is always the case. We
stress, however, that this property of Ω̃ need not be assumed a priori: the method
determines from the data if Ω̃ contains regions of the type (1.4), and, if so, recovers
all the (maximal) intervals (α, β), their corresponding Ωα,β and the conductivity
therein. If Ω̃ does not contain regions of type (1.4), then the incomplete interior data
is insufficient to recover the conductivity in any subregion. As in the first case, we
only use the boundary voltages that are twice contained in the known values of f ;
see Theorem 3.4 for the uniqueness results and Theorem 3.6 for the reconstruction of



Reconstruction of planar conductivities in subdomains using incomplete data 3

one equipotential line. Our reconstruction method from incomplete data is described
following the proof of Theorem 3.6.

Note that, for almost two-to-one boundary voltages, not only are the equipo-
tential curves globally length minimizing (Theorem 2.6), but they are unique with
this property (see the proof of Theorem 3.4). This unique minimizing property is
preserved if we restrict the competitors to curves contained in Ω̃.

In section 3.1 we give a reconstruction method from the partial data discussed
above, based on the computation of the geodesics within Ω̃ that join pairs of equipo-
tential points at the boundary.

In section 4 we present a numerical study to test the computational feasibility of
the reconstruction method. The algorithm is based on the numerical solution of the
two point boundary value problem for the geodesic system.

2. Equipotential surfaces are area minimizing in the conformal metric.
In this section we prove that, in any dimension n ≥ 2, the equipotential sets are
global minima of E(Σ). This result is a consequence of the minimizing property of
the voltage potential for the functional (1.3) first established in [23]. The proof adapts
the approach of Bombieri, De Giorgi and Giusti [7].

We start by recalling the co-area formula.
Theorem 2.1 (Co-area formula, [11]). Let u ∈ Lip(Ω) and a be integrable in

Ω ⊂ Rn. Then, for a.e. t ∈ R, Hn−1(u−1(t) ∩ Ω) < ∞ and

∫

Ω

a|∇u(x)|dx =
∫ ∞

−∞

∫

u−1(t)

adHn−1(x)dt, (2.1)

where Hn−1 is the (n− 1)-dimensional Hausdorff measure.
Note that, since Hn−1(u−1(t) ∩ Ω) < ∞, we also have Hn(u−1(t) ∩ Ω) = 0 for

a.e. t ∈ R.
Proposition 2.2. Let a ≥ 0 be integrable in Ω and

u ∈ argmin
{∫

Ω

a|∇v|dx : v ∈ Lip(Ω), v|∂Ω = f

}
. (2.2)

For λ ∈ R arbitrarily fixed, let u+ = max{u − λ, 0} and u− = min{u, λ} be
defined in Ω, and f+ = max{f − λ, 0}, respectively f− = min{f, λ}, be defined on the
boundary ∂Ω. Then

u+ ∈ argmin
{∫

Ω

a|∇v|dx : v ∈ Lip(Ω), v|∂Ω = f+

}
, (2.3)

u− ∈ argmin
{∫

Ω

a|∇v|dx : v ∈ Lip(Ω), v|∂Ω = f−

}
. (2.4)

Proof. Note that u± ∈ Lip(Ω) and u = u+ + u−. Using the co-area formula (2.1)
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we evaluate:
∫

Ω

a|∇u|dx=
∫ λ

−∞

∫

u−1(t)

adHn−1(x)dt +
∫ ∞

λ

∫

u−1(t)

adHn−1(x)dt

=
∫ λ

−∞

∫

(u−)−1(t)

adHn−1(x)dt +
∫ ∞

0

∫

(u+)−1(t)

adHn−1(x)dt

=
∫ ∞

−∞

∫

(u−)−1(t)

adHn−1(x)dt +
∫ ∞

−∞

∫

(u+)−1(t)

adHn−1(x)dt

=
∫

Ω

a|∇u−|dx +
∫

Ω

a|∇u+|dx.

To prove (2.3), we observe that for any w ∈ Lip(Ω) with w = 0 on the boundary, the
following estimate holds:

∫

Ω

a|∇u+|dx =
∫

Ω

a|∇u|dx−
∫

Ω

a|∇u−|dx ≤
∫

Ω

a|∇(u + w)|dx−
∫

Ω

a|∇u−|dx

=
∫

Ω

a|∇(u+ + u− + w)|dx−
∫

Ω

a|∇u−|dx ≤
∫

Ω

a|∇(u+ + w)|dx.

The first inequality in the above uses (2.2) while the second is the triangle inequality.
The minimizing property of u− in (2.4) can be shown similarly.
Corollary 2.3. Let a ≥ 0 be integrable in Ω and u ∈ Lip(Ω) such that

u ∈ argmin
{∫

Ω

a|∇v|dx : v ∈ Lip(Ω), v|∂Ω = f

}
. (2.5)

For every λ ∈ R and ε > 0 define

uλ,ε :=
1
ε

min{ε, max{u− λ, 0}}, (2.6)

and let fλ,ε be its trace on the boundary ∂Ω.
Then uλ,ε ∈ Lip(Ω) and

uλ,ε ∈ argmin
{∫

Ω

a|∇v|dx : v ∈ Lip(Ω), v|∂Ω = fλ,ε

}
. (2.7)

Proof. This is a direct consequence of Proposition 2.2 applied twice.
Lemma 2.4. Let a, u ∈ Lip(Ω) with |∇u| > 0 a.e. in Ω and

∇u/|∇u| ∈ W 1,1(Ω). (2.8)

