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ABSTRACT. We present new necessary and sufficient conditions for a
function on ∂Ω×S1 to be in the range of the attenuated Radon transform
of a sufficiently smooth function support in the convex set Ω ⊂ R2. The
approach is based on an explicit Hilbert transform associated with traces
on the boundary of A-analytic functions in the sense of Bukhgeim.

1. INTRODUCTION

In this paper we are concerned with the range characterization of the
attenuated Radon transform of function of compact support in the plane.
Necessary and sufficient constraints on range of the non-attenuated (clas-
sical) Radon transform in the Euclidean space have been known since the
works in [6], [7], and [10]. These constraints, known as the Cavalieri or the
moment conditions, are in terms of the angular variable. For function in the
Schwartz class, they are essentially unique due to a Paley-Wiener type the-
orem. Moreover, the Helgason support theorem extends the conditions to
smooth functions of compact support [8]. However, in the case of functions
of compact support, it is possible to obtain essentially different range con-
ditions since more than one operator can annihilate functions of compact
support in the range of the Radon transform. The results here constitute one
such example.

Inversion methods of the attenuated Radon transform in the plane ap-
peared first in [1], and [14], and various developments can be found in [13],
[3], [5], [2]. The interest in range conditions stems out from their appli-
cations to data enhancement in medical imaging methods such as Single
Photon, or Positron Emission Computed Tomography [12]. For the Eu-
clidean attenuated Radon transform, some range characterization based on
the inversion procedure in [14] can be found in [15]. These constraints are
also in terms of the angular variable.

Different from the existing results above, our new characterization is
in terms of a Hilbert transform associated with the A-analytic maps à la
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Bukhgeim [4], and represents constraints in the spatial variable; see Theo-
rems 4.1, and 5.1. Range characterizations in terms of a Hilbert type trans-
form were first introduced in [17] in the non-attenuated case for smooth
functions on two dimensional compact simple Riemmanian manifolds. Ex-
tensions to the attenuated case and to tensor tomography have been recently
obtained in [19], [16].

Throughout this work Ω ⊂ R2 is a convex bounded domain with C2-
smooth boundary Γ with strictly positive curvature bound. Let a, f ∈ C(Ω)
be extended by zero outside. The divergence beam transform of a is defined
as

Da(x, θ) :=

∫ ∞
0

a(x+ tθ)dt,(1)

and the attenuated Radon transform of f (with attenuation a) by∫ ∞
−∞

f(x+ tθ)e−Da(x+tθ,θ)dt.(2)

The integral in (2) is constant in x in the direction of θ, and this defines
a function on the cotangent bundle of the circle S1. In here however we
describe the range characterization in terms of function on Γ × S1 and it
make sense to think of integral in (2) defined on Ω× S1.

For any (x, θ) ∈ Ω × S1, let τ±(x, θ) denote the distance from x in the
±θ direction to the boundary, and distinguish the endpoints x±θ ∈ Γ of the
chord in the direction of θ passing through x by

(3) x±θ := x± τ±(x, θ)θ.

Note that

τ(x, θ) = τ+(x, θ) + τ−(x, θ)(4)

is the length of the chord.
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Definition 1.1. We say that g on Γ × S1 is an attenuated Radon transform
of f with attenuation a, if

g(x+
θ , θ)−

[
e−Dag

]
(x−θ , θ) =

∫ τ+(x,θ)

τ−(x,θ)

f(x+ tθ)e−Da(x+tθ,θ)dt,(5)

for every (x, θ) ∈ Ω× S1.

It is easy to see that g in definition 1.1 is not unique, since we can add to
g any function h on Γ× S1 such that

(6) h(x+
θ , θ) =

[
e−Dah

]
(x−θ , θ).

If g is an attenuated Radon transform in the sense above, we use the
notation g ∈ Raf . In the case a ≡ 0, we use the notation g ∈ Rf .

We note that (6) is the only way non-uniqueness occurs, and that, for
functions defined in the whole plane with Radon data at infinity, such an
ambiguity cannot occur.

In motivation to our definition (5) we note that the function g is precisely
the trace on Γ× S1 of solutions u to the transport equation

(7) θ · ∇u(x, θ) + a(x)u(x, θ) = f(x), (x, θ) ∈ Ω× S1,

in accordance to the physical model of transport, where u(x, θ) is the den-
sity of particles at x moving in the direction θ, f(x) is the density of ra-
diating particles per unit path-length, and a(x) is the medium capability of
absorption per unit path-length at x.

Our main result gives necessary and sufficient conditions for g ∈ Raf .
These conditions characterize the traces u|Γ×S1 of solutions of (7), as traces
on Γ of solutions of A-analytic functions. For the sake of clarity we first
treat the non-attenuated case a ≡ 0, and then reduce the attenuated case to
it.

2. PRELIMINARIES

In this section we recall some preliminary notions and results from the
theory of A-analytic sequence valued maps, singular integral and harmonic
analysis, and set notations. We justify the results which are new.

We treat first the non-attenuated case (a ≡ 0), in which the transport
equation further simplifies to

(8) θ · ∇v(x, θ) = f(x), (x, θ) ∈ Ω× S1.

With the complex notations

z = x1 + ix2, ∂ = (∂x1 + i∂x2) /2, ∂ = (∂x1 − i∂x2) /2,
the advection operator becomes

θ · ∇ = e−iϕ∂ + eiϕ∂,
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where ϕ = arg(θ) denotes an angular variable .
Let v(z, θ) =

∑∞
−∞ vn(z)einϕ, be the (formal) Fourier expansion of v

in the angular variable. Provided appropriate convergence of the series as
specified in the theorems, we see that v solves (8) if and only if its Fourier
coefficients solve

(9) ∂v−1(z) + ∂v1(z) = f(z),

and, for n 6= 1,
∂vn(z) + ∂vn−2(z) = 0.

Since v is real-valued, its Fourier coefficients appear in complex-conjugate
pairs, vn = v−n, so that it suffices to work with the sequence of non-positive
indexes (this choice preserves the original notation in [4]).

Definition 2.1. The sequence valued map z 7→ v(z) := 〈v0(z), v−1(z), v−2(z), ...〉
is called A-analytic if v ∈ C(Ω; l∞) ∩ C1(Ω; l∞) and

(10) ∂vn(z) + ∂vn−2(z) = 0, n = 0,−1,−2, ...

For a compact set K ⊂ R2, such as Γ,Ω, S1, or Ω × S1, by Cα(K)
we denote the Banach space of uniform α- Hölder continuous functions
endowed with the norm

‖f‖Cα(K) := sup
z∈K
|f(z)|+ sup

z,w∈K, z 6=w

|f(z)− f(w)|
|z − w|α

.

By Cα(Ω) we denote the space of locally uniform α- Hölder continuous
functions.

We note the general fact that, for a sequence of nonnegative numbers, we
have the following:

Lemma 2.1. Let {cn} be a sequence of nonnegative numbers. Then

(i)
∞∑
k=1

∞∑
n=0

k ck+n =
∞∑
j=1

j(j + 1)

2
cj,

(ii)
∞∑
k=1

∞∑
n=0

ck+n =
∞∑
j=1

j cj,

whenever one of the sides in (i) and (ii) is finite.

Proof. (i) Indeed, if we introduce the change of index j = k+n, for k ≥ 1,
(j − n ≥ 1, and n ≤ j − 1) we get
∞∑
k=1

∞∑
n=0

kck+n =
∞∑
j=1

j−1∑
n=0

(j − n) cj =
∞∑
j=1

cj

j−1∑
n=0

(j − n) =
∞∑
j=1

j(j + 1)

2
cj.
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(ii) Indeed the change of index j = k + n for k ≥ 1 yields

∞∑
k=1

∞∑
n=0

ck+n =
∞∑
j=1

j−1∑
n=0

cj =
∞∑
j=1

cj

j−1∑
n=0

1 =
∞∑
j=1

jcj.

�

In several of the arguments we make use of the following Bernstein’s
lemma below (see, e.g., [9]).

