
On the Scattering Method for the ∂-equation and Reconstruction of

Convection Coefficients

Alexandru