Then, for almost every λ ∈ Range(u),

lim
ε→0+

∫

Ω

a|∇uλ,ε|dx =
∫

u−1(λ)

adHn−1(x), (2.9)

with uλ,ε as defined in (2.6).
Proof. From Theorem 2.1, we get that Hn−1(u−1(λ) ∩ Ω) < ∞, a.e. λ ∈ R. In

particular, for a.e. λ ∈ R,

Hn(u−1(λ) ∩ Ω) = 0. (2.10)
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Note that u ∈ Lip(Ω) extends continuously to the boundary. Since Hn−1(∂Ω) < ∞,
from the disjoint partition ∂Ω = ∪λ∈R(u−1(λ)∩∂Ω), we have Hn−1(u−1(λ)∩∂Ω) > 0
for at most countable many λ’s. In particular, for a.e. λ ∈ R,

Hn−1(u−1(λ) ∩ ∂Ω) = 0. (2.11)

Let λ ∈ Range(u) be such that both (2.10) and (2.11) hold, and ε > 0. Recall

uλ,ε(x) =





0, if u(x) < λ,
(u(x)− λ)/ε, if λ ≤ u(x) ≤ λ + ε,
1, if u(x) > λ + ε.

From the co-area formula (2.1) we have
∫

Ω

a |∇uλ,ε|dx =
∫ ∞

−∞

∫

(uλ,ε)−1(t)

adHn−1(x)dt

=
∫ 1

0

∫

{x: u(x)=λ+tε}
adHn−1(x)dt. (2.12)

To finish the proof we show that

lim
ε→0

∫

{x: u(x)=λ+tε}
adHn−1(x) =

∫

{x: u(x)=λ}
adHn−1(x) (2.13)

holds uniformly a.e. t ∈ [0, 1]. The domain Ωtε := {x ∈ Ω : λ < u(x) < λ + tε}
is Lipschitz. Since a ∈ Lip(Ω), it extends continuously to the boundary and, using
(2.8), a∇u/|∇u| ∈ W 1,1(Ω) extends to the boundary ∂Ω as a bounded function. From
(2.8) we also have ∇ · (a∇u/|∇u|) ∈ L1(Ω). Let ν denote the outer unit normal to
the boundary. Then the Green’s formula in Ωtε yields

∣∣∣∣∣
∫

u−1(λ+tε)

adHn−1 −
∫

u−1(λ)

adHn−1

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

{x∈∂Ω: λ<u(x)<λ+ε}
a
∇u

|∇u|νdHn−1(x)

∣∣∣∣∣

+

∣∣∣∣∣
∫

{x∈Ω: λ<u(x)<λ+ε}
∇ · a ∇u

|∇u|dx

∣∣∣∣∣ .

Using (2.10) we have

lim
ε→0

Hn({x ∈ Ω : λ < u(x) < λ + ε})= Hn(
⋂
ε>0

{x ∈ Ω : λ < u(x) < λ + ε})

≤ Hn(
⋂
ε>0

{x ∈ Ω : λ ≤ u(x) < λ + ε})

= Hn({u−1(λ) ∩ Ω) = 0.

Similarly, using (2.11), we obtain

lim
ε→0

Hn−1({x ∈ ∂Ω : λ < u(x) < λ + ε}) = 0.

This proves (2.13). By taking the limit with ε → 0 in (2.12), and using (2.13) we
obtain (2.9).
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Corollary 2.5. Let λ ∈ R satisfy (2.11) and (2.10). Then the limit (2.9) holds
for such a λ.

We remark that Lemma 2.4 holds for a bounded continuous coefficient a and
without the assumption (2.8) in u. In such a case

lim
ε→0+

∫

Ω

a|∇uλ,ε|dx = ‖Dχλ‖(a), (2.14)

where the right hand side is the total variation of the indicator function χλ of the
super-level set {x : u(x) > λ}, interpreted as a Radon measure applied to the contin-
uous map a. However, the extension (2.14) is beyond the scope of this paper.

Theorem 2.6 (Minimizing property of level sets). Let Ω ⊂ Rn, n ≥ 2, be
a domain with Lipschitz boundary. Assume σ ∈ C1,δ(Ω), 0 < δ < 1, is bounded
away from zero and f ∈ C2,δ(∂Ω). Let u ∈ C2,δ(Ω) be the solution of (1.1) and let
|J | = |σ∇u|. Assume that |J | > 0 in Ω.

Then, for a.e. λ ∈ R and for any v ∈ C2(Ω) with v = f on ∂Ω and minΩ |∇v| > 0,

E(u−1(λ)) ≤ E(v−1(λ)). (2.15)

Furthermore, if f satisfies (2.11) for every λ, then (2.15) holds for all λ ∈ R.
Proof. For λ /∈ Range(u), the left hand side of (2.15) is zero and the inequality is

trivial. Since u obeys the maximum principle, and coincides with v at the boundary,
Range(u) ⊂ Range(v).

Now let λ ∈ Range(u) be arbitrary. Since both u and v are free of singular
points, their corresponding λ-level set is a C2-smooth oriented surface. In particular
the Hn−1- measure coincides with the induced Lebesgue measure on the respective
surface. Moreover, u and v satisfy (2.10), and, by assumption, (2.11).

Since u is a solution of (1.1), by [23, Proposition 1.2.]:

u ∈ argmin
{∫

Ω

a |∇v|dx : v ∈ Lip(Ω), v|∂Ω = u|∂Ω

}
.

For ε > 0 arbitrarily fixed, let uλ,ε be defined by (2.6), and define similarly
vλ,ε := min{ε, max{v − λ, 0}}/ε. Since v = u coincide at the boundary, we also have
uλ,ε = vλ,ε on ∂Ω.