Lemma 2.2. Let f ∈ Ck,α(S1), α > 1/2, and {f̂n} be the sequence of its

Fourier coefficients. Then
∞∑

n=−∞

|n|k|f̂n| <∞.

To characterize traces of A-analytic functions we need to control the de-
cay in the Fourier terms. We work in the following Banach spaces

(11) l1,1∞ (Γ) :=

{
v = 〈v0, v−1, ...〉 : sup

w∈Γ

∞∑
j=1

j|v−j(w)| <∞

}
,

and
(12)

Cε(Γ; l1) :=

v = 〈v0, v−1, ...〉 : sup
ξ∈Γ
‖v(ξ)‖l1 + sup

ξ,η∈Γ
ξ 6=η

‖v(ξ)− v(η)‖l1
|ξ − η|ε

<∞

 ,

where l1 is the space of sumable sequences. By replacing Γ with Ω and
l1 with l∞ in (12) we similarly define Cε(Ω; l1), respectively, Cε(Ω; l∞),
where l∞ denotes the space of bounded sequences.

We describe next the two operators which define the Hilbert transform as-
sociated with A-analytic maps. For v ∈ Cε(Γ, l1), we consider the Cauchy
integral operators defined componentwise by

(13) (Cv)n(ξ) := (Cvn)(ξ) =
1

2πi

∫
Γ

vn(w)

w − ξ
dw, ξ ∈ Ω,

and
(14)

(Sv)n(ξ) := (Svn)(ξ) =
1

πi

∫
Γ

vn(w)

w − ξ
dw, ξ ∈ Γ, n = 0,−1,−2, ...

The later integral is understood in the Cauchy principal value sense.
The following result is a componentwise extension of Sokhotski-Plemelj

formula (e.g., [11]) to sequence valued maps.
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Proposition 2.1 (Sokhotski-Plemelj). Let v ∈ Cε(Γ ; l1) as in (12). Then,
for every ξ0 ∈ Γ, the limit

(15) lim
Ω3ξ→ξ0

∥∥∥∥(Cv)(ξ)− 1

2
v(ξ0)− 1

2
Sv(ξ0)

∥∥∥∥
l1

= 0

defines an extension of Cv from Ω to Ω as a Holder continuous map with
values in l1, i.e,

C : Cε(Γ ; l1) −→ Cε
(
Ω; l1

)
∩ C1 (Ω; l1) .

The fact that Cv ∈ C1(Ω; l1) follows directly from the local character of
differentiability and from the fact that

∑∞
n=1

∫
Γ
|v−n(w)dw| <∞.

Next we introduce the second operator which appears in the definition of
the Hilbert transform. It is defined componentwise for each index n ≤ 0,
ξ ∈ Ω, w ∈ Γ , and v ∈ l1,1∞ (Γ) by

(16) (Gv)n(ξ) =
1

πi

∫
Γ

{
dw

w − ξ
− dw

w − ξ

} ∞∑
j=1

vn−2j(w)

(
w − ξ
w − ξ

)j
.

We will use the following mapping property of G.

Proposition 2.2.

G : Cε(Γ ; l1) ∩ l1,1∞ (Γ) −→ Cε
(
Ω; l∞

)
∩ C1 (Ω; l∞) .

Proof. Let ξ, ξ0 ∈ Ω. Since v ∈ l1,1∞ (Γ), it follows from (16) that each
component (Gv)n(ξ) is well-defined for n ≤ 0.

Now let w(ϕ) = ξ + lξ(ϕ)eiϕ be a parametrization of Γ, where lξ(ϕ) =
|ξ − w(ϕ)|. Since the boundary Γ is at least C1, we have that ξ 7→ lξ is
Lipschitz in Ω uniformly in ϕ ∈ [0, 2π], i.e.,

(17) |lξ(ϕ)− lξ0(ϕ)| ≤ L|ξ − ξ0|,

for some constant L > 0. Moreover,

dw

w − ξ
=

[
l′ξ
lξ

+ i

]
dϕ,

dw

w − ξ
=

[
l′ξ
lξ
− i
]
dϕ,

(
w − ξ
w − ξ

)
= e−2iϕ,

and note that the measure
dw

w − ξ
− dw

w − ξ
= 2idϕ in (16) is nonsingular.

For each integer n ≤ 0, the equation (16) rewrites

(Gv)n(ξ) =
2

π

∫ 2π

0

∞∑
j=1

gn−2j(ξ + lξ(ϕ) eiϕ) e−2ijϕdϕ, ξ ∈ Ω.
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Since v ∈ Cε(Γ ; l1), we have

κ := sup
w1,w2∈Γ
w1 6=w2

∞∑
n=0

|g−n(w1)− g−n(w2)|
|w1 − w2|ε

<∞.

We estimate for each n,

|(Gv)n(ξ)− (Gv)n(ξ0)|

≤ 2

π

∞∑
j=1

∫ 2π

0

∣∣vn−2j(ξ + lξ(ϕ) eiϕ)− vn−2j(ξ0 + lξ0(ϕ) eiϕ)
∣∣ dϕ

≤ 2κ

π

∫ 2π

0

∣∣(ξ − ξ0) + [lξ(ϕ)− lξ0(ϕ)] eiϕ
∣∣ε dϕ,

≤ 2κ

π

∫ 2π

0

(2 |ξ − ξ0|ε + |lξ(ϕ)− lξ0(ϕ)|ε) dϕ,

≤ (8κ+ 4κLε) |ξ − ξ0|ε .
In the third inequality above we used |a+ b|ε ≤ 2|a|ε + |b|ε, and the fourth
inequality uses (17).

Next we show that Gv ∈ C1(Ω; l∞). Suffices to carry the estimates
in the neighborhood B(ξ0, r0) ⊂ Ω of an arbitrary point ξ0 ∈ Ω, where
r0 = dist(ξ0,Γ)/2 > 0.

For ξ ∈ B(ξ0, r0) arbitrary we have∣∣∣∣∇ξ

{
dw

w − ξ
− dw

w − ξ

}∣∣∣∣ =

∣∣∣∣2 Im( dw

(w − ξ)2

)∣∣∣∣ ≤ c|dw|,(18)

where c = 2/r2
0.

For each n ≤ 0, we have

∇ξ(Gv)n(ξ) =
1

πi

∫
Γ

∇ξ

{
dw

w − ξ
− dw

w − ξ

} ∞∑
j=1

vn−2j(w)

(
w − ξ
w − ξ

)j

+
1

πi

∫
Γ

{
dw

w − ξ
− dw

w − ξ

} ∞∑
j=1

vn−2j(w)∇ξ

(
w − ξ
w − ξ

)j
.

For v ∈ Cε(Γ ; l1) ∩ l1,1∞ (Γ), and ξ ∈ B(ξ0, r0), the right hand side above
is bounded uniformly in n, since

|∇ξ(Gv)n(ξ)| ≤ c

π

∫
Γ

∞∑
j=1

|vn−2j(w)| dw

+
c

π

∫
Γ

∞∑
j=1

j |vn−2j(w)| dw <∞.
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Therefore Gv ∈ C1(Ω; l∞). �

3. THE HILBERT TRANSFORM OF A-ANALYTIC MAPS

In this section we introduce the Hilbert transformH0 associated with the
traces on Γ of A-analytic maps in Ω.

Recall the operator S and G as defined in (14), and (16).

Definition 3.1. The Hilbert transform H0 for g = 〈g0, g−1, ...〉 ∈ l1,1∞ (Γ) ∩
Cε(Γ; l1) is defined by

H0g := i[S +G]g,(19)

and written componentwise, for n = 0,−1,−2, ..., as

(H0g)n(ξ) =
1

π

∫
Γ

gn(w)

w − ξ
dw

+
1

π

∫
Γ

{
dw

w − ξ
− dw

w − ξ

} ∞∑
j=1

gn−2j(w)

(
w − ξ
w − ξ

)j
, ξ ∈ Γ.

The mapping properties of S, and G in Propositions 2.1 and 2.2, together
with the continuous embedding of l1 ⊂ l∞, yields

Proposition 3.1.

