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Abstract. We consider problem of minimizing the functional
∫
Ω a|∇u|dx,

with u in some appropriate Banach space and prescribed trace f on the bound-
ary. For a ∈ L2(Ω) and u in the sample space H1(Ω), this problem appeared
recently in imaging the electrical conductivity of a body when some interior
data are available. When a ∈ C(Ω) ∩ L∞(Ω), the functional has a natural in-
terpretation, which allows us to enlarge the sample space to BV (Ω). We show
the stability of the minimum value with respect to a, in a neighborhood of a
particular coefficient. In both cases the method of proof provides some con-
vergent minimizing procedures. We also consider the minimization problem
for the non-degenerate functional

∫
Ω a max{|∇u|, δ}dx, for some δ > 0, and

prove a stability result. Again, the method of proof constructs a minimizing
sequence and we identify sufficient conditions for convergence. We apply the
last result to the conductivity problem and show that, under an a posteriori
smoothness condition, the method recovers the unknown conductivity.

1. Introduction. In this paper we consider the question of stability in some non-
smooth minimization problems occurring in the (electrical) conductivity imaging.
For Ω ⊂ Rd (d ≥ 2) a Lipschitz domain with connected boundary, a ∈ L2(Ω)
non-negative, and f ∈ H1/2(Ω), we consider the minimization problem

min
{∫

Ω

a |∇v|dx : v ∈ H1(Ω), v|∂Ω = f

}
,(1)

and call the pair (a, f) ∈ L2(Ω)×H1/2(∂Ω) admissible if (1) has a solution. Recall
that H1(Ω) is the space of functions with one derivative in L2(Ω) and H1/2(∂Ω) is
the space of traces on the boundary ∂Ω of functions in H1(Ω).

We assume an admissible data (a, f) and study the continuous dependence on
the coefficient a (for fixed f) of the minimum value and of the minimizer.

The minimization problem in (1) appeared recently in [16] in connection with
the problem of reconstruction of the electrical conductivity of a body by using
the interior knowledge of the magnitude of the current density field, generated
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while imposing a specific boundary voltage. More precisely, Ω is a conductive body
with unknown conductivity σ ∈ L∞(Ω) bounded away from zero, f ∈ H1/2(∂Ω) is
the voltage potential maintained at the boundary, and uσ ∈ H1(Ω) is the voltage
potential inside generated by f (i.e., uσ solves the Dirichlet problem ∇ · σ∇uσ = 0
with uσ|∂Ω = f). Let a denote the magnitude of the current density field −σ∇uσ,

a = |σ∇uσ|.(2)

According to the result in [16, Proposition 1.2],

uσ ∈ argmin{
∫

Ω

a |∇v|dx : v ∈ H1(Ω), v|∂Ω = f}.(3)

In particular, with a as in (2), the pair (a, f) is admissible. For brevity, we refer
to the problem of determining σ from knowledge of the data (a, f) as the conduc-
tivity imaging problem. We remark that the use of interior measurements to image
electrical conductivity is a fairly new trend in inverse problems ([9, 11, 10, 8, 13,
15, 5, 2, 16, 17]), which is driven, in part, by recent technological advances (e.g.,
[22, 20, 14]).

Since f is fixed throughout, it is convenient to encode the boundary condition
in the functional. Accordingly, we seek solutions of (1) in the form u + h, where
h ranges in H1

0 (Ω) and u ∈ H1(Ω) is the harmonic map in Ω with trace f at the
boundary. The functional to be minimized becomes

F [h; a] =
∫

Ω

a|∇(u + h)|dx.(4)

First, we show that the minimum value of F in (4) varies continuously with the coef-
ficient a (for fixed f) nearby admissible data, and present a minimization algorithm,
see Theorem 3.1. The proof is based on the regularization methods developed for the
minimization of non-smooth functionals in nonreflexive Banach spaces in [18, 19].
One difficulty in this problem comes from the loss of admissibility for pairs (ã, f)
nearby the admissible data (a, f).

Another difficulty comes from the fact that, from the point of view of calculus
of variations, there is a mismatch between the structure of the functional in (4)
and the sample space H1(Ω), see Section 4. If the coefficient a is continuous,
we show that the minimization problem (1) has a natural extension to the space
of functions of bounded variations BV (Ω). Unlike the classical interpretation (of
Radon measures) it is convenient to use the Riesz representation theorem and regard
the total variation ‖Du‖ as a linear functional on the space of bounded continuous
maps, see Proposition 1.

In Section 5 we establish the stability of the minimum value of the extended
functional

F̃ [h; a] = ‖D(u + h)‖(a),(5)

over h ∈ BV0(Ω) (functions of bounded variation with trace zero at the boundary)
with respect to perturbations of the coefficient a, provided

essinfΩ(a) = α > 0,(6)

for some α > 0. We show that the algorithm in Theorem 3.1 also produces a
minimizing sequence in BV (Ω), see Theorem 5.1.
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Structural stability in a minimization problem 3

In Sections 6 and 7 we remove the degeneracy in (1) under the assumption that
the postulated solution u0 of (1) satisfies

|∇u0(x)| ≥ δ > 0, a.e. in Ω,(7)

for some δ > 0. More precisely, we consider the functional

F δ[h; a] =
∫

Ω

a max{|∇u|, δ}dx,(8)

and show that it is lower semicontinuous in H1(Ω) and it has a unique minimizer in
the subspace H1(Ω)∩C(Ω). In Theorem 6.1 we propose a regularized minimization
algorithm for (8) and show stability of the minimum value with respect to L2(Ω)
perturbation of a. The algorithm produces a minimizer in BV (Ω) ∩ Lq(Ω), q <
d/(d− 1).

In Section 8 we apply Theorem 6.1 to the conductivity imaging problem. The
positivity assumption (7) is replaced by the positivity assumptions on the data (6).

Throughout the paper we use the following notations for the norms: ‖a‖ denotes
the L2(Ω)-norm, ‖h‖1,0 =

(∫
Ω
|∇h|2dx

)1/2 denotes the H1
0 (Ω)-norm, and ‖f‖1/2

denotes the H1/2(∂Ω)-norm. For u ∈ BV (Ω) we denote by ‖Du‖ the positive
Radon measure defined on any open set U ⊆ Ω by

‖Du‖(U) = sup{
∫

Ω

u∇ · f : f = (f1, ..., fd) ∈ C1
0 (U ;Rd), |f | ≤ 1},(9)

where |f | =
√

f2
1 + ...f2

d . We denote strong convergence by “→” and weak conver-
gence by “ ⇀”.