From Corollary 2.3 we have
∫

Ω

a |∇uλ,ε|dx ≤
∫

Ω

a |∇vλ,ε|dx. (2.16)

Since u, v ∈ C2(Ω) and their corresponding gradient is bounded away from zero, then
∇u/|∇u|,∇v/|∇v| ∈ C1(Ω) and (2.8) is satisfied.

Now use Corollary 2.5 to take the limit with ε → 0 in (2.16) and conclude (2.15).

3. Partial determination of planar conductivities. In this section we show
uniqueness of the minimizer of (1.2) for smooth curves in a simply connected planar
domain with smooth boundary. The imposed boundary voltage is assumed to be
almost two-to-one, i.e. a continuous function whose set of local maxima is one con-
nected arc (that may reduce to one point). This ensures that |∇u| 6= 0 in Ω ([1],[15],
[22]).

We start by recalling some definitions and results from [22] and [23].
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Solutions u of the conductivity equation in (1.1) are called σ-harmonic functions.
Definition 3.1 ([23]). A pair of functions (f, a) ∈ H1/2(∂Ω) × L2(Ω) is called

admissible if there exists a positive map σ ∈ L∞(Ω) bounded away from zero such that
if u ∈ H1(Ω) is the σ-harmonic map with u|∂Ω = f then

|σ∇u| = a. (3.1)

The function σ is called a generating conductivity for the pair (f, a) and the function
u is called the corresponding potential. The function a is the magnitude of the current
in Ω corresponding to the voltage f on the boundary.

Proposition 3.2 ([22]). Let Ω be a simply connected planar domain with C2,δ-
boundary, σ ∈ C1,δ(Ω), for some 0 < δ < 1, and u be σ-harmonic in Ω with u|∂Ω

almost two-to-one. Then |∇u| > 0 in Ω and each level set of u is a C2,δ-smooth curve
inside Ω with the two endpoints on the boundary.

The following result is the two dimensional version of Lemma 2.1 in [22]; an
alternate proof (specific to two dimensions) is given in the appendix at the end of the
paper.

Proposition 3.3. Let (Ω, g) be a domain in R2 endowed with the metric g =
a2I conformal with the Euclidean one, for a given positive factor a ∈ C1(Ω). Let
u ∈ C2(Ω) be such that |∇u| > 0 in Ω. Then the signed curvature of the level curves
of u is given by

k = − 1
a2
∇ ·

(
a

|∇u|∇u

)
. (3.2)

The following theorem establishes our main new uniqueness results from incom-
plete data.

Theorem 3.4 (Uniqueness). Let Ω ⊂ R2 be a simply connected domain with
C3,δ-boundary, 0 < δ < 1. For i = 1, 2 let σi ∈ C2,δ(Ω), ui be σi-harmonic with
ui|∂Ω ∈ C3,δ(∂Ω) almost two-to-one, and |Ji| = |σi∇ui|. For α < β let

Ωα,β := {x ∈ Ω : α < u1(x) < β} and Γ := Ωα,β ∩ ∂Ω. (3.3)

(i) Assume u1|Γ = u2|Γ and |J1| = |J2| in Ω. Then

u1 = u2 in Ωα,β and
σ1 = σ2 in Ωα,β .

(ii) Assume u1|Γ = u2|Γ and |J1| = |J2| in the interior of Ωα,β. Then

{x ∈ Ω : α < u2(x) < β} = Ωα,β , (3.4)
u1 = u2 in Ωα,β and (3.5)

σ1 = σ2 in Ωα,β . (3.6)

Proof. It suffices to prove part (ii). By Proposition 3.2, the equipotential curves
are C2,δ-smooth curves in Ω with the two endpoints on the boundary. From the
elliptic regularity theory (see e.g., [10]), u ∈ C3,δ(Ω). Therefore, |J1|, |J2| ∈ C2,δ(Ω)
and the geodesic system (which involves first order derivatives of the conformal factor)
has C1,δ(Ω) right hand side.
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Let x1 ∈ Ωα,β and let Σ1 be the level set of u1 through x1: Σ1 = {x ∈ Ω : u1(x) =
u1(x1)}. Clearly Σ1 ⊂ Ωα,β . Consider now u2 along Σ1. Since u1 = u2 on Γ, u2 takes
the same value at the end points Σ1 ∩ ∂Ω. Hence, there is a point x2 ∈ Σ1 such
that the derivative of u2 at x2 in the direction tangential to Σ1 is zero. If Σ2 denotes
the level set of u2 through x2 (which is unique, by Proposition 3.2), we have that the
derivatives of u2 at x2 in the direction tangential to Σ2 is also zero. Therefore ∇u2(x2)
is normal to both Σ1 and Σ2, or, equivalently, Σ1 and Σ2 are tangent to each other at
x2 ∈ Ωα,β . Following [22, Theorem 2.1] (see also section 6 below) Σ1 and Σ2 are both
geodesics in Ωα,β endowed with the (same) conformal metric g = |J1|2I = |J2|2I;
I is the Euclidean metric. Since they both pass through x2 ∈ Ωα,β in the same
direction, and since the geodesic system has Lipschitz coefficients, Σ1 and Σ2 coincide
locally near x2. Since the entire Σ1 lies in Ωα,β , by the continuation argument for
initial value problems of differential equations, Σ1 and Σ2 coincide throughout Ωα,β .
Since u1 and u2 have the same value at the boundary, u1 = u2 along Σ1 = Σ2; In
particular, Σ2 ⊂ Ωα,β . Since x1 has been arbitrarily chosen inside Ωα,β , we showed
Ωα,β ⊂ {x ∈ Ω : α < u2(x) < β} and u1 = u2 in Ωα,β .