(20) H0 : Cε(Γ ; l1) ∩ l1,1∞ (Γ) −→ Cε (Γ; l∞) ,

is a continuous map.

The name of this transform will be motivated in the next section, where
we show that traces on Γ of A-analytic maps lie in the kernel of [I + iH0]
in analogy with the classical Hilbert transform for analytic functions.

At the heart of the theory of A-analytic maps lies a Cauchy integral for-
mula. A class of such Cauchy integral formulae were first introduced by
Bukhgeim in [4]. The explicit form (21) below is due to Finch [5]; see also
[20, 21, 22] where one works with square summable sequences.

Theorem 3.1. Let g = 〈g0, g−1, ...〉 ∈ l1,1∞ (Γ) ∩ Cε(Γ; l1) be a sequence
valued map defined at the boundary Γ. For ξ ∈ Ω and each index n ≤ 0 we
define vn(ξ) by

(21) vn(ξ) :=
1

2
(Gg)n(ξ) + (Cg)n(ξ).

Then v := 〈v0, v−1, ...〉 ∈ C1,ε(Ω; l∞), and, for each n = 0,−1, ...,

∂vn(ξ) + ∂vn−2(ξ) = 0, ξ ∈ Ω.



RANGE CHARACTERIZATION 9

Moreover, for each n = 0,−1,−2, ..., the component vn extends continu-
ously to Ω with limiting values

(22) v+
n (ξ0) := lim

Ω3ξ→ξ0∈Γ
vn(ξ),

where

(23) v+
n (ξ0) =

1

2
(Gg)n(ξ0) +

1

2
(S + I)gn(ξ0).

Proof. Let ξ ∈ Ω and n ≤ 0 arbitrarily fixed. Since g ∈ l1,1∞ (Γ)∩Cε(Γ, l1),
both (Gg)n(ξ) and (Cg)n)(ξ) are well-defined. Moreover, from Proposi-
tions 2.1 and 2.2 we have that v ∈ C(Ω; l∞) ∩ C1(Ω; l∞).

For each n ≤ 0, by its definition in (21), we have

2πivn(ξ) =
∞∑
j=0

∫
Γ

gn−2j(w)(w − ξ)
j

(w − ξ)j+1
dw

−
∞∑
j=1

∫
Γ

gn−2j(w)(w − ξ)
j−1

(w − ξ)j
dw.

From where

2πi∂vn−2(ξ) =
∞∑
j=1

∫
Γ

jgn−2j(w)(w − ξ)
j−1

(w − ξ)j+1
dw

−
∞∑
j=2

∫
Γ

(j − 1)gn−2j(w)(w − ξ)
j−2

(w − ξ)j
dw,(24)

and

2πi∂vn(ξ) =−
∞∑
j=1

∫
Γ

jgn−2j(w)(w − ξ)
j−1

(w − ξ)j+1
dw

+
∞∑
j=2

∫
Γ

(j − 1)gn−2j(w)(w − ξ)
j−2

(w − ξ)j
dw.(25)

By summing (24) and (25) we obtain ∂vn + ∂vn−2 = 0 for each n =
0,−1,−2, ....

The regularity vn ∈ C1,ε(Ω) follows from the explicit formula (24), and

the fact that ξ 7→ (w − ξ)
j

(w − ξ)j+2
are locally uniform ε-Hölder continuous.
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The continuity to the boundary are consequences of Propositions 2.1 and
2.2. In the limits below ξ ∈ Ω, and ξ0 ∈ Γ :

lim
ξ→ξ0

vn(ξ) = lim
ξ→ξ0

1

2
(Gv)n(ξ) + lim

ξ→ξ0
(Cg)n)(ξ)

=
1

2
(Gv)n(ξ0) +

1

2
gn(ξ0) +

1

2

∞∑
n=0

(Sg)n(ξ0)

=
1

2
(Gv)n(ξ0) +

1

2
(S + I)gn(ξ0).

�

The following theorem presents necessary and sufficient conditions for
sufficiently regular sequence valued map to be the trace at the boundary of
an A-analytic function.

Theorem 3.2. Let g = 〈g0, g−1, g−2, · · · ·〉 ∈ l1,1∞ (Γ) ∩ Cε(Γ, l1). For g to
be boundary value of an A-analytic function it is necessary and sufficient
that

(26) (I + iH0)g = 0.

Proof. For the necessity let v be A-analytic as in (10) whose trace v|Γ = g,
in the sense that

lim
Ω3ξ→ξ0∈Γ

vn(ξ) = gn(ξ0), n ≤ 0.

By (23) we obtain

gn(ξ0) =
1

2
(Gv)n(ξ0) +

1

2
Sgn(ξ0) +

1

2
gn(ξ0),

or,

[(I − S −G)g]n = 0, n ≤ 0.(27)

SinceH0 = i[S +G], (27) is a componentwise representation of (26).
Next we prove sufficiency. Let g ∈ l1,1∞ (Γ) ∩ Cε(Γ, l1) satisfy(26), and

define v in Ω by the Cauchy Integral formula (21). From Propositions 2.1
and 2.2 we have that v ∈ C1(Ω; l∞) ∩ C(Ω; l∞), and from Theorem 3.1
we see that ∂vn + ∂vn−2 = 0, for each n ≤ 0. Therefore v is A-analytic.
Moreover,

lim
Ω3ξ→ξ0∈Γ

vn(ξ) =
1

2
(Gv)n(ξ0) +

1

2
(S + I)gn(ξ0)

=
1

2
(I − S)gn(ξ0) +

1

2
(S + I)gn(ξ0)

= gn(ξ0),
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where the first equality uses (23), whereas the second equality uses (26).
�

4. RANGE CHARACTERIZATION OF THE RADON TRANSFORM

This section concerns our main result in the non-attenuated case (a ≡ 0).
The results require a stronger topology. For ε > 0, we consider the space
Yε = Cε(Γ ; l1,1(S1)) ∩ C0(Γ ; l1,2(S1)) i.e

(28) Yε =

g ∈ l1,2∞ (Γ) : sup
ξ,µ∈Γ
ξ 6=µ

∞∑
j=1

j
|g−j(ξ)− g−j(µ)|
|ξ − µ|ε

<∞

 ,

where

(29) l1,2∞ (Γ) :=

{
g = 〈g0, g−1, g−2, · · · ·〉 : sup

w∈Γ

∞∑
j=1

j2 |g−j(w)| <∞

}
.

For the sake of clarity in the statement of the main result we introduce
the following projections.

Definition 4.1. Given a function g ∈ C(Ω;L1(S1)), we consider the pro-
jections

P−(g) := 〈g0, g−1, g−2, ...〉, P+(g) := 〈g0, g1, g2, ...〉,(30)

where gn(z) = 1
2π

∫ 2π

0
g(z, θ)e−inϕdϕ, for z ∈ Ω, is the n− th Fourier co-

efficients for n ∈ Z. Conversely, given g(z) = 〈g0(z), g−1(z), g−2(z), ...〉 ∈
C(Ω; l1), we define a corresponding real valued function g on Ω× S1 by

P∗(g) := g0(z) + 2Re

(
∞∑
n=1

g−n(z)e−inϕ

)
.(31)

The properties below are immediate:
If g is a function on Γ × S1 then

(i) P−P∗P−(g) = P−(g),(32)

(ii) P−(e±hg) = (P+e±h) ∗n (P−(g)),(33)

where ∗n is the convolution operator on sequences and h is a function on
Γ × S1 with only non negative Fourier modes.

The following result gives some of the properties of the P± and P∗ op-
erators. Recall the definition of the space Yε in (28).

Proposition 4.1. Let α > 1/2, and ε > 0 be arbitrarily small. Then
(i) P− : Cε (Γ ;C1,α(S1))→ l1,1∞ (Γ) ∩ Cε(Γ; l1),
(ii) P− : Cε (Γ ;C1,α(S1)) ∩ C0 (Γ ;C2,α(S1))→ Yε,
(iii) P∗ : C1,α(Ω; l1) ∩ Cα(Ω; l1)→ C1,α(Ω× S1) ∩ Cα(Ω× S1).
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Proof. Let g ∈ Cε (Γ ;C1,α(S1)). Then

(34) sup
ξ∈Γ
‖g(ξ, · )‖C1,α + sup

ξ,µ∈Γ
ξ 6=µ

‖g(ξ, · )− g(µ, · )‖C1,α

|ξ − µ|ε
<∞.