2. A regularized minimization problem. Let ã ∈ L2(Ω) with ã ≥ 0 and f ∈
H1/2(∂Ω). The results in this section do not require (ã, f) to be admissible. With
the harmonic choice of u ∈ H1(Ω) in (4), from the classical theory of harmonic
functions we have

‖∇u‖ =
(∫

Ω

|∇u|2dx

)1/2

≤ ‖u‖H1(Ω) ≤ C‖f‖1/2,(10)

for a constant C depending only on Ω.
Since (ã, f) is not necessarily admissible, the functional h 7→ F [h; ã] may not have

a minimizer in H1
0 (Ω). We regularize the functional such that the new functional

has a unique minimizer in H1
0 (Ω). More precisely, for ε > 0 arbitrarily fixed, define

the regularization functional Fε of F by

Fε[h; ã] :=
∫

Ω

ã|∇(u + h)|dx + ε

∫

Ω

|∇h|2dx

= F [h; ã] + ε‖h‖21,0.(11)

The following lemma shows that h 7→ Fε[h; ã] is weakly lower semicontinuous on
H1

0 (Ω).

Lemma 2.1. Let ã ∈ L2(Ω) be non-negative, and {hn} ⊂ H1
0 (Ω) be a sequence

with hn ⇀ h in H1
0 (Ω). Then

Fε[h; ã] ≤ lim inf
n→∞

Fε[hn; ã].(12)
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Proof. Let {am} be an increasing sequence of bounded continuous functions, which
converges in L2(Ω) sense to ã.

For each fixed index m, let f = (f1, ..., fd) ∈ C1
0 (Ω;Rd) be arbitrary with |f | ≤

am. Since hn ⇀ h in L2(Ω) we have∫

Ω

(h + u)∇ · fdx = lim
n→∞

∫

Ω

(hn + u)∇ · fdx = lim inf
n→∞

∫

Ω

(hn + u)∇ · fdx

≤ lim inf
n→∞

sup
{∫

Ω

(hn + u)∇ · gdx : g ∈ C1
0 (Ω;Rd), |g| ≤ am

}

= lim inf
n→∞

∫

Ω

am|∇(hn + u)|dx ≤ lim inf
n→∞

∫

Ω

ã|∇(hn + u)|dx.(13)

The last inequality above uses the fact that am ≤ ã.
By taking the supremum in (13) over all f ∈ C1

0 (Ω;Rd) with |f | ≤ am we get
∫

Ω

am|∇(h + u)|dx = sup
{∫

Ω

(h + u)∇ · fdx : f ∈ C1
0 (Ω;Rd), |f | ≤ am

}

≤ lim inf
n→∞

∫

Ω

ã|∇(hn + u)|dx.(14)

By letting m → ∞ in (14) we obtain the lower semicontinuity for F [h; ã], the first
term in (11).

The lower semicontinuity of the second term in (11) is a classical result in the
theory of the calculus of variations which follows from Fatou’s lemma applied to

‖hn‖21,0 − ‖h‖21,0 ≥
∫

Ω

∇h · ∇(hn − h)dx, ∀n ∈ N.

Since h 7→ Fε[h; ã] is coercive in H1
0 (Ω) and strictly convex (both due to the

regularization), together with weakly lower semicontinuity, we have that Fε has a
unique minimizer in H1

0 (Ω), say

hε := argmin
{
Fε[h; ã] : h ∈ H1

0 (Ω)
}

,(15)

see, e.g., [23]. We show next the continuous dependence of the minimizer on ã.

Theorem 2.2. Let ε > 0 be fixed, {an} ⊂ L2(Ω) be a convergent sequence an → ã
in L2(Ω), and {hε,n} be the corresponding minimizing sequence of Fε[· ; an],

hε,n := argmin{Fε[h; an]; h ∈ H1
0 (Ω)}.

Then hε,n ⇀ hε in H1
0 (Ω) as n →∞.

Proof. Let δn := ‖ã− an‖ and consider n large enough so that

(16) δn ≤ ‖ã‖.
We claim that the sequence {hε,n} is bounded in H1

0 (Ω). Indeed,

ε‖hε,n‖21,0 ≤Fε[hε,n; an] ≤ Fε[0; an] = F [0; ã] + F [0; an − ã]

≤(‖ã‖+ δn)‖∇u‖ ≤ 2C‖ã‖ ‖f‖1/2

The second inequality uses the minimizing property defining hε,n, and the last one
uses (10) and (16). Then

‖hε,n‖1,0 ≤
√

2‖ã‖C‖f‖1/2√
ε

=: Cε(17)
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and consequently the sequence {hε,n} has an H1
0 - weakly convergent subsequence;

say hε,nk
⇀ h̃ε, for some h̃ε ∈ H1

0 (Ω).
Let h ∈ H1

0 (Ω) be arbitrarily fixed. Since h 7→ Fε[h; ã] is weakly lower semi-
continuous on H1

0 (Ω), the following estimates hold:

Fε[h̃ε; ã] ≤ lim inf
k→∞

Fε[hε,nk
; ã] = lim inf

k→∞
{Fε[hε,nh

; ank
] + F [hε,nk

; ã− ank
]}

≤ lim inf
k→∞

{Fε[hε,nh
; ank

] + δnk
(‖hε,nk

‖1,0 + ‖∇u‖)}
≤ lim inf

k→∞
{
Fε[hε,nk

; ank
] + δnk

(Cε + C‖f‖1/2)
}

≤ lim inf
k→∞

{
Fε[h; ank

] + δnk
(Cε + C‖f‖1/2)

}

= lim inf
k→∞

{
Fε[h; ã] + F [h; ank

− ã] + δnk
(Cε + C‖f‖1/2)

}

≤ lim inf
k→∞

{
Fε[h; ã] + δnk

(‖h‖1,0 + Cε + C‖f‖1/2)
}

≤ lim sup
k→∞

{
Fε[h; ã] + δnk

(‖h‖1,0 + Cε + C‖f‖1/2)
}

≤Fε[h; ã] + lim sup
k→∞

δnk
(‖h‖1,0 + Cε + C‖f‖1/2)

=Fε[h; ã].

In the estimate above the third inequality uses (10) and (17) and the fourth in-
equality uses the minimizing property defining {hε,nk

}.
Therefore h̃ε is a minimizer for Fε in H1

0 (Ω). Since the minimizer is unique,
h̃ε = hε. Since any other weakly convergent subsequence of {hε,n} also converges
to hε, the entire sequence is weakly convergent to hε.

3. Convergence of the regularized minimizers as ε ↓ 0. In this section we
make essential use of the fact that the pair (a, f) ∈ L2(Ω)×H1/2(∂Ω) is admissible,
i.e. there exists some u0 ∈ H1(Ω) with u0|∂Ω = f solution of (1). Let u be the
harmonic function of trace f at the boundary as before. Then

h0 := u0 − u ∈ H1
0 (Ω)(18)

is a minimizer of (4): F [h0; a] ≤ F [h; a] for all h ∈ H1
0 (Ω).