To prove the reverse inclusion in (3.4), let xλ ∈ Ω be such that u2(xλ) = λ, for
some fixed λ ∈ (a, b), and let Σλ be the level set of u2 through xλ. Since u2 already
takes the value λ at a pair of points in Γ and since u2 is almost two-to-one at the
boundary, Σλ ∩ ∂Ω must be in Γ and, by the previous argument, coincides with the
λ- level set of u1.

Finally by the choice of almost two-to-one boundary data |∇ui| 6= 0 (i = 1, 2)
and then σ1 = |J |/|∇u1| = |J |/|∇u2| = σ2 in Ωα,β .

3.1. Determination of equipotential lines. In this section we present a re-
construction method based on the uniqueness result above.

Proposition 3.5. Let σ ∈ C1,δ(Ω) and u ∈ C2,δ(Ω) be σ-harmonic, with |∇u| >
0 in Ω. Then the level sets of u are geodesics for the metric g = |J |2I, where |J | =
|σ∇u|. In particular, if γ : (0, 1) → Ω, γ(t) = (x(t), y(t)) is any local parametrization
of such a level curve, then it satisfies the geodesic system:

ẍ = −ẋ2 |J |x
|J | (x, y)− 2ẋẏ

|J |y
|J | (x, y) + ẏ2 |J |x

|J | (x, y), (3.7)

ÿ = ẋ2 |J |y
|J | (x, y)− 2ẋẏ

|J |x
|J | (x, y)− ẏ2 |J |y

|J | (x, y),

where the dot denotes d
dt .

Proof. Since u ∈ C2(Ω) with |∇u| > 0, by the implicit function theorem, the level
sets of u are C2-smooth curves. Since u is σ-harmonic and σ = |J |/|∇u| then u solves

∇ · |J ||∇u|−1∇u = 0.

By (3.2) every level curve of u has constant null curvature, hence it is a geodesic.
The formulae Γk

ij = 1
2gkl(∂igjl + ∂jgil − ∂lgij) compute the Christoffel symbols

for the Levi-Civita connection associated with a metric g, see e.g. [16]. In our case
g = |J |2I and a simple calculation yields

Γ1
11 = Γ2

12 = −Γ1
22 =

|J |x
|J | , Γ1

12 = Γ2
22 = −Γ2

11 =
|J |y
|J | . (3.8)

Using the parametric form for a geodesic curve γ (see e.g., [16]) with the Christoffel
symbols in (3.8) we obtain the system (3.7).
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Next we show that, under our assumptions, the geodesic system (3.7) subject to
two endpoints boundary conditions has a unique solution. Note that this need not be
the case in general.

Theorem 3.6 (Reconstruction). Let (f, |J |) ∈ C2,δ(∂Ω) × C1,δ(Ω) be an ad-
missible pair with f almost two-to-one and let (x0, y0), (x1, y1) ∈ ∂Ω be such that
f(x0, y0) = f(x1, y1). Then the system (3.7) subject to the boundary conditions

(x(0), y(0)) = (x0, y0) and (x(1), y(1)) = (x1, y1), (3.9)

has a unique solution γ : [0, 1] → Ω, γ(t) = (x(t), y(t)). Moreover, the map u : Ω → R
is constant along γ:

(u ◦ γ)(t) = λ, t ∈ [0, 1]. (3.10)

Proof. Let λ = f(x0, y0) = f(x1, y1) denote the common voltage. Proposi-
tion 3.5 shows that a parametrization (say by arclength s) of the level set of Σ =
{(x, y) : u(x, y) = λ} is a solution of (3.7) which also satisfies (x(0), y(0)) = (x0, y0)
and (x(L), y(L)) = (x1, y1), where L is the length (in the metric g) of Σ. Since
geodesics have constant speed, the scaling s = Lt, gives a solution to (3.7) which also
satisfies (3.9).

We show that the converse also holds, namely, u is constant along any solution
of the boundary value problem (3.7) and (3.9). Indeed, let γ̃(t) = (x̃(t), ỹ(t)) be a
C2-solution of (3.7) and (3.9). Since u ◦ γ̃(0) = u ◦ γ̃(1), there is a point t0 ∈ (0, 1)
where d

dt (u ◦ γ̃)(t0) = 0. Let P denote the point γ̃(t0). Now consider the level curve
of u passing through P , i.e. Σ̃ = {(x, y) : u(x, y) = u ◦ γ̃(t0)}. Since the derivative
of u in the direction tangential to Σ̃ is also zero, γ̃ and Σ̃ have the same unit normal
at P in the direction of ∇u(P ). Therefore they are tangent to each other at P . Since
they are both geodesics with respect to the metric |J |2I, they coincide throughout Ω.

Since |∇u| 6= 0, there can be no two level sets intersecting non-tangentially. But
they must meet at least at the boundary points and uniqueness follows.

It is important to note that the solution to the problem (3.7) and (3.9) depends
only on the values of |J | near the curve.

Our reconstruction procedure starts by extending |J | to all of Ω. To find all the
equipotential curves which lie entirely in Ω̃ (the region where |J | is known) we then
solve (3.7) subject to (3.9), for each pair of equipotential boundary points. If the
solution lies in the interior of Ω̃, then it is the correct level curve joining those two
boundary points. If the calculated curve passes outside Ω̃ (or touches its boundary)
then it is dependent on the extension of |J | and we discard it. An interval (α, β)
of voltages defines a set Ωα,β as in (1.4) provided that, for each λ ∈ (α, β), the
calculated λ-equipotential curve lies entirely in the interior of Ω̃. If Ω̃ contains no
entire equipotential curves, then all the calculated solutions will be discarded. In
such a case the incomplete interior data is insufficient to recover the conductivity in
any subregion.