From

(35) sup
ξ∈Γ

∞∑
j=1

j |g−j(ξ)| ≤ sup
ξ∈Γ
‖g(ξ, · )‖C1,α <∞,

and by Lemma 2.2, P−(g) ∈ l1,1∞ (Γ).
Another application of Lemma 2.2, together with (34) imply

(36) sup
ξ,µ∈Γ
ξ 6=µ

∞∑
j=1

j|g−j(ξ)− g−j(µ)|
|ξ − µ|ε

≤ sup
ξ,µ∈Γ
ξ 6=µ

‖g(ξ, · )− g(µ, · )‖C1,α

|ξ − µ|ε
<∞.

By combining the estimates (35) and (36) we showed thatP−(g) ∈ Cε(Γ ; l1).
This proves part (i).

Now let g ∈ Cε (Γ ;C1,α(S1))∩C0 (Γ ;C2,α(S1)). Since g ∈ C0 (Γ ;C2,α(S1)),
then

sup
ξ∈Γ
‖g(ξ, · )‖C2,α <∞.

Lemma 2.2 applied to g(ξ, · ) ∈ C2,α for ξ ∈ Γ yields

(37) sup
w∈Γ

∞∑
j=1

j2 |g−j(w)| ≤ ‖g(ξ, · )‖C2,α .

This shows that P−(g) ∈ l1,2∞ (Γ). Now (36) yields P−(g) ∈ Yε.
By triangle inequality in (31), we have g ∈ C1,α(Ω; l1)∩Cα(Ω; l1) yields

sup
ξ∈Ω

‖g(ξ)‖l1 + sup
ξ,µ∈Ω
ξ 6=µ

‖g(ξ)− g(µ)‖l1
|ξ − µ|α

<∞.

For ξ ∈ Ω, and r > 0 with B(ξ; r) ⊂ Ω, there is an Mξ,r > 0 with

sup
ξ∈B(ξ;r)

‖∇g(ξ)‖l1 + sup
µ∈B(ξ;r)
ξ 6=µ

‖∇g(ξ)−∇g(µ)‖l1
|ξ − µ|α

≤Mξ,r.

These proves part(iii).
�

The following result refines the mapping properties of the operator G in
(16), when restricted to the subspace Yε.
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Proposition 4.2. Let Yε be the space defined in (28). Then

(i) G : Yε −→ Cε
(
Ω; l1

)
∩ C1

(
Ω; l1

)
,

(ii) H0 : Yε −→ Cε
(
Γ ; l1

)
.

Proof. (i) Let ξ, ξ0 ∈ Ω and g ∈ Yε. Using the parametrization w(ϕ) =
ξ + lξ(ϕ)eiϕ, where lξ(ϕ) = |ξ − w(ϕ)|, we obtain as in the proof in
Proposition 2.2 that

(Gg)−n(ξ) =
2

π

∫ 2π

0

∞∑
j=1

g−n−2j(ξ + lξ(ϕ) eiϕ) e−2ijϕdϕ,

is well defines for ξ ∈ Ω.
Since g ∈ Yε, we have

κ := sup
ξ,µ∈Γ
ξ 6=µ

∞∑
j=1

j
|g−j(ξ)− g−j(µ)|
|ξ − µ|ε

<∞

We estimate
∞∑
n=0

|(Gg)−n(ξ)− (Gg)−n(ξ0)|

≤ 2

π

∞∑
n=0

∞∑
j=1

∫ 2π

0

∣∣g−n−2j(ξ + lξ(ϕ) eiϕ)− g−n−2j(ξ0 + lξ0(ϕ) eiϕ)
∣∣ dϕ

≤ 2

π

∞∑
j=1

∫ 2π

0

j
∣∣g−j(ξ + lξ(ϕ) eiϕ)− g−j(ξ0 + lξ0(ϕ) eiϕ)

∣∣ dϕ
≤ 2κ

π

∫ 2π

0

∣∣(ξ − ξ0) + [lξ(ϕ)− lξ0(ϕ)] eiϕ
∣∣ε dϕ,

≤ 2κ

π

∫ 2π

0

(2 |ξ − ξ0|ε + |lξ(ϕ)− lξ0(ϕ)|ε) dϕ,

≤ (8κ+ 4κLε) |ξ − ξ0|ε .

In the second inequality we used Lemma 2.1 part (ii), in the third inequality
we used |a + b|ε ≤ 2|a|ε + |b|ε, and in the fourth inequality we used (17).
This shows Gv ∈ Cε(Ω; l1).

We will show next that Gg ∈ C1(Ω; l1). Suffices to carry the estimates
in the neighborhood B(ξ0, r0) ⊂ Ω of an arbitrary point ξ0 ∈ Ω, where
r0 = dist(ξ0,Γ)/2 > 0. Recall the estimate (18) where c = 2/r2

0.
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For each n ≤ 0, we have

∇ξ(Gg)n(ξ) =
1

πi

∫
Γ

∇ξ

{
dw

w − ξ
− dw

w − ξ

} ∞∑
j=1

gn−2j(w)

(
w − ξ
w − ξ

)j

+
1

πi

∫
Γ

{
dw

w − ξ
− dw

w − ξ

} ∞∑
j=1

gn−2j(w)∇ξ

(
w − ξ
w − ξ

)j
,

which estimate using (18) by
∞∑
n=0

|∇ξ(Gg)−n(ξ)| ≤ c
π

∞∑
n=0

∫
Γ

∞∑
j=1

|g−n−2j(w)| dw

+
c

π

∞∑
n=0

∫
Γ

∞∑
j=1

j |g−n−2j(w)| dw.

By Lebesgue Dominated Convergence Theorem, Lemma 2.1, and g ∈ l1,2∞ (Γ),
the right hand side above is finite.

To prove part (ii) we note that Yε ⊂ Cε(Γ; l1) so that the Sokhotzki-
Plemelj limit in (15) holds. The result follows from Definition 3.1 of H0

and part(i) above. �

Corollary 4.1. Let Yε be the space defined in (28) and g ∈ Yε satisfying

(I + iH0)g = 0.(38)

Define v = 〈v0, v−1, v−2, ...〉 by the Cauchy Integral formula (21). Then
v ∈ C1,ε(Ω; l1) extends continuously to a map in Cε(Ω; l1). Moreover, v is
A-analytic and v|Γ= g, in the sense

lim
Ω3z→z0∈Γ

‖v(z)− g(z0)‖l1 = 0,

and, for P∗ in (31), we have

lim
Ω3z→z0∈Γ

P∗(v)(z) = P∗(g)(z0).

Proof. Since g ∈ Yε, by Proposition 4.2 we have v ∈ Cε(Ω; l1)∩C1(Ω; l1).
By summing (24) and (25) we obtain

∂vn + ∂vn−2 = 0, n = 0,−1,−2, ...,

and so v is A-analytic. Next we will show that v|Γ= g. Let z ∈ Ω and
z0 ∈ Γ . Then

‖v(z)− g(z0)‖l1 =

∥∥∥∥1

2
(Gg)(z) + (Cg)(z)− g(z0)

∥∥∥∥
l1

=

∥∥∥∥1

2
((Gg)(z)− (Gg)(z0)) +

(
(Cg)(z)− 1

2
g(z0)− 1

2
Sg(z0)

)∥∥∥∥
l1
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In the equality above we use the fact that g satisfy (38). From Proposition
2.1 and Proposition 4.2 part (i) we have

lim
Ω3z→z0∈Γ

∥∥∥∥(Cg)(z)− 1

2
g(z0)− 1

2
Sg(z0)

∥∥∥∥
l1

= 0,

lim
Ω3z→z0∈Γ

‖(Gg)(z)− (Gg)(z0)‖l1 = 0,

and so

(39) lim
Ω3z→z0∈Γ

‖v(z)− g(z0)‖l1 = 0,

i.e. v|Γ= g.
Since v ∈ Cε(Ω; l1)∩C1(Ω; l1), it follows from Proposition 4.1 part (iii)

that P∗v(z) ∈ C1,ε(Ω× S1) ∩ Cε(Ω× S1). The triangle inequality yields

|[P∗v](z, θ)− [P∗g](z0, θ)| ≤ ‖v(z)− g(z0)‖l1 ,
and the result follows from (39). �

Lemma 4.1. Let Ω be a (convex) domain withC2-boundary Γ with a strictly
positive curvature lower bound δ > 0. Let τ(z, θ) be as in (4) for (z, θ) ∈
Ω × S1, then the angular derivative ∂ϕτ(z, θ) has a jump discontinuity
across the variety Z as defined by

Z := {(z, θ) ∈ Γ× S1 : n(z) · θ = 0}.(40)

Proof. Let z0 ∈ Γ be fixed and let θ0 := n(z0)⊥ with ϕ0 = arg(θ0).
Let τ̃(z0, θ) be the length of the chord corresponding to the osculating

circle at z0 of radius R0 and let ϕ = arg(θ). Let τ(z0, θ) be the length of
the chord from z0 to the boundary in the θ direction as defined in (4).

Consider a local parametrization t 7→ (t, y(t)) of the boundary near z0 =
(0, y(0)) ∈ Γ, with y(0) = y′(0) = 0. Then the curvature of the boundary
at z0 is k(0) = y′′(0), and, by the Taylor series expansion,

y(t) =
κ(0)t2

2
+ r(t)t2,

for some r(t) with limt→0 r(t) = 0.
The equation of the line passing through z0 and making an angle ϕ− ϕ0

with the positive t axis is (t, tan(ϕ−ϕ0)t). The point of intersection of this

line with Γ gives t =
2 tan(ϕ− ϕ0)

κ(0) + 2r(t)
. Thus,

τ(z0, θ) = t sec(ϕ− ϕ0) =
sin(ϕ− ϕ0)

cos2(ϕ− ϕ0)

2

κ(0) + 2r(t)

≤ 2c1

κ(0)

sin(ϕ− ϕ0)

cos2(ϕ− ϕ0)
≤ 2c1R0| sin(ϕ− ϕ0)|

cos2(ϕ− ϕ0)
.
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FIGURE 2

From the geometry of the osculating circle (see Figure 2), we have

τ̃(z0, θ) = 2R0| sin(ϕ− ϕ0)| ≤ 2

δ
|ϕ− ϕ0|,(41)

and so there is a constant C > 0, such that, for all (z0, θ) ∈ Γ× S1,

τ(z0, θ) ≤ Cτ̃(z0, θ).(42)

A derivative in ϕ at ϕ0 in the equality in (41) also yields the jump value
of 4R0, as the direction θ crosses the tangent direction from outgoing to
incoming. �

In order for the integral in (2) to inherit the regularity of f it is then
necessary for f to vanish at the boundary. The following proposition makes
this statement precise.

Corollary 4.2. Let Ω be a (convex) domain with C2-boundary Γ with a
strictly positive curvature lower bound δ > 0. If f ∈ C1,α

0 (Ω), then Rf ∩
C1,α(Γ × S1) 6= ∅.

Proof. For every (z, θ) ∈ Γ× S1, let us define

(43) g(z, θ) =

{ ∫ 0

−τ(z,θ)
f(z + tθ)dt, n(z) · θ > 0,

0, n(z) · θ ≤ 0,
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where n(z) is the unit outer normal at z ∈ Γ . Since

g(z+
θ , θ) =

{ ∫ 0

−τ(z+θ ,θ)
f(z+

θ + tθ)dt, n(z+
θ ) · θ > 0,

0, n(z+
θ ) · θ ≤ 0,

and g(z−θ , θ) = 0, condition (5) is satisfied with a ≡ 0 to show that g ∈ Rf .
We will show next that g ∈ C1,α(Γ × S1). Let ∂ be the partial derivative
with respect to one of the spacial or angular variable. At points (z0, θ0) ∈
(Γ× S1) \ Z, differentiation in (43) together with f |Γ = 0 yield

(44) ∂g(z0, θ0) =

{ ∫ 0

−τ(z0,θ0)
∂f(z0 + tθ0)dt, n(z0) · θ0 > 0,

0, n(z0) · θ0 < 0,

Since ∂f ∈ Cα(Ω), it remains to show that ∂f extends Cα across the
variety Z. We first consider the case for a fixed z0 ∈ Γ and study the
dependence of ∂g in θ near the tangential direction θ0 := n(z0)⊥. The other
case, studying the dependence of ∂g as z ∈ Γ approach z1 along Γ for a
fixed θ1 ∈ S1 with (z1, θ1) ∈ Γ × S1 reduces to the first case.

For this we first analyze the speed of convergence of τ(z0, θ)→ 0 as θ →
θ0. Let τ̃(z0, θ) be the length of the chord corresponding to the osculating
circle at z0 of radius R0. From Lemma 4.1, we have that there is a constant
C > 0, such that, for all (z0, θ) ∈ Γ× S1,

τ(z0, θ) ≤ Cτ̃(z0, θ).(45)

From the geometry of the osculating circle (see Figure 2), we have

τ̃(z0, θ) = 2R0| sin(ϕ− ϕ0)| ≤ 2

δ
|ϕ− ϕ0|,(46)

where ϕ = arg(θ) and ϕ0 = arg(θ0). A derivative in ϕ at ϕ0 in the equality
in (46) also yields the jump value of 4R0, as the direction θ crosses the tan-
gent direction from outgoing to incoming direction. Since limθ→θ0 τ(z0, θ) =
0, the formula (43) shows that g ∈ C1(Γ×S1). To prove that ∂g is α-Hölder
continuous, we estimate using (41)

|∂g(z0, θ)| ≤ ‖∇f‖∞τ(z0, θ) ≤ ‖∇f‖∞Cτ̃(z0, θ)| ≤ C̃|ϕ− ϕ0|,(47)

for some constant dependent on the sup-norm of the |∇f | and the minimum
curvature δ.

|g(z0, θ)− g(z0, θ0)|

=

∣∣∣∣∣
∫ 0

−τ(z0,θ0)

(∂f(z0 + tθ0)− ∂f(z0 + tθ0))dt+

∫ −τ(z0,θ)

−τ(z0,θ0)

∂f(z0 + tθ0)dt

∣∣∣∣∣
≤ C1|ϕ− ϕ0|ατ(z0, θ) + ‖∇f‖∞|τ(z0, θ)− τ(z0, θ0)|
≤ C̃|ϕ− ϕ0|α + ‖∇f‖∞C2|ϕ− ϕ0| ≤ C|ϕ− ϕ0|α
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Therefore g ∈ Rf ∩ C1,α(Γ × S1). �

One of our main results establishes necessary and sufficient conditions
for a sufficiently smooth function on Γ × S1 to be the Radon data of some
sufficiently smooth source as follows.

Theorem 4.1 (Range characterization for Radon transform). Let Ω ⊂ R2 be
a domain with C2 boundary Γ of strictly positive curvature, and α > 1/2.

(i) Let f ∈ C1,α
0 (Ω) be real valued, and g ∈ Rf∩Cα(Γ ;C1,α(S1)). Then

P−(g) as defined in (30) solves

[I + iH0]P−(g) = 0,(48)

whereH0 is the Hilbert transform in (19).
(ii) Let g ∈ Cα (Γ ;C1,α(S1))∩C0(Γ ;C2,α(S1)) be real valued and such

that P−(g) satisfies (48). Then there exists a real valued f ∈ Cα(Ω) ∩
L1(Ω), and such that g ∈ Rf .

Proof. (i) By Corollary 4.2, we note first that Rf ∩ Cα (Γ ;C1,α(S1)) ⊃
Rf ∩ C1,α(Γ × S1) 6= ∅. Since g ∈ Cα (Γ ;C1,α(S1)), by Proposition 4.1
part (i), we have that P−(g) ∈ l1,1∞ (Γ) ∩ Cα(Γ; l1). Now the necessity in
Theorem 3.2 applies to yield (I + iH0)P−(g) = 0.