Let {an} ⊂ L2(Ω) be a sequence with an → a in L2(Ω), and εn ↓ 0 be a
decreasing sequence. Let {hεn} be the sequence of the minimizers corresponding to
the functionals Fεn [·; an],

hεn := argmin{Fεn [h; an] : h ∈ H1
0 (Ω)}.(19)

In Section 2 we showed that each hεn is well-defined. Note that both the regularized
parameter and the coefficients in the functional are changing with n. In particular,
the sequence hεn may not be bounded in H1

0 (Ω), see (17). If the regularized pa-
rameter εn is chosen so that ‖a − an‖ = o(

√
εn), we show below that {hεn} is still

a minimizing sequence for F in (4).

Theorem 3.1. Assume that (a, f) ∈ L2(Ω) ×H1/2(∂Ω) is admissible with a ≥ 0,
and let h0 ∈ H1

0 (Ω) be the minimizer defined in (18). Let {an} be a sequence in
L2(Ω) with an → a in L2(Ω), and choose εn ↓ 0 in such a way that

lim
n→∞

‖a− an‖2
εn

= 0.(20)
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Let {hεn
} denote the sequence of the minimizers of Fεn

[· ; an] as in (19). Then

lim inf
n→∞

Fεn [hεn ; an] = lim inf
n→∞

F [hεn ; an] = min{F [h; a] : h ∈ H1
0 (Ω)}.(21)

In addition, if a is bounded from below as in (6), then a subsequence of {hεn
}

converges in Lq(Ω), 1 ≤ q < d/(d− 1).

Proof. Let δn := ‖a − an‖ be as before. Since hεn
∈ H1

0 (Ω) and h0 is a minimizer
of F [ · ; a] over H1

0 (Ω), we have

F [h0; a] ≤ lim inf
n→∞

F [hεn
; a] ≤ lim inf

n→∞
Fεn

[hεn
; a].(22)

We claim that the reverse inequality also holds. Recall the definition of h0 in (18).
We have the estimate

lim inf
n→∞

Fεn [hεn ; a] = lim inf
n→∞

{Fεn [hεn ; an] + F [hεn ; a− an]}
≤ lim inf

n→∞
{Fεn [hεn ; an] + δn‖hεn‖1,0}

≤ lim inf
n→∞

{
Fεn [hεn ; an] +

δn√
εn

√
2‖a‖C‖f‖1/2

}

≤ lim inf
n→∞

{
Fεn [h0; an] +

δn√
εn

√
2‖a‖C‖f‖1/2

}

= lim inf
n→∞

{
F [h0; an] + εn‖h0‖1,0 +

δn√
εn

√
2‖a‖C‖f‖1/2

}

= lim inf
n→∞

{
F [h0; a] + F [h0; an − a] + εn‖h0‖1,0 +

δn√
εn

√
2‖a‖C‖f‖1/2

}

≤ lim inf
n→∞

{
F [h0; a] + δn‖∇(u + h0)‖+ εn‖h0‖1,0 +

δn√
εn

√
2‖a‖C‖f‖1/2

}

≤ lim sup
n→∞

{
F [h0; a] + δn‖∇(u + h0)‖+ εn‖h0‖1,0 +

δn√
εn

√
2‖a‖C‖f‖1/2

}

=F [h0; a].

In the estimate above, the third inequality uses the minimizing property of {hεn},
and the last equality uses the hypothesis δn = o(

√
εn). This proves the identity

(21).
Next we show that {hεn} is bounded in W 1,1

0 (Ω). From the positivity assumption
(6) we have

α‖hεn‖1,1 ≤
∫

Ω

a|∇hεn |dx ≤ F [hεn ; a] + F [0; a] ≤ F [hεn ; a] + C‖a‖ ‖f‖1/2.
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We next show that the right hand side is bounded uniformly in n:

F [hεn
; a] ≤Fεn

[hεn
; a]

=Fεn [hεn ; an] + F [hεn ; a− an]

≤Fεn
[h0; an] + δn(‖hεn

‖1,0 + C‖f‖1/2)

=F [h0; an] + εn‖h0‖1,0 + δn(‖hεn
‖1,0 + C‖f‖1/2)

≤‖an‖C‖f‖1/2 + εn‖h0‖1,0 + δn(‖hεn
‖1,0 + C‖f‖1/2)

≤(δn + ‖a‖)C‖f‖1/2 + εn‖h0‖1,0 + δn(‖hεn
‖1,0 + C‖f‖1/2)

=‖a‖C‖f‖1/2 + εn‖h0‖1,0 +
δn√
εn

√
2‖a‖C‖f‖1/2 + 2δnC‖f‖1/2

≤3‖a‖C‖f‖1/2 + ‖h0‖1,0 +
√

2‖a‖C‖f‖1/2.

In the above estimate the second inequality uses the minimization property of hεn ,
and the last inequality requires n to be sufficiently large and uses the hypothesis
(20).

An application of Rellich-Kondrachov’s compactness imbedding ([6]) shows the
existence of a convergent subsequence hεn → h∗ in Lq(Ω) for all 1 ≤ q ≤ d/(d −
1).

4. Non-smooth minimization problems in non-reflexive Banach spaces.
In this section we briefly discuss the appropriateness of the sample space in the
minimization problems (1) from the point of view of the calculus of variations.

The traditional minimizing method in the calculus of variations is to establish
precompactness of minimizing sequences and the lower semicontinuity of the func-
tional. While it is true that a lower semi-continuous functional on a compact set
S in a topological space attains its minimum in S, the norm topology is not ap-
propriate since a closed ball is not compact in this norm. This motivates endowing
a Banach space with a topology relative to which the set S becomes compact. In
reflexive Banach spaces (such as H1(Ω)), the weak topology accomplishes this task.
The role of the weak topology is derived from Alaoglu-Bourbaki-Kakutani’s and
Mazur’s theorems. According to the first theorem, the closed ball in any dual space
B∗ is compact in the weak-star topology of B∗. For reflexive spaces, the weak
topology of B coincide with the weak-star topology of B∗∗, and thus the ball is
weakly compact. The second theorem ensures that every strongly closed convex
set in a Banach space is weakly closed; hence in a reflexive Banach space every
bounded closed convex set is weakly compact. On the basis of these results, if f is
a weakly lower semicontinuous real valued function on a weakly closed subset S of
a reflexive Banach space B, then f attains its infimum in S. In particular S can
be a bounded, closed and convex subset of B. The utility of this result depends on
establishing the weakly lower semicontinuity of the functional, and boundedness of
the minimizing sequence.