3.2. Equipotential curves as graphs. This section considers the special case
in which equipotential curves are graphs in x, i.e. ẋ(t) > 0. We show that a re-
parametrization reduces the system (3.7) to a second order ODE (see 3.16 below),
first introduced in [22].
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Since ẋ > 0 the inverse function t = g(x) exists; define ψ(x) = y(g(x)). Implicit
differentiation gives

ẋ(g(x)) =
1

g′(x)
, ẏ(g(x)) =

ψ′(x)
g′(x)

, (3.11)

ẍ(g(x)) = − g′′(x)
g′3(x)

, and (3.12)

ÿ(g(x)) =
(

ψ′′(x)− ψ′(x)
g′′(x)
g′(x)

)
1

g′2(x)
. (3.13)

Substitute (3.11) and (3.12) into the equation for ẍ in (3.7) (evaluated at t = g(x))
and multiply both sides by g′2(x) to obtain

−g′′(x)
g′(x)

=
|J |x
|J | (x, ψ(x))− 2ψ′(x)

|J |y
|J | (x, ψ(x)) + ψ′2(x)

|J |x
|J | (x, ψ(x)). (3.14)

Multiply the equation for ÿ in (3.7) (evaluated at t = g(x)) by g′2(x), and use (3.11)
and (3.13) to obtain

ψ′′(x)− ψ′(x)
g′′(x)
g′(x)

=
|J |y
|J | (x, ψ(x))− 2ψ′(x)

|J |x
|J | (x, ψ(x))

−ψ′2(x)
|J |y
|J | (x, ψ(x)). (3.15)

Finally, use (3.14) into (3.15) to obtain the second order nonlinear equation

ψ′′(x) = (1 + ψ′(x))
(
−|J |x|J | (x, ψ(x))ψ′(x) +

|J |y
|J | (x, ψ(x))

)
. (3.16)

The equation (3.16) was derived in [22] by different methods.
If an equipotential line {(x, y) : u(x, y) = λ} is a graph in x, then, instead of

using the boundary value problem for the geodesic system (3.7) and (3.9), one can
solve (3.16) subject to

ψ(0) = y0, ψ(1) = y1, (3.17)

where (0, y0), (1, y1) ∈ ∂Ω are boundary points of equal potential: f(0, y0) = f(1, y1).

3.3. Description of the reconstruction algorithm. We present a reconstruc-
tion algorithm based on the result in Theorem 3.6. The boundary voltage potential f

is given at discrete points on Γ ⊂ ∂Ω. A subregion Ω̃ such that Γ = Ω̃ ∩ ∂Ω is given,
without a priori knowledge of the geodesics. The interior data |J |, originally given on
a regular grid in the subregion Ω̃, is extended by (Lipschitz) continuity to the regular
grid in the entire domain Ω: for example, in the numerical implementation in section
4, |J | is extended by continuity and constant in the y-direction.

The reconstruction is done in three steps: First we reconstruct the equipotential
curves joining pairs of (equipotential) points on Γ. We only keep the curves which
lie entirely in the interior of Ω̃ and discard the others. These curves span (and
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define) regions Ωα,β as in (1.4). In the numerical experiments presented in section 4
Ω̃ contains only one (maximal) such Ωα,β . Next we determine the voltage potential
field u on the regular subgrid covering the regions Ωα,β , and, finally, we recover the
conductivity on this subgrid.

Step 1. Reconstruction of the equipotential lines.
For clarity, we describe in detail the special case when equipotential lines are

graphs in x, and we solve the boundary value problem (3.16) and (3.17). We then
outline the difference in the general case (3.7) and (3.9). The numerical studies in
section 4 consider both cases. To further simplify the presentation, without loss of
generality, we assume that y0 = y1 = λ. By introducing ϕ(x) = ψ(x) − λ, the
boundary value problem (3.16) and (3.17) becomes

ϕ′′(x) = F (x, ϕ + λ, ϕ′), (3.18)
ϕ(0) = ϕ(1) = 0, (3.19)

where

F (x, ϕ, ϕ′) = (1 + ϕ′2) (−∂x ln |J |(x, ϕ)ϕ′ + ∂y ln |J |(x, ϕ)) . (3.20)

Recall that, under our assumptions, the boundary value problem (3.18) and (3.19)
has a unique solution. Among the several algorithms available to solve (3.18) and
(3.19) we use the iterative method of Picard successive approximations for the equiv-
alent Fredholm system:

ϕ(x) = −
∫ 1

0

G(x, s)F (s, ϕ + λ, ϕ′) ds, (3.21)

ϕ′(x) =
∫ 1

0

H(x, s)F (s, ϕ + λ, ϕ′) ds, (3.22)

where the Green functions G(x, s) and H(x, s) are given by

G(x, s) =
{

s(1− x) for 0 ≤ s ≤ x ≤ 1
x(1− s) for 0 ≤ x ≤ s ≤ 1,

(3.23)

H(x, s) =
{

s for 0 ≤ s < x ≤ 1
s− 1 for 0 ≤ x < s ≤ 1.