Next we prove the sufficiency of (48) in part (ii).
Since g ∈ Cα (Γ ;C2,α(S1)) ∩ C0 (Γ ;C2,α(S1)), it follows from the

Proposition 4.1 part (ii) that g := P−(g) ∈ Yε. For each z ∈ Ω, construct
the vector valued function v = 〈v0, v−1, v−2, ...〉 by the Cauchy Integral
formula (21):

vn(z) =
1

2
(Gg)n(z) + (Cg)n(z), n = 0,−1,−2...

By Corollary 4.1, v ∈ C1,ε(Ω; l1) ∩ Cε(Ω; l1) is A-analytic, in particular
for each n = 0,−1,−2, ..., we have

∂vn + ∂vn−2 = 0.

Using v−1 ∈ C1,α(Ω) we define the Hölder continuous function f ∈
Cα(Ω) by

(49) f(z) := 2Re (∂v−1(z)) , z ∈ Ω,

and show that f integrates along any line and that g ∈ Rf .
Since v ∈ C1,ε(Ω; l1)∩Cε(Ω; l1), it follows from the Proposition 4.1 part

(iii) that

v(z, θ) := P∗(v(z)) ∈ C1,α(Ω× S1) ∩ Cα(Ω× S1).
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Also from Corollary 4.1, v|Γ= g and lim
Ω3z→z0∈Γ

v(z, θ) = P∗g(z0). Now

using the fact that g is real valued yields lim
Ω3z→z0∈Γ

v(z, θ) = g(z0, θ) i.e

v|Γ×S1= g.
Using θ · ∇v = e−iϕ∂v + eiϕ(∂v), we obtain

θ · ∇v(z, θ) = 2Re (∂v−1(z)) + 2Re

(
∞∑
n=0

(∂v−n(z) + ∂v−n−2(z))e−inϕ

)
= 2Re (∂v−1(z)) = f(z).

By integrating f(z) = θ · ∇v(z, θ), we obtain∫ τ+(z,θ)

τ−(z,θ)

f(z + sθ)ds = lim
t1→−τ−(z,θ)
t2→τ+(z,θ)

∫ t2

t1

f(z + sθ)ds

= lim
t1→−τ−(z,θ)
t2→τ+(z,θ)

[v(z + t2θ, θ)− v(z + t1θ, θ)]

= g (z + τ+(z, θ) θ , θ)− g (z − τ−(z, θ) θ , θ)

This shows that f integrates along any arbitrary line, in particular f ∈
L1(Ω), and that g ∈ Rf . �

5. RANGE CHARACTERIZATION FOR THE ATTENUATED RADON
TRANSFORM

In this section we consider the attenuated case, where a 6≡ 0 is a real
valued map. The method of proof is based on the reduction to the non-
attenuated case. Since e−Da in (1) is an integrating factor, the equation (7)
can be rewritten in the advection form similar to (8) as

θ · ∇
(
e−Da(z,θ)u(z, θ)

)
= f(z)e−Da(z,θ).(50)

However, the right hand side is now angularly dependent with nonzero
positive and negative modes, and one cannot use the A-analytic equations
(10) directly. The key idea in the reduction of the attenuated to the non-
attenuated case is to alter the integrating factor in such a way that all the
negative Fourier modes vanish. Let h be defined in Ω× S1 by

h(z, θ) := Da(z, θ)− 1

2
(I − iH)Ra(z · θ⊥, θ),(51)

where Ra(s, θ) =

∫ ∞
−∞

a
(
sθ⊥ + tθ

)
dt is the Radon transform of the at-

tenuation, and the classical Hilbert transform Hh(s) =
1

π

∫ ∞
−∞

h(t)

s− t
dt is
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taken in the first variable and evaluated at s = z· θ⊥. Since we altered
Da by a function which is constant in x in the direction of θ, the function
e−h still remains an integrating factor for (7). The integrating factor in (51)
was first considered in the work of Natterrer [12]; see also [5], and [3] for
elegant arguments that show how h extends from S1 inside the disk as an
analytic map. Since e±h are also extension of analytic functions in the disk
they still have vanishing negative modes.

Proposition 5.1. Let a ∈ C1,α
0 (Ω), α > 1/2, and h be defined in (51). Then

h ∈ C1,α(Ω× S1).

Proof. Since a ∈ C1,α
0 (Ω), we use the proof of Corollary 4.2 applied to

a to conclude Da ∈ C1,α(Ω × S1) and also Ra ∈ C1,α(R × S1). The
Hilbert Transform in the linear variable preserve the smoothness class to
yeild HRa ∈ C1,α(Ω× S1) and thus h ∈ C1,α(Ω× S1). �

Consider the Fourier expansions of e−h(z,θ) and eh(z,θ)

e−h(z,θ) =
∞∑
k=0

αk(z)eikϕ, eh(z,θ) =
∞∑
k=0

βk(z)eikϕ, (z, θ) ∈ Ω× S1

(52)

where h ∈ C1,α(Γ × S1) is as defined in (51). Since e−heh = 1 the Fourier
modes αk, βk, k ≥ 0 satisfy

α0β0 = 1,
k∑

m=0

αmβk−m = 0, k ≥ 1.(53)

The following mapping property is used in defining Hilbert Transform as-
sociated with attenuated Radon Transform. Recall the operator P+ in (30),
eh be as in (52), and Yα in (28) with ε = α.

Proposition 5.2. Let a ∈ C1,α
0 (Ω) with α > 1/2. ThenP+(e±h) ∈ Cα(Ω; l1).

Moreover

(i) P+(eh) ∗n (·) : Cα(Ω; l∞)→ Cα(Ω; l∞);

(ii) P+(eh) ∗n (·) : Cα(Ω; l1)→ Cα(Ω; l1);

(iii) P+(eh) ∗n (·) : Yα → Yα,

where ∗n denotes the convolution operator on sequences.

Proof. Since a ∈ C1,α
0 (Ω), it follows from Proposition 5.1 that e±h ∈

C1,α(Ω× S1) ⊂ Cα(Ω;Cα(S1)). Then

(54) sup
z∈Ω

‖eh(ξ,·)‖Cα(S1) + sup
ξ,µ∈Ω
ξ 6=µ

‖eh(ξ,·) − eh(µ,·)‖Cα(S1)

|ξ − µ|α
<∞.
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Let P+(eh) := 〈β0, β1, β2, · · · 〉. Then

(55) sup
ξ∈Ω

∞∑
k=1

|βk(ξ)| ≤ sup
ξ∈Ω

‖eh(ξ,·)‖Cα(S1) <∞.

Another application of Lemma 2.2 together with (54) imply

(56) sup
ξ,µ∈Ω
ξ 6=µ

∞∑
k=1

|βk(ξ)− βk(µ)|
|ξ − µ|α

≤ sup
ξ,µ∈Ω
ξ 6=µ

‖eh(ξ,·) − eh(µ,·)‖Cα
|ξ − µ|α

<∞.

By combining the estimates (55) and (56) we showed thatP+(eh) ∈ Cα(Ω; l1).
A similar estimate shows P+(e−h) ∈ Cα(Ω; l1).