While the functional in (1) is weakly lower semicontinuous in the Hilbert space
H1(Ω), the corresponding minimizing sequence may no longer stay bounded in
there; see (17).

Under the positivity assumption (6) on the coefficient a, the minimizing sequences
stay bounded in W 1,1(Ω). Unfortunately, due to its non-reflexivity, the weak topol-
ogy of W 1,1(Ω) does not coincide with the weak-star topology of its dual, and
the theorems of Alaoglu-Bourbaki-Kakutani and Mazur have no direct relevance.
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Moreover, the map u → ∫
Ω

a|∇u|dx is no longer weakly lower semicontinuous in
W 1,1(Ω), and this is due to the fact that L1

loc(Ω) limits of functions in W 1,1(Ω)
may no longer be in W 1,1(Ω). However, we shall show below that, for a bounded
continuous coefficient a, we can extend the functional in (1) to the space BV (Ω)
of functions of bounded variation, while preserving the lower semicontinuity in this
larger space (see Theorem 5.1). The regularized minimizing schemes in Theorems
3.1 and 7.2 produce minimizers which are in BV (Ω).

Moreover we show that, for the minimization problem (1) with admissible data
(a, f), the (postulated) minimizer in H1(Ω) minimizes the extended functional in
BV (Ω).

5. A global minimization property in BV (Ω). For u ∈ BV (Ω) recall the def-
inition of the total variation of in (9). By Riesz representation theorem see e.g.
[3, 24], since ‖Du‖ is a positive Radon measure, there is a linear bounded func-
tional (denoted the same) on compactly supported continuous functions, such that
for any continuous g ∈ C0(Ω) of compact support in Ω:

(23) ‖Du‖(g) = sup
{∫

Ω

u∇ · ϕdx : ϕ ∈ C1
0 (Ω;Rn), |φ| ≤ g

}
.

We show first that ‖Du‖ extends continuously to bounded continuous functions
C(Ω) ∩ L∞(Ω). For the extension we consider the increasing sequence ψn ∈ C0(Ω)
with 0 ≤ ψn ≤ 1 such that

(24) ψn(x) =
{

1, dist(x, ∂Ω) > 2−n,
0, dist(x, ∂Ω) < 2−n−1.

Proposition 1. Let a ∈ C(Ω)∩L∞(Ω) with a ≥ 0. Then the sequence {‖Du‖(aψn)}
is bounded and increasing. Define

(25) ‖Du‖(a) := lim
n→∞

‖Du‖(ψna).

Then

(26) ‖Du‖(a) = sup
{∫

Ω

u∇ · ϕdx : ϕ ∈ C1
0 (Ω : Rn), |ϕ| ≤ a

}
.

In particular the definition (25) is independent of the choice of ψn.

Proof. Since aψn ≤ aψn+1 and ‖Du‖ is a positive Radon measure, we have ‖Du‖(aψn) ≤
‖Du‖(aψn+1). If ‖a‖∞ = 0 then a ≡ 0 and ‖Du‖(aψn) = ‖Du‖(a) = 0.

Assume ‖a‖∞ > 0. Let ϕ ∈ C1
0 (Ω;Rn) be arbitrary with |ϕ| ≤ ψna. Then

‖a‖−1
∞ ϕ ∈ C1

0 (Ω; Rn) with ‖a‖−1
∞ |ϕ| ≤ 1 and

∫

Ω

u∇ · ϕdx ≤ ‖a‖∞
∫

Ω

u∇ ·
(

1
‖a‖∞ϕ

)
dx ≤ ‖a‖∞ ‖Du‖(Ω),

where the last term is the total variation of u in Ω. By taking the supremum over
ϕ ∈ C1

0 (Ω; Rn) we obtain the upper bound ‖Du‖(aψn) ≤ ‖a‖∞‖Du‖(Ω). Since the
sequence increases the limit in (25) exists.

The fact that, for all n ∈ N ,

‖Du‖(aψn) ≤ sup
{∫

Ω

u∇ · ϕdx : ϕ ∈ C1
0 (Ω : Rn), |ϕ| ≤ a

}
,

follows directly from the inclusion

{ϕ ∈ C1
0 (Ω : Rn) : |ϕ| ≤ aψn} ⊂ {ϕ ∈ C1

0 (Ω : Rn) : |ϕ| ≤ a}.
Inverse Problems and Imaging Volume , No. (201X), XX–XX
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To show the converse, let ϕ ∈ C1
0 (Ω;Rn) with |ϕ| ≤ a be arbitrarily fixed. If n

is such that 2−n < dist(supp(ϕ), ∂Ω), then

supp(ϕ) ⊂ {x : dist(x, ∂Ω) > 2−n}
and |ϕ| ≤ aψn. Consequently,

∫

Ω

u∇ · ϕdx ≤ ‖Du‖(aψn) ≤ ‖Du‖(a).

The conclusion in (26) follows by taking the supremum in ϕ ∈ C1
0 (Ω;Rn).

Proposition 2 (lower semicontinuity). Let {un} ⊂ BV (Ω), be a sequence con-
vergent in L1

loc(Ω) to some u ∈ L1
loc and let a ∈ C(Ω) ∩ L∞(Ω) be nonnegative.

Then

‖Du‖(a) ≤ lim inf
n→∞

‖Dun‖(a).(27)

Proof. Let ϕ ∈ C1
0 (Ω;Rn), with |ϕ| ≤ a, then

∫

Ω

u∇ · ϕdx = lim
n→∞

∫

Ω

un∇ · ϕdx ≤ lim inf
n→∞

‖Dun‖(a).(28)

Now take the supremum over all such ϕ.

For the minimization problem (1) with admissible data (a, f), the minimizer in
u0 ∈ H1(Ω) minimizes the extended functional in BV (Ω) as follows.

Proposition 3. Let a ∈ C(Ω) ∩ L∞(Ω) with a ≥ 0. Assume that u0 ∈ H1(Ω) is
such that

(29)
∫

Ω

a|∇u|dx ≤
∫

Ω

a|∇v|dx,

for all v ∈ H1(Ω) with supp(v − u0) ⊂ Ω. Then

(30) ‖Du0‖(a) ≤ ‖Dv‖(a),

for all v ∈ BV (Ω) with supp(v − u) ⊂ Ω.

Proof. If u ∈ W 1,1(Ω) then
∫
Ω

a|∇u|dx = ‖Du‖(a).
From the density result in [7, Remark 2.12] it follows that, for any v ∈ BV (Ω),

there is a sequence of functions vn ∈ C∞(Ω) such that
(i) vn → v in L1(Ω),
(ii) ‖Dvn‖ ⇀ ‖Dv‖ (in the sense of measures),
(iii) supp(vn − v) ⊂ Ω.
From (29) applied to vn, we get

∫

Ω

a|∇u|dx ≤
∫

Ω

a|∇vn|dx = ‖Dvn‖(a).