(3.24)

The system (3.21) and (3.22) above is treated as a fixed point problem

Y (x) = T[Y ](x), (3.25)

where the operator T is given by

T[Y ](x) =
∫ 1

0

K(x, s)F (s, Y (s) + µ)ds, with

K(x, s) =
(

G(x, s) 0
0 H(x, s)

)
, and µ =

(
λ
0

)
.
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By the equivalence of (3.25) with the boundary value problem (3.16) and (3.17),
we already know that the operator T in (3.25) has a unique fixed point in C([0, 1];R2).
We solve the equation (3.25) iteratively by the successive approximations Yk(x) =
TYk−1(x), (k = 0, 1, 2, ...) on the grid ωh = {xk = kh, 1 = h(M + 1), k =
0, 1, 2, ..., M+1}. This method is known to be slow to converge. However, a sufficiently
close initial guess speeds up the convergence. The specific procedure of choosing the
initial approximation is discussed in section 4.2.1. As a stopping criterion we use the
relative 2-norm estimate

||Yk − Yk−1||
||Yk|| ≤ ε, (3.26)

where ε > 0 is a small number to be specified later.
In the general case, we solve numerically the boundary value problem (3.7) and

(3.9) by a similar method. The system of the second-order differential equations is
reduced to an operator equation similar to (3.25). The vector valued map Y (x) has
now four components, and the Green’s function valued matrix K(x, s) is given by

K(x, s) =




G(x, s) 0 0 0
0 H(x, s) 0 0
0 0 G(x, s) 0
0 0 H(x, s),




with G and H as defined previously in (3.23), respectively (3.24).
Step 2.Determining the voltage potential field.
By solving numerically the two-point boundary value problems for pairs of equipo-

tential boundary points in Γ and collecting only the curves which lie entirely in Ω̃, we
obtain a finite set of equipotential lines spanning (and defining) the regions Ωα,β as in
(1.4). As a result, a finite set of triples (xm, ym, um), (m = 1, 2, ...,m∗) is found, where
the planar set of points (xm, ym) distributed in this region represents the equipoten-
tial lines. Our goal is to determine the voltage potential u(xi, yj) on the initial grid
(on which the interior data |J(xi, yj)| is given). We first interpolate over the tri-
angulated partition of each such an Ωα,β , with points (xm, ym) being the vertices
of non-overlapping triangles T1, ..., Ts; Then, for every vector u1, ..., um, ...um∗ , we
construct the voltage potential in each Ωα,β as an interpolating spline over the trian-
gulated partition, i.e. a polynomial of the specified degree in every triangle T1, ..., Ts

which matches u1, ..., um, ...um∗ at the corresponding vertices. We employ both the
bi-cubic and bi-quintic spline interpolations ( see e.g. [6], [5]).

Step 3. Reconstruction of the conductivity.
Once the voltage potential field u(xi, yj) is determined on the regular grid, we

approximate the magnitude of the electric field |∇u|ij on the grid by

|∇u|ij =
1

2hxhy

√
(hy(u(xi+1, yj)− u(xi−1, yj))2 + (hx(u(xi, yj+1)− u(xi, yj−1))2,

and recover the conductivity on the grid by

σ(xi, yj) =
|J(xi, yj)|
|∇u(xi, yj)| .

4. Numerical study. We present two numerical experiments of the reconstruc-
tion algorithm above. In both experiments, the domain is the unit square: Ω =
(0, 1)× (0, 1).
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4.1. Data simulation. To generate the admissible pairs (f, |J |) we first solve
numerically the Dirichlet problem (1.1). In both experiments we use the almost two-
to-one boundary condition f given by f(x, 0) = 0, f(x, 1) = 1, f(0, y) = f(1, y) = y,
but two different models of conductivity distributions are considered.

The first choice is the four modes function

σ(x, y) = 1 + σs(x, y), (4.1)

where σs(x, y) = 0.3 · (A(x, y)−B(x, y)− C(x, y)) with

A = 0.3 · (1− 3(2x− 1))2 · e−9·(2x−1)2−(6y−2)2 ,

B =
[
3(2x− 1)

5
− 27 · (2x− 1)3 − (3 · (2y − 1))5

]
· e−(9·(2x−1)2+9·(2y−1)2),

C = e−(3·(2x−1)+1)2−9·(2y−1)2 ;

see the left graph in Figure 4.1.

Fig. 4.1. Original (left) and reconstructed (right) conductivity distributions in the broad strip.
No noise added in the interior data.

The second choice of conductivity uses a piecewise-constant function modeled on
the CT image of a human torso, see Figure 4.2. More precisely, we scale the density
distribution in the original CT image to a conductivity distribution ranging from 1
to 1.8 S/m.

To solve (1.1), we seek its solution in the form u = uh + v, where uh(x, y) = y is
the harmonic function with trace f on ∂Ω, and solve for v in the Dirichlet problem
for the Poisson equation

∇ · (σ∇v) = −∂σ

∂y
, v|∂Ω = 0.
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Fig. 4.2. The second choice of conductivity to be recovered.

For the latter problem we use a longitudinal-transverse finite difference scheme with
an optimal re-ordered set of Chebyshev’s parameters as in [25]. We found that this
method provides better accuracy than the commonly used preconditioned conjugate
gradient method. When computing ∇v, we use the three-point Lagrangian interpo-
lation for the numerical differentiation. Once ∇u is determined, the interior data
|J | = σ|∇u| is computed on a regular grid in Ω. In order to have a small interpola-
tion error in the second step of the algorithm we choose a sufficiently dense grid of
128× 128- points in Ω.

Note that, in the reconstruction steps, we only use the data at points on the grid
within Ω̃, the immediate adjacent neighbors, and boundary grid points in Γ.

4.2. Numerical results of the reconstruction. In this section we demon-
strate the computational feasibility of the reconstruction algorithm by performing
some numerical experiments with the two models of the conductivity distribution
described above.