Next we prove part (i). Let g ∈ Cα(Ω; l∞), and v := P+(eh) ∗n g given
by

vn =
∞∑
k=0

βkgn−k, n ≤ 0,

where βk are the Fourier coefficients of eh, as in (52). Since g ∈ Cα(Ω; l∞)
and P+(eh) ∈ Cα(Ω; l1), we have

c1 := sup
n≤0

sup
ξ∈Ω

|gn(ξ)| <∞, κ1 := sup
n≤0

sup
ξ,η∈Ω
ξ 6=η

|gn(ξ)− gn(η)|
|ξ − η|α

<∞,(57)

and

c2 := sup
ξ∈Ω

∞∑
k=0

|βk(ξ)| <∞, κ2 := sup
ξ,η∈Ω
ξ 6=η

∞∑
k=0

|βk(ξ)− βk(η)|
|ξ − η|α

<∞.(58)

By taking the supremum in ξ ∈ Ω, for each n ≤ 0, in

|vn(ξ)| ≤
∞∑
k=0

|βk(ξ)gn−k(ξ)| ≤ c1

∞∑
k=0

|βk(ξ)| ≤ c1c2,

we obtain

sup
n≤0

sup
ξ∈Ω

|v−n(ξ)| <∞.(59)
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From (59) and by taking the supremum in ξ, η ∈ Ω with ξ 6= η, for each
n ≤ 0, in

|vn(ξ)− vn(η)|
|ξ − η|α

≤
∞∑
k=0

|βk(ξ)− βk(η)|
|ξ − η|α

|gn−k(ξ)|

+
∞∑
k=0

|βk(η)| |gn−k(ξ)− gn−k(η)|
|ξ − η|α

,

≤ c1

∞∑
k=0

|βk(ξ)− βk(η)|
|ξ − η|α

+ κ1 sup
η∈Ω

∞∑
k=0

|βk(η)|

≤ c1κ2 + c2κ1,

we obtain that v ∈ Cα(Ω; l∞).
Next we prove part (ii). Let g ∈ Cα(Ω; l1), and let v = P+(eh) ∗n g be

as before. Since g,P+(eh) ∈ Cα(Ω; l1), we have

c3 := sup
ξ∈Ω

∞∑
n=0

|g−n(ξ)| <∞, κ3 := sup
ξ,η∈Ω
ξ 6=η

∞∑
n=0

|g−n(ξ)− g−n(η)|
|ξ − η|α

<∞.

(60)

By taking the supremum in ξ ∈ Ω in
∞∑
n=0

|v−n(ξ)| ≤
∞∑
n=0

∞∑
k=0

|βk(ξ)||gn−k(ξ)| ≤
∞∑
k=0

|βk(ξ)|
∞∑
n=0

|g−n−k(ξ)|

≤ c3

∞∑
k=0

|βk(ξ)| ≤ c2c3,

we obtain

sup
ξ∈Ω

∞∑
n=0

|v−n(ξ)| <∞.(61)

From (61) and by taking the supremum in ξ, η ∈ Ω with ξ 6= η in

‖v(ξ)− v(η)‖l1
|ξ − η|α

≤
∞∑
k=0

|βk(ξ)− βk(η)|
|ξ − η|α

∞∑
n=0

|g−n−k(ξ)|

+
∞∑
k=0

|βk(η)|
∞∑
n=0

|g−n−k(ξ)− g−n−k(η)|
|ξ − η|α

≤ c3κ2 + c2κ3,

we obtain that v ∈ Cα(Ω; l1).
Last we prove part (iii).
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Since a ∈ C1,α
0 (Ω), it follows from Proposition 5.1 that eh ∈ C1,α(Γ ×

S1) ⊂ Cα(Γ ;Cα(S1)), and from (55) and (56), we have

c4 := sup
ξ∈Γ

∞∑
k=0

|βk(ξ)| <∞, κ4 := sup
ξ,η∈Γ
ξ 6=η

∞∑
k=0

|βk(ξ)− βk(η)|
|ξ − η|α

<∞.

Let g ∈ Yα, and let v = P+(eh) ∗n g be as before.
Since g ∈ Yα, we have

c5 := sup
ξ∈Γ

∞∑
j=1

j2|g−j(w)| <∞, κ5 := sup
ξ,µ∈Γ
ξ 6=µ

∞∑
j=1

j
|g−j(ξ)− g−j(µ)|
|ξ − µ|α

<∞.

By taking the supremum in w ∈ Γ in

∞∑
j=1

j2|v−j(w)| ≤
∞∑
j=1

j2

∞∑
k=0

|βk(w)||g−j−k(w)|

≤
∞∑
k=0

|βk(w)|
∞∑
j=1

j2|g−j−k(w)|

≤
∞∑
k=0

|βk(w)|
∞∑
j=1

j2|g−j(w)|

≤ c4c5,

we obtain that v ∈ l1,2∞ (Γ).



24 KAMRAN SADIQ AND ALEXANDRU TAMASAN

Finally we show that v obeys the estimate in (28). By taking the supre-
mum in ξ, µ ∈ Γ with ξ 6= µ in

∞∑
j=1

j|v−j(ξ)− v−j(µ)|
|ξ − µ|α

≤
∞∑
j=1

j

|ξ − µ|α
∞∑
k=0

|βk(ξ) g−j−k(ξ)− βk(µ) g−j−k(µ)|

≤
∞∑
j=1

j

∞∑
k=0

|βk(ξ)− βk(µ)|
|ξ − µ|α

|g−j−k(ξ)|

+
∞∑
j=1

j
∞∑
k=0

|g−j−k(ξ)− g−j−k(µ)|
|ξ − µ|α

|βk(µ)|

≤
∞∑
k=0

|βk(ξ)− βk(µ)|
|ξ − µ|α

∞∑
j=1

j|g−j(ξ)|

+
∞∑
k=0

|βk(µ)|
∞∑
j=1

j|g−j(ξ)− g−j(µ)|
|ξ − µ|α

≤ κ4c5 + c4 κ5,

we obtain that v ∈ Yα. �

Recall the Hilbert transformH0 in Definition 3.1, P± in (30), and e±h in
(52).

Definition 5.1. The Hilbert transform associated with the attenuated Radon
transform for g ∈ C1,α(Γ × S1) is given by

Ha(P−(g)) := P+(eh) ∗n H0

(
P+(e−h) ∗n P−(g)

)
(62)

where ∗n is the convolution operator on sequences.

Using the Fourier coefficients of e±h, we can also write for u := 〈u0, u−1, u−2, ...〉,
the Hilbert transform as

Hau :=
∞∑
m=0

βmLm
(
H0

(
∞∑
k=0

αkLk
))

u(63)

where L is the left translation operator and αk, βk are the Fourier coeffi-
cients of e−h(x,θ), respectively, eh(x,θ) as in (52).

The following result describes the mapping properties of the Hilbert trans-
formHa needed later.
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Proposition 5.3. Let l1,1∞ (Γ ) and Cε(Γ; l1) be the spaces in (11) and (12)
respectively. Assume a ∈ C1,α

0 (Ω) with α > 1/2, and ε > 0 be arbitrarily
small. Then

(64) Ha : Cε(Γ ; l1) ∩ l1,1∞ (Γ ) −→ Cε (Γ; l∞) .

Proof. Let g ∈ C1,α(Γ × S1) ⊂ Cε(Γ ;C1,α(S1)), then by Proposition
4.1(i), P−g ∈ l1,1∞ (Γ ) ∩ Cε(Γ; l1). Since a ∈ C1,α

0 (Ω), it follows from
Proposition 5.1 that e±h ∈ Cε(Γ ;C1,α(S1)).

Since e−hg ∈ Cε(Γ ;C1,α(S1)), it follows from Proposition 4.1 (i) that
P−(e−hg) ∈ l1,1∞ (Γ )∩Cε(Γ; l1). By (33), P−(e−hg) = (P+e−h)∗n(P−(g))
and so by Proposition 3.1,H0

(
P+(eh) ∗n P−(g)

)
∈ Cε(Γ ; l∞). Finally by

Proposition 5.2 (ii), P+(eh) ∗n H0

(
P+(eh) ∗n P−(g)

)
∈ Cε(Γ ; l∞). �

Now we are able to state and prove our main result.

Theorem 5.1 (Range characterization for the Attenuated Radon transform).
Let Ω ⊂ R2 be a domain with C2 boundary Γ of strictly positive curvature,
and a ∈ C1,α

0 (Ω), α > 1/2 be real valued.
(i) Let f ∈ C1,α

0 (Ω) be real valued. Then Raf ∩ Cα(Γ ;C1,α(S1)) 6= ∅,
and if g ∈ Raf ∩ Cα(Γ ;C1,α(S1)), its projection P−(g) must solve

[I + iHa]P−(g) = 0,(65)

with the Hilbert transformHa defined in (62).
(ii) Let g ∈ Cα (Γ ;C1,α(S1)) ∩ C0(Γ ;C2,α(S1)) be real valued with

the projection P−(g) satisfying (65). Then there exists a real valued f ∈
Cα(Ω) ∩ L1(Ω) for which g ∈ Raf .