Since ‖Dvn‖(a) → ‖Dv‖(a) as n →∞, the inequality (30) follows.

Let BV0(Ω) be the subspace of functions of bounded variations with zero trace
at the boundary. We are ready now to formulate the extension of Theorem 3.1
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Theorem 5.1. Assume that (a, f) ∈ (C(Ω)∩L∞(Ω))×C(∂Ω) is admissible and a
is bounded from below as in (6). Let {an} be a sequence in L2(Ω) with an → a in
L2(Ω).

Choose εn ↓ 0 in such a way that ‖a−an‖ = o(
√

εn) and let hεn
be the minimizer

of the regularized functional Fεn [· ; an] as in (19).
Then, {hεn

} has a subsequence which is convergent in Lq(Ω) to some h∗, 1 ≤
q < d

d−1 . Moreover h∗ ∈ BV0(Ω) and

‖D(u + h∗)‖(a) = min{‖D(u + h)‖(a) : h ∈ BV0(Ω)},(31)

where u is the harmonic function with trace f on the boundary.

Proof. Following the proof of Theorem 3.1 we obtain, as before, the sequence
{hεn} ⊂ H1

0 (Ω), which, on a subsequence, converges in Lq(Ω) to some h∗, 1 ≤
q ≤ d/(d− 1). From the lower semicontinuity (27), we obtain

‖D(u + h∗)‖(a) ≤ lim inf
n→∞

‖D(u + hεn)‖(a)

= lim inf
n→∞

∫

Ω

a|∇(u + hεn)|dx

= lim inf
n→∞

F [hεn ; a]

= min{
∫

Ω

a|∇(u + h)|dx : h ∈ H1
0 (Ω)}

= min{‖D(u + h)‖(a) : h ∈ BV0(Ω)}.

The third equality above uses (21), and the last equality uses Proposition 3.

6. A non-degenerate minimization problem. Let (a, f) be an admissible pair.
In this section we assume that the minimization problem (1) has a solution satisfying

|∇u0(x)| ≥ δ, a.e. Ω,(32)

for some δ > 0.

Theorem 6.1. Let u0 ∈ H1(Ω) be a solution of (1) satisfying (32). Then u0 also
solves

min
{∫

Ω

a max{|∇v|, δ}dx : v ∈ H1(Ω), v|∂Ω = f

}
.(33)

In addition, if u0 ∈ C(Ω), then it is a unique minimizer for (33) within the set
H1(Ω) ∩ C(Ω).

Proof. For any v ∈ H1(Ω), we have
∫

Ω

amax{|∇u0|, δ}dx =
∫

Ω

a|∇u0|dx ≤
∫

Ω

a|∇v|dx ≤
∫

Ω

a max{|∇v|, δ}dx.

Now let w be another solution of the minimization problem (33), and define

Ωδ = {x ∈ Ω : |∇w(x)| > δ}.
Inverse Problems and Imaging Volume , No. (201X), XX–XX
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Since ∫

Ω

amax{|∇w|, δ}dx =
∫

Ω

a max{|∇u0|, δ}dx =
∫

Ω

a|∇u0|dx

≤
∫

Ω

a|∇w|dx =
∫

Ωδ

a|∇w|dx +
∫

Ω\Ωδ

a|∇w| dx

≤
∫

Ωδ

a|∇w|dx + δ

∫

Ω\Ωδ

a dx(34)

=
∫

Ω

a max{|∇w|, δ}dx,

all the inequalities are, in fact, equalities. In particular,∫

Ω\Ωδ

a|∇w|dx = δ

∫

Ω\Ωδ

a dx.(35)

Since a > 0 a.e. in Ω, and |∇w(x)| ≤ δ a.e. in Ω \Ωδ, the identity (35) implies that
either Ω \ Ωδ is (Lebesgue)-negligible, or |∇w(x)| = δ a.e. in Ω \ Ωδ. In both cases
we obtain |∇w(x)| ≥ δ a.e. in Ω. Also, since the first inequality in (34) is also an
equality, w ∈ H1(Ω) is another minimizer of the problem in (1).

If both u0 and w belong to H1(Ω) ∩ C(Ω) then the uniqueness result in [16,
Theorem 1.3] implies u0 = w.

Next we derive a stable, regularized minimization method for the functional
in (33) similar to the minimization method for (1). The key ingredient is the
lower semi-continuity property for the functional in (33). We prove first a weak
formulation of the functional in (33). By O(Ω) we denote the set of all open subsets
of Ω.

Proposition 4. Let a ∈ L2(Ω) be positive a.e. in Ω, δ > 0, and v ∈ H1(Ω). Then
∫

Ω

amax{|∇v|, δ}dx = sup
U,f

(∫

U

v∇ · fdx + δ

∫

Ω\U
a dx

)
,(36)

where U ∈ O(Ω) ranges over all open subsets of Ω, and f = (f1, ..., fd) ∈ C1
0 (U ;Rd)

with |f | =
√

f2
1 + ... + f2

d ≤ a.

The proof follows from the two lemmas below.

Lemma 6.2. For any v ∈ H1(Ω),
∫

Ω

amax{|∇v|, δ}dx = sup
U

(∫

U

a|∇v|dx + δ

∫

Ω\U
a dx

)
,(37)

where U ∈ O(Ω) ranges over all open subsets of Ω.

Proof. Let ε > 0 be arbitrarily fixed. Since |∇v| ∈ L2(Ω), by Lusin’s theorem, there
is a continuous map g ∈ C(Ω), and a closed set Kε of Lebesgue measure |Kε| < ε,
such that |∇v| = g on Ω \Kε.

Let Ωδ = {x ∈ Ω : |∇u(x)| > δ} and Gδ = {x ∈ Ω : g(x) > δ}. Note that Gδ is
open and

ωε := Ωδ \Kε = Gδ \Kε = {x ∈ Ω \Kε : g(x) > δ}(38)

is an open set (although Ωδ may not be open). Note also the disjoint decomposition

Ω \ ωε = Ω \ (Ωδ \Kε) = (Ω \ Ωδ) ∪ (Kε ∩ Ωδ)
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and its corollary
∫

Ω\Ωδ

a dx =
∫

Ω\ωε

a dx−
∫

Kε∩Ωδ

a dx.(39)

We show below that∫

ωε

a|∇v|dx + δ

∫

Ω\ωε

a dx =
∫

Ω

a max{|∇v|, δ}dx− G(ε),

for some G(ε) → 0 with ε → 0+.
Using the definition (38) and the relation (39), we obtain

∫

Ω

amax{|∇v|, δ}dx =
∫

Ωδ

a|∇v|dx + δ

∫

Ω\Ωδ

a dx

=
∫

Ωδ\Kε

a|∇v|dx +
∫

Ωδ∩Kε

a|∇v|dx + δ

∫

Ω\ωε

a dx− δ

∫

Ωδ∩Kε

a dx

=
∫

ωε

a|∇v|dx + δ

∫

Ω\ωε

a dx + G(ε),

where

G(ε) :=
∫

Ωδ∩Kε

a(|∇v| − δ)dx.(40)

Note that G(ε) ≥ 0. Since |Kε| → 0 as ε → 0, and both a and a|∇v| are integrable,
we have G(ε) → 0 as ε → 0.