4.2.1. Reconstruction of a single equipotential line. We test the first step
of the algorithm in the general case that involves solving (3.7) and (3.9), as well as in
the specific case that involves solving (3.16) and (3.17). We first consider the interior
data generated by the smooth four modes conductivity in (4.1). We found that the
Picard successive approximations method used to solve either of the boundary value
problems is very sensitive to the first guess. Figure 4.3 shows the reconstruction of
the equipotential line u = 0.3 (depicted by a solid line) in the general case (bullets)
and in the special case (stars) when the Picard iterations start with a special guess as
detailed below. However, the dotted curve (far from the exact solid line) represents
an iterate (of comparable in order with the other two) when the initial guess is the
horizontal segment at y = 0.3.
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Fig. 4.3. The equipotential lines: solid = original; dotted = reconstructed with initial guess a
horizontal segment; bullets = reconstructed with initial guess the previous equipotential line via one
equation; asterisks = reconstructed with initial guess the previous equipotential line via the geodesic
system, dashed line = the previous equipotential line.

Next we describe in detail how the initial guess for the Picard’s iterative scheme
is chosen. We use the fact, also appearing in the proof of Theorem 3.4, that the
geodesics connecting equipotential points at the boundary are also level curves of a
smooth function, free of singular points. Consequently, sufficiently close level curves
have almost parallel tangents at the boundary. We use the directional information
of the previously computed curve to solve an initial value problem for the geodesic
system and use this solution as a first guess. For example, the tangent at the boundary
point (0, 0.295) of the calculated equipotential line u = 0.295 (shown in Figure 4.3 as
the dashed line) is used to compute the initial guess for the equipotential line u = 0.3
(solid line in Figure 4.3).

To describe our procedure in detail, consider the special case of solving (3.18)
subject to (3.19). Assume that the equipotential line x 7→ (x, ψk(x)) starting at
the boundary grid point (0, yk) ∈ Γ is already computed. To find an initial guess
for the neighbor equipotential line x 7→ (x, ψk+1(x)) that passes through the grid
point (0, yk+1) ∈ Γ, we solve the Cauchy problem for (3.18) subject the initial data
ψ(0) = yk+1, ψx(0) = ψk

x(0). Numerically, we solve the equivalent integral equation
for the map ϕ(x) = ψ(x)− yk+1:

ϕ(x) =
∫ x

0

[
(ψk

x(0)− yk+1)eµs +
∫ s

0

e−µ(t−s) [F (t, ϕ + yk+1, ϕ
′)− µϕ(t)] dt

]
ds,

where F (x, ϕ, ϕ′) is given by (3.20).
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The multiplier e−µx is the weight function in Bielecki’s norm

||u||µ = max
x∈[0,1]

e−µx|u(x)|

introduced to ensure the contraction property of the integral operator generated by
the right hand side of (4.2.1). Specifically, if L(F ) is a Lipschitz constant of F with
respect to the ϕ-variable, choosing µ > L(F ) yields convergence and stability of
Picard’s iterations in the space of continuous maps on [0, 1].

Fig. 4.4. Equipotential lines (left) and the triangulated area (right) spanned by these lines.

The method above requires to have constructed a first equipotential line. If the
interior data |J | is known in a region of constant conductivity near the boundary
arc of maximum (or minimum) voltage at boundary then the arc itself is such an
equipotential line. Otherwise the knowledge of the current at just one (arbitrarily
fixed) point on Γ suffices. If such information is not available we need to solve the
two point boundary value problem by a different numerical scheme.

The rates of convergence for both problems are good: from 4 to 15 iterations
depending on the specific equipotential line u = λ, and on the stopping criterion. For
instance, for the four mode conductivity model on the 128× 128 grid, to compute the
equipotential line u = 0.3 with a the relative error ε ≤ 10−5 in (3.26) the elapsed time
of CPU (Dell Workstation) is about 17.5 s.

4.2.2. Local reconstruction of a smooth conductivity distribution. Here
we show how to reconstruct the smooth conductivity (as described in step 3 of Section
3.3) in the subregions Ω1/2,3/4 and Ω1/4,3/4 calculated above. Figure 4.4 shows the
reconstructed equipotential lines and triangulated area spanned by these lines. Due
to the presence of deflection points in the level lines, there are regions in the strips
that are not spanned by geodesics.
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Taking into account the smallness of such regions (compared to the triangulated
area) and regularity of the voltage potential, we use an interpolating bi-cubic and
bi-quintic spline constructed over the triangulation for extrapolating the voltage po-
tential field into these regions. The reconstructed conductivity distributions are shown
in Figures 4.1, 4.5 compared with the original conductivity.

Fig. 4.5. The original (left) and reconstructed (right) conductivity in the thin strip. No noise
added in the interior data.

4.2.3. Local reconstruction of a discontinuous conductivity distribu-
tion. In this case, the equipotential lines span the entire strips as shown in Figure 4.6.
Therefore, there is no need in the extrapolation. The results of reconstruction of con-
ductivity from the noiseless interior data in both the broad and thin strips are shown
in Figure 4.7.

Comparison of the original image shown in Figure 4.2 with the reconstructed one
shows that they are not identical. This is due to both the algorithmic and roundoff
errors, whose total estimated level does not exceed 10−4.

To investigate numerically the stability of the proposed algorithm, we model the
perturbed interior data |J̃ | by adding the Gaussian random matrix ξ with a mean of
zero and specified standard deviation to the discrete function |Ĵ |, i.e.,

|J̃ | = |Ĵ |+ ξ.

The realizations of the perturbed interior data are then used in the reconstruction al-
gorithm. Figure 4.8 shows the mean images obtained from samples containing twenty
realization of the random matrix ξ. The values of the standard deviation of ξ are
chosen to provide the noise levels at about 1% and 5%, correspondingly.