Proof. (i) For z ∈ Ω and θ ∈ S1, let u(z, θ) be the solution of

θ · ∇u(z, θ) + a(z)u(z, θ) = f(z), (z, θ) ∈ Ω× S1,(66)

u(z, θ) = 0, (z, θ) ∈ Γ−,

namely u(z + tθ, θ) =

∫ t

0

f(z + sθ) e−Da(z+sθ,θ)ds, for (z, θ) ∈ Γ− and

0 ≤ t ≤ τ+(z, θ), where Γ± = {(z, θ) ∈ Γ × S1 : ±n(z) · θ > 0} denote
the incoming(-), respectively, outgoing (+) boundary and n(z) denotes the
outer normal at some boundary point z.

Let g(z, θ) := u(z, θ)|Γ×S1 . Note that Γ × S1 = Γ− ∪ Γ+ ∪ Z, where Z
is the variety in (40). Since g(z, θ) = 0 for (z, θ) ∈ Γ− ∪ Z and g(z, θ) =∫ τ+(z,θ)

0

f(z + sθ) e−Da(z+sθ,θ)ds, for (z, θ) ∈ Γ+, it follows that g satisfies

(5) and thus g ∈ Raf .
Since a ∈ C1,α

0 (Ω), it follows from Proposition 5.1 that e−Da ∈ C1,α(Ω×
S1) and so fe−Da ∈ C1,α

0 (Ω × S1) ⊂ Cα(Ω;C1,α(S1)). The proof of
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Corollary 4.2 applied to fe−Da shows that g ∈ C1,α(Γ × S1) and therefore
g ∈ Raf ∩ Cα(Γ ;C1,α(S1)).

For z ∈ Ω and θ ∈ S1, if we let

v(z, θ) := e−h(z,θ)u(z, θ),(67)

where u(z, θ) solves (66) with u(z, θ)|Γ×S1= g(z, θ), and e−h(z,θ) as in (52)
then v(z, θ) solves

θ · ∇v(z, θ) = f(z)e−h(z,θ) (z, θ) ∈ Ω× S1(68)

v|Γ×S1 = g e−h|Γ×S1

If v := 〈v0, v−1, v−2, ...〉 is the projection on the non-positive Fourier co-

eficients of
∞∑

n=−∞

vn(x)einϕ then the equation (68) yields for each n =

0,−1,−2, ...

∂vn(z) + ∂vn−2(z) = 0, z ∈ Ω.

This makes v := 〈v0, v−1, v−2, ...〉 be A-analytic.
The convolution applied to (67) rewrites v as

v(z) = P+(e−h(z,θ)) ∗n P−(u(z, θ)), (z, θ) ∈ Ω× S1.(69)

Since a ∈ C1,α
0 (Ω) and g ∈ Cα(Γ ;C1,α(S1)), we have from Proposition

5.1, e−hg ∈ Cα(Γ ;C1,α(S1)). Hence, by Proposition 4.1 (i), P−(e−hg) ∈
l1,1∞ (Γ ) ∩ Cα(Γ, l1).

Since P−(e−hg) is the boundary value of the A-analytic function v, we
can apply necessity part in Theorem 3.2 to conclude that

(I + iH0)P−(g e−h|Γ×S1) = 0.(70)

The convolution of (70) by P+(eh) yields

0 = P+(eh) ∗n (I + iH0)P−(e−hg),

= P+(eh) ∗n P−(e−hg) + iP+(eh) ∗n H0P−(e−hg),

= P−(g) + iHaP−(g),

= [I + iHa]P−(g).

In the third equality above we use (33) to simplify

P+(eh) ∗n P−(e−hg) = P−(ehe−hg) = P−(g),

and Definition 5.1 ofHa to obtain

P+(eh) ∗n H0

(
P+(eh) ∗n P−(g)

)
= HaP−(g).

Conversely, let g ∈ Cα (Γ ;C1,α(S1)) ∩ C0(Γ ;C2,α(S1)) be real valued
and such that P−(g) satisfies (65). Then by Proposition 4.1 (ii), we have
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P−(g) ∈ Yα. Since a ∈ C1,α
0 (Ω), it follows from Propositions 5.1 and

4.1(i), that P+(eh) ∈ l1,1∞ (Γ ) ∩ Cα(Γ; l1). Finally we apply Proposition
5.2(iv) to yield P−(e−hg) ∈ Yα. From P−(g) satisfying (65) we have

0 = [I + iHa]P−(g) = P−(g) + iHaP−(g).(71)

The convolution of (71) by P+(e−h) yields

0 = P+(e−h) ∗n
(
P−(g) + iHaP−(g)

)
,

= P+(e−h) ∗n P−(g) + iP+(e−h) ∗n HaP−(g),

= P−(e−hg) + iP+(e−h) ∗n P+(eh) ∗n H0P−(e−hg),

= P−(e−hg) + iP+(1) ∗n H0P−(e−hg),

= P−(e−hg) + iH0P−(e−hg),

= [I + iH0]P−(e−hg).

In the third equality above we use the Proposition 5.2 part(iii), to simplify
P+(e−h) ∗n P−(g) = P−(e−hg), and Definition 5.1 of Ha. In the fourth
equality above we use P+(e−h) ∗n P+(eh) = P+(1) := 〈1, 0, 0, · · · 〉, and
the fact that P+(1) is the identity element for convolution in sequences to
conclude P+(1) ∗n H0P−(e−hg) = H0P−(e−hg).

For each z ∈ Ω, construct the vector valued function v = 〈v0, v−1, v−2, ...〉
by the Cauchy Integral formula (21):

vn(z) =
1

2
(Gg)n(z) + (Cg)n(z), n = 0,−1,−2...,

where g := P−(e−hg). By the Corollary 4.1, v ∈ C1,ε(Ω; l1) ∩ Cε(Ω; l1) is
A-analytic and v|Γ = g.

Construct the vector valued function u := 〈u0, u−1, u−2, ...〉 from v by
the convolution formula u(z) = P+(eh(z,·)) ∗n v(z) for (z, ·) ∈ Ω×S1. By
the Proposition 5.2(ii) we have u ∈ Cα(Ω; l1) and by Proposition 4.1(iii)
we have u(z, θ) := P∗(u(z)) ∈ C1,α(Ω× S1) ∩ Cα(Ω× S1). Note that

P−(u|Γ×S1) = P+(eh|Γ×S1) ∗n v|Γ ,
= P+(eh|Γ×S1) ∗n P−(e−h|Γ×S1 g),

= P−(g)

Taking P∗ on both sides of the above equation and using the fact that u and
g are real valued yields u|Γ×S1= g.

We define the Hölder continuous function f ∈ Cα(Ω) by

(72) f(z) := θ · ∇u(z, θ) + a(z)u(z, θ), (z, θ) ∈ Ω× S1,

and show that f integrates along any line and that g ∈ Raf .
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Since e−Da in (1) is an integrating factor, the equation (72) can be rewrit-
ten in the advection form as

f(z)e−Da(z,θ) = θ · ∇
(
e−Da(z,θ)u(z, θ)

)
.

and integrated along lines in direction θ to obtain∫ τ+(x,θ)

τ−(x,θ)

f(x+ tθ)e−Da(x+tθ,θ)dt = e−Da(z+tθ,θ)u(z + tθ, θ)
∣∣τ+(z,θ)

τ−(z,θ)

= e−Da(z+θ ,θ)u(z+
θ , θ)− e

−Da(z−θ ,θ)u(z−θ , θ)

= g(x+
θ , θ)−

[
e−Dag

]
(x−θ , θ),

where the notation z±θ = z±τ±(z, θ)θ as in (3). This shows that f integrates
along any arbitrary line, in particular f ∈ L1(Ω), and that g ∈ Raf . �
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