Lemma 6.3. Let a ∈ L2(Ω) be positive a.e. in Ω, v ∈ H1(Ω), and let U be an open
subset of Ω. Then

∫

U

a|∇v|dx = sup{
∫

U

v∇ · f dx : f ∈ C1
0 (U ;Rd), |f | ≤ a}.(41)

Proof. For any competitor f ,
∫

U

v∇ · f = −
∫

Ω

f · ∇v dx ≤
∫

Ω

|f | |∇v| dx ≤
∫

Ω

a|∇v| dx.

This shows that the right hand side in (41) is smaller than the left hand side. To
show the reverse, define g ∈ L2(Ω;Rd) by

g =
{

a ∇v
|∇v| , where |∇v| > 0,

0, where |∇v| = 0.

Note that |g| ≤ a. Let {fn} ⊂ C1
0 (Ω;Rd) be a sequence with |fn| ≤ a, and fn → g

in L2(Ω;Rd). Then

lim
n→∞

∫

U

∇v · fn dx =
∫

U

∇v · g dx =
∫

{|∇v|>0}
∇v · a ∇u

|∇v|dx

=
∫

{|∇v|>0}
a|∇v|dx =

∫

U

a|∇v|dx.

We are now ready to prove the lower semicontinuity property.
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Theorem 6.4 (lower semicontinuity). Let a ∈ L2(Ω) be positive, {vn} be a sequence
in H1(Ω), and v ∈ H1(Ω) with vn ⇀ v in L2(Ω). Then∫

Ω

a max{|∇v|, δ}dx ≤ lim inf
n→∞

∫

Ω

a max{|∇vn|, δ}dx.(42)

Proof. Let U ∈ O(Ω) be arbitrarily fixed open subset of Ω, and f ∈ C1
0 (U ;Rd) with

|f | ≤ a. From the L2-weak convergence of vn we obtain
∫

U

v∇ · f dx + δ

∫

Ω\U
a dx = lim

n→∞

(∫

U

vn∇ · f dx + δ

∫

Ω\U
a dx

)

= lim inf
n→∞

(∫

U

vn∇ · f dx + δ

∫

Ω\U
a dx

)

≤ lim inf
n→∞

sup
V,g

{∫

V

vn∇ · g dx + δ

∫

Ω\V
a dx : V ∈ O(Ω), g ∈ C1

0 (V ;Rd), |g| ≤ a

}

= lim inf
n→∞

∫

Ω

amax{|∇vn|, δ}dx.

The last equality above uses Proposition 4.
By taking the supremum over all U ∈ O(Ω) and f ∈ C1

0 (Ω;Rd) with |f | ≤ a, and
by Proposition 4, we obtain (42).

7. A regularized, stable scheme for the non-degenerate minimization
problem. In this section we show stability with respect to the coefficient a of
the minimum value in the problem (33), and show that an H1(Ω) ∩ C(Ω)-smooth
minimizer depends continuously in a. With minor modifications, the arguments are
the same as in the Sections 2 and 3.

Recall that we assume existence of a minimizer u0 ∈ H1(Ω) of (1), whose gradient
stays away from zero as in (32). As before, we seek a minimizer in {u} + H1

0 (Ω),
where u ∈ H1(Ω) is the harmonic map with trace f at the boundary, and study the
minimization of the functional F δ[· ; a] in (8). Theorem 6.1 shows that

u0 − u ∈ argmin{F δ[h; a] : h ∈ H1
0 (Ω)}.

For ã ∈ L2(Ω) nearby a, the pair (ã, f) may not be admissible, hence F δ[ · ; ã] may
not have a minimizer. This is the reason why we regularize F δ as follows.

Proposition 5. Let ã ∈ L2(Ω) be nonnegative, and ε > 0 be arbitrarily fixed. Then

F δ
ε [h; ã] := F δ[h; ã] + ε

∫

Ω

|∇h|2dx(43)

is weakly lower semicontinuous in H1
0 (Ω) and has a unique minimizer

hε = argmin{F δ
ε [h; ã] : h ∈ H1

0 (Ω)}.
Proof. Let {hn} ⊂ H1

0 (Ω) be such that hn ⇀ h in H1
0 (Ω). Then (u+hn) ⇀ (u+h)

in L2(Ω). By Theorem 6.4,∫

Ω

ãmax{|∇(u + h)|, δ}dx ≤ lim inf
n→∞

∫

Ω

ãmax{|∇(u + hn)|, δ}dx.

Since h → ‖h‖1,0 is also lower semicontinuity in H1
0 (Ω), we obtain

F δ
ε [h; ã] ≤ lim inf

n→∞
F δ[hn; ã] + lim inf

n→∞
ε

∫

Ω

|∇hn|2dx ≤ lim inf
n→∞

F δ
ε [hn; ã].
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As before, due to the regularization, the functional (43) is both coercive in H1
0 (Ω)

and strictly convex, and thus, it has a unique minimizer in H1
0 (Ω).

The next result shows that, for fixed ε > 0, the unique minimizer depends con-
tinuously on the coefficient ã.

Theorem 7.1. Let ε > 0 be fixed. Let {an} ⊂ L2(Ω) be a sequence with an → ã in
L2(Ω). Consider the minimizers

hn,ε = argmin{F δ
ε [h; an] : h ∈ H1

0 (Ω)}, and

hε = argmin{F δ
ε [h; ã] : h ∈ H1

0 (Ω)}

as given by Proposition 5. Then hε,n ⇀ hε in H1
0 (Ω).

Proof. We show first that the sequence {hε,n} is bounded in H1
0 (Ω). We estimate

F δ[0; ã] =
∫

Ω

ãmax{|∇u|, δ}dx ≤
∫

Ω

ã(|∇u|+ δ)dx ≤ ‖ã‖(‖∇u‖+ δ
√
|Ω|),

where |Ω| is the Lebesgue measure of Ω. Then, using the minimizing property
defining hε,n,

ε‖hε,n‖21,0 ≤F δ
ε [hε,n; an] ≤ F δ

ε [0; an] = F δ[0; ã] + F δ[0; an − ã]

≤(‖ã‖+ ‖an − ã‖)(‖∇u‖+ δ
√
|Ω|) ≤ 2‖ã‖(C‖f‖1/2 + δ

√
|Ω|).