5. Conclusions. We considered the conductivity imaging problem from inte-
rior knowledge of the magnitude of one current density field |J |. In any dimension
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Fig. 4.6. Equipotential lines (left) and the triangulated area (right) spanned by these lines.

and for general boundary voltages, we showed that equipotential sets are area mini-
mizing with respect to a conformal metric determined by |J |. In two dimensions, we
identified a class of boundary voltages (almost two-to-one) for which the minimization
problem has a unique solution: there is a unique geodesic joining pairs of equipotential
boundary points.

For this two dimensional problem, we give a reconstruction method based on the
calculation of geodesics joining equipotential boundary points. If the imposed bound-
ary voltage is only known on a subset Γ of ∂Ω which contains pairs of equipotential
points, this calculation can be localized to the equipotential lines joining those points.
Moreover, if |J | is measured only in a subregion Ω̃ with Ω̃ ∩ ∂Ω = Γ, our method re-
covers the conductivity in the subdomain spanned by the equipotential lines entirely
embedded in Ω̃. The method also decides from the data whether or not Ω̃ contains
such equipotential curves.

In the numerical algorithm, the boundary value problem has been solved by an
iterative procedure in which each previously calculated equipotential line has been
used as the initial approximation for the next one. The algorithms performed well
even with rough data and in the presence of noise.

6. Appendix: Calculating a covariant derivative. For the reader’s conve-
nience, we include the calculation of the covariant derivative of the unit tangent field
to the level curves of u in the metric g = a2I. Throughout this section | · | stands
for the Euclidean norm, whereas | · |g and 〈·, ·〉g stand for the norm and, respectively,
scalar product in the metric g = a2I.

Since u ∈ C2(Ω) and |∇u| > 0 the level sets are C2-smooth curves. Let {δx, δy}
be the coordinate frame in the tangent bundle TΩ dual to the {x, y}-coordinates.
In these coordinates, the unit tangent τ and the unit normal n (with respect to the
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Fig. 4.7. Reconstructed conductivity from noiseless interior data: broad (left) and thin (right)
strips.

g-metric) are respectively

τ = −1
a

uy

|∇u|δx +
1
a

ux

|∇u|δy, (6.1)

n =
1
a

ux

|∇u|δx +
1
a

uy

|∇u|δy. (6.2)

Using the formulae for Christoffel’s symbols in (3.8), the following covariant
derivative formulas hold:

∇δxδx =
ax

a
δx − ay

a
δy, ∇δxδy =

ay

a
δx +

ax

a
δy, ∇δyδy =

−ax

a
δx +

ay

a
δy. (6.3)

Let Dtτ be the covariant derivative along the level curve. Since |τ |g = 1 we
have that Dtτ is orthogonal to τ and the signed curvature is the projection on n:
k = 〈Dtτ, n〉g.

We compute the covariant derivative of τ in (6.1) along a level curve. Subscripts
denote the differentiation along the coordinates.
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Fig. 4.8. Reconstructed conductivity in the broad strip from noisy data of 1% (left) and 5%
(right).

Dtτ = − uy

a|∇u|∇δxτ +
ux

a|∇u|∇δyτ (6.4)

= − uy

a|∇u|
(

uy

|a∇u|
)

x

δx +
u2

y

a2|∇u|2∇δxδx

− uy

a|∇u|
(

ux

a|∇u|
)

x

δy − uyux

a2|∇u|2∇δxδy

− ux

a|∇u|
(

uy

a|∇u|
)

y

δx − uxuy

a2|∇u|2∇δyδx

+
ux

a|∇u|
(

ux

a|∇u|
)

y

δy +
u2

x

a2|∇u|2∇δyδy.

By replacing the covariant derivatives (6.3) in the formula above, after cancella-
tion, we obtain

Dtτ =
1
a2

{[
uy

|∇u|
(

uy

|∇u|
)

x

− ayuxuy

a|∇u|2 −
ux

|∇u|
(

uy

|∇u|
)

y

− axu2
x

a|∇u|2
]

δx

+

[
− ayu2

y

a|∇u|2 −
uy

|∇u|
(

ux

|∇u|
)

x

− axuxuy

a|∇u|2 +
ux

|∇u|
(

ux

|∇u|
)

y

]
δy

}
.(6.5)

The curvature k = 〈Dtτ, n〉, with n in (6.2) is then given by:
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k =
1
a

{
uyux

|∇u|2
(

uy

|∇u|
)

x

− ayu2
xuy

a|∇u|3 −
u2

x

|∇u|2
(

uy

|∇u|
)

y

− axu3
x

a|∇u|3

− u2
y

|∇u|2
(

ux

|∇u|
)

x

− ayu3
y

a|∇u|3 +
uxuy

|∇u|2
(

ux

|∇u|
)

y

− axuxu2
y

a|∇u|3
}

. (6.6)

The following identity follows from straightforward differentiation:

uyux

(
uy

|∇u|
)

x

+ uxuy

(
ux

|∇u|
)

y

+ u2
x

(
ux

|∇u|
)

x

+ u2
y

(
uy

|∇u|
)

y

= 0. (6.7)

By adding and subtracting two terms, and then dividing by |∇u|2, the identity
(6.7) implies that

uyux

|∇u|2
(

uy

|∇u|
)

x

+
uxuy

|∇u|2
(

ux

|∇u|
)

y

− u2
x

|∇u|2
(

uy

|∇u|
)

y

− u2
y

|∇u|2
(

ux

|∇u|
)

x

= −
(

ux

|∇u|
)

x

−
(

uy

|∇u|
)

y

. (6.8)

Substituting (6.8) into (6.6), we obtain the curvature formula (3.2).
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