The last inequality uses (10) and assumes n large enough that ‖ã − an‖ ≤ ‖ã‖.
Therefore the sequence {hε,n} is bounded,

‖hε,n‖1,0 ≤

√
2‖ã‖(C‖f‖1/2 + δ

√
|Ω|)

√
ε

=: Cε,(44)

and there exists h̃ε ∈ H1
0 (Ω) a weak limit of a subsequence of {hε,nk

}.
Let δn = ‖an − ã‖, and h ∈ H1

0 (Ω) be arbitrary. The estimate below is needed
later:

F δ[h; an − ã] =
∫

Ω

(an − ã)max{|∇(u + h)|, δ}dx

≤
∫

Ω

|an − ã|(|∇u|+ |∇h|+ δ)dx

≤ ‖an − ã‖(‖∇u‖+ ‖h‖1,0 + δ
√
|Ω|)

≤ δn(C‖f‖1/2 + ‖h‖1,0 + δ
√
|Ω|).(45)
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Since the map h 7→ F δ
ε [h; ã] is weakly lower semi-continuous on H1

0 (Ω), for each
h ∈ H1

0 (Ω) arbitrarily fixed the following estimates hold:

F δ
ε [h̃ε; ã] ≤ lim inf

k→∞
F δ

ε [hε,nk
; ã] = lim inf

k→∞
{
F δ

ε [hε,nh
; ank

] + F δ[hε,nk
; ã− ank

]
}

≤ lim inf
k→∞

{
F δ

ε [hε,nh
; ank

] + δnk
(C‖f‖1/2 + ‖hε,nk

‖1,0 + δ
√
|Ω|)

}

≤ lim inf
k→∞

{
F δ

ε [hε,nk
; ank

] + δnk
(C‖f‖1/2 + Cε + δ

√
|Ω|)

}

≤ lim inf
k→∞

{
F δ

ε [h; ank
] + δnk

(C‖f‖1/2 + Cε + δ
√
|Ω|)

}

= lim inf
k→∞

{
F δ

ε [h; ã] + F δ[h; ank
− ã] + δnk

(C‖f‖1/2 + Cε + δ
√
|Ω|)

}

≤ lim inf
k→∞

{
F δ

ε [h; ã] + δnk
(2C‖f‖1/2 + ‖h‖1,0 + Cε + 2δ

√
|Ω|)

}

≤ lim sup
k→∞

{
F δ

ε [h; ã] + δnk
(2C‖f‖1/2 + ‖h‖1,0 + Cε + 2δ

√
|Ω|)

}

≤F δ
ε [h; a] + lim sup

k→∞
δnk

(2C‖f‖1/2 + ‖h‖1,0 + Cε + 2δ
√
|Ω|)

=F δ
ε [h; ã].

The second and fifth inequalities use (45), the third inequality uses (10) and (17),
and the fourth inequality uses the minimizing property defining {hε,nk

}.
Therefore h̃ε is a minimizer for F δ

ε in H1
0 (Ω). Since the minimizer is unique,

h̃ε = hε. Since any other weakly convergent subsequence of {hε,n} also converges
to hε, the entire sequence is weakly convergent to hε.

Next, we prove an analogue of Theorem 3.1 for the non-degenerate functional
(8).

Theorem 7.2. Let (a, f) ∈ L2(Ω) × H1/2(∂Ω) be admissible, u0 ∈ H1(Ω) be a
solution of (1) satisfying (32) for some δ > 0, and u be the harmonic function with
trace f at the boundary. Let {an} ⊂ L2(Ω) be a sequence with an → a in L2(Ω).
Choose εn ↓ 0 in such a way that

lim
n→∞

‖a− an‖2
εn

= 0,

and, for each n, let hεn be the solution of the minimization problem

hεn = argmin{F δ
εn

[h; an] : h ∈ H1
0 (Ω)},

with F δ
εn

[h; an] defined in (43). Then

lim inf
n→∞

F δ
εn

[hεn ; an] = lim inf
n→∞

F δ[hεn ; an] = min{F δ[h; a] : h ∈ H1
0 (Ω)}.

In addition, if a is bounded from below as in (6), then a subsequence of {hεn}
converges in Lq(Ω) to some h∗, for 1 ≤ q < d/(d− 1). Furthermore, provided that
u0 ∈ C(Ω) and h∗ ∈ H1

0 (Ω) ∩ C(Ω), we have

h∗ = u0 − u.(46)

Proof. Let δn = ‖a−an‖ be as before. Since h0 := u0−u is a minimizer of F δ[ · ; a]
over H1

0 (Ω), we have

F δ[h0; a] ≤ lim inf
n→∞

F δ[hεn ; a] ≤ lim inf
n→∞

F δ
εn

[hεn ; a].
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Next we show that the reverse inequality also holds:

lim inf
n→∞

F δ
εn

[hεn ; a] = lim inf
n→∞

{F δ
εn

[hεn ; an] + F δ[hεn ; a− an]}
≤ lim inf

n→∞
{F δ

εn
[hεn

; an] + δn(C‖f‖1/2 + ‖hεn
‖1,0 + δ

√
|Ω|)}

≤ lim inf
n→∞

{
F δ

εn
[hεn

; an] + δn(C‖f‖1/2 + Cεn
+ δ

√
|Ω|)

}

≤ lim inf
n→∞

{
F δ

εn
[h0; an] + δn(C‖f‖1/2 + Cεn

+ δ
√
|Ω|)

}

= lim inf
n→∞

{
F δ[h0; an] + εn‖h0‖1,0 + δn(C‖f‖1/2 + Cεn

+ δ
√
|Ω|)

}

= lim inf
n→∞

{
F δ[h0; a] + F δ[h0; an − a] + εn‖h0‖1,0 + δn(C‖f‖1/2 + Cεn + δ

√
|Ω|)

}

≤ lim inf
n→∞

{
F δ[h0; a] + εn‖h0‖1,0 + δn(2C‖f‖1/2 + ‖h0‖1,0 + Cεn

+ 2δ
√
|Ω|)

}

≤ lim sup
n→∞

{
F δ[h0; a] + εn‖h0‖1,0 + δn(2C‖f‖1/2 + ‖h0‖1,0 + Cεn + 2δ

√
|Ω|)

}

=F δ[h0; a].

In the estimate above, the first and fourth inequalities use (45), the third inequality
uses the minimizing property of {hεn}, and the last equality uses the hypothesis
δn = o(

√
εn) to conclude δnCεn → 0. This proves the identity (21).

Next we show that {hεn} is bounded in W 1,1
0 (Ω). From the positivity assumption

(6) we have

α‖hεn‖1,1 ≤
∫

Ω

a|∇hεn |dx ≤
∫

Ω

a|∇(u + hεn)|dx +
∫

Ω

a|∇u|dx

≤ F δ[hεn ; a] + ‖a‖ ‖∇u‖ ≤ F δ[hεn ; a] + C‖a‖ ‖f‖1/2,

and show that the right hand side is bounded uniformly in n:

F δ[hεn ; a] ≤F δ
εn

[hεn ; a]

=F δ
εn

[hεn ; an] + F δ[hεn ; a− an]

≤F δ
εn

[h0; an] + δn(C‖f‖1/2 + ‖hεn‖1,0 + δ
√
|Ω|)

=F δ[h0; an] + εn‖h0‖1,0 + δn(C‖f‖1/2 + Cεn + δ
√
|Ω|)

≤(‖an‖+ δn)(C‖f‖1/2 + δ
√
|Ω|) + (‖an‖+ εn)‖h0‖1,0 + δnCεn

≤2‖a‖(C‖f‖1/2 + δ
√
|Ω|) + 2‖a‖‖h0‖1,0 + 1,

In the above estimate the second inequality uses the minimization property of hεn

and (45), and the last inequality requires n to be sufficiently large and uses the
hypothesis (20).

An application of Rellich-Kondrachov’s compactness imbedding shows the exis-
tence of a convergent subsequence hεn → h∗ in Lq(Ω) for all 1 ≤ q ≤ d/(d− 1).

If u0 ∈ C(Ω), then f ∈ C(∂Ω) and the harmonic map u ∈ C(Ω) ([6]). If
h∗ ∈ H1

0 (Ω) ∩ C(Ω), then both u + h∗ and u0 are minimizers of the problem (33)
and we can apply the uniqueness part of Theorem 6.1 to conclude (46).

8. Application to the conductivity imaging problem. In this section we show
how Theorem 7.2 can be applied to the conductivity imaging problem. The domain
Ω ⊂ Rd is bounded with Lipschitz boundary that satisfies the exterior cone condition
at each point x ∈ ∂Ω ([6]).
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A priori assumptions:
• (H1) the (unknown) conductivity σ has a (known) upper bound: σ(x) ≤ M ,

a.e. x ∈ Ω;
• (H2) the magnitude a of the current density field is bounded away from zero

as in (6), for some α > 0.

Proposition 6. Assume that the data (a, f) ∈ L2(Ω) × C(∂Ω) satisfy (H1) and
(H2). Let {an} ⊂ L2(Ω) be a sequence with an → a in L2(Ω). Define εn = ‖a−an‖
and δ = α/M .

For n ∈ N, let hn be the unique solution of the minimization problem:

hn = argmin{F δ
εn

[h; an] : h ∈ H1
0 (Ω)},

with F δ
εn

[h; an] given in (43) with u being the harmonic function with trace f at the
boundary.

Then, on a subsequence, {hn} converges in Lq(Ω) to some h∗ ∈ Lq(Ω)∩BV0(Ω),
1 ≤ q < d/(d− 1).

Provided that h∗ ∈ H1
0 (Ω) ∩ C(Ω), we recover the voltage potential by

uσ = u + h∗,(47)

and the conductivity by

σ = a/|∇uσ|.(48)

Proof. The voltage potential uσ is uniquely defined by the Dirichlet problem

∇ · σ∇uσ = 0, uσ|∂Ω = f.

Since f is continuous, the elliptic regularity (up to the boundary) implies uσ ∈
H1(Ω) ∩ C(Ω) ([6, Theorem 8.30]). Moreover,

|∇uσ| = a

σ
≥ α

M
,

and (32) is satisfied for δ = α/M .
The specific choice of εn made above implies that ‖a − an‖ = o(

√
εn). Now we

apply Theorem 7.2 and use (46) to recover uσ. The reconstruction of σ follows from
the structure of a in (2).

For simply connected planar domains, an almost two-to-one boundary voltage
f guarantees an interior voltage potential uσ which satisfies (7), for some δ > 0
([1, 15]), and, consequently, the positivity relation (6) holds.

Corollary 1. Let Ω ⊂ R2 be simply connected, a ∈ L2(Ω) be the magnitude of the
current density field (as in (2)) generated while maintaining an almost two-to-one
boundary voltage f ∈ C(∂Ω). Then there exists δ > 0 sufficiently small such that

uσ = argmin{F δ[h; a] : h ∈ H1
0 (Ω)},(49)

where F δ is given by (8), with u being the harmonic map of trace f at the boundary.
Moreover, for any {an} ⊂ L2(Ω) sequence, with an → a in L2(Ω), define εn =
‖a− an‖, and let hn be the unique solution of the minimization problem:

hn = argmin{F δ
εn

[h; an] : h ∈ H1
0 (Ω)},

with F δ
εn

as in (43).
Then, on a subsequence, {hn} converges in Lq(Ω) to some h∗ ∈ Lq(Ω)∩BV0(Ω),

1 ≤ q < d/(d− 1).
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Moreover, if h∗ ∈ H1
0 (Ω)∩C(Ω), then uσ is recovered via the formula uσ = u+h∗.

9. Concluding remarks. We considered the problem of minimizing the functional
F [u; a] =

∫
Ω

a|∇u|dx over functions in H1(Ω) with fixed trace f at the boundary.
We showed stability of the minimum value with respect to a, in a neighborhood of
a specific coefficient: a is such that the pair (a, f) is admissible. If a is bounded
continuous and positive, the functional above has a natural extension to the space
of functions of bounded variation BV (Ω). The stability of the extended functional
is preserved in this larger space. In both cases, the method of proof constructs a
minimizing sequence out of H1(Ω) minimizers of some regularized functionals.

Under the assumption that F has a solution u ∈ H1(Ω) with |∇u| ≥ δ, for
some δ > 0, we prove a similar stability result for the non-degenerate version of
the functional F δ[u; a] =

∫
Ω

a max{|∇u|, δ}dx over maps in H1(Ω). Such problems
occur in electrical conductivity imaging when the magnitude of the current density
field is known in the interior of Ω. The positivity assumption above is implied
by the positivity in the coefficient a. In two dimensional domains, the positivity
assumption can be insured a priori by imposing an almost two-to-one boundary
voltage f . The minimization problem for F δ has a unique solution in H1(Ω)∩C(Ω).
Consequently, if the minimizer (obtained as the limit in Lq(Ω) of minimizers of
regularized functionals) lies in H1(Ω) ∩ C(Ω) we can recover the voltage potential
inside, and therefore, the conductivity inside.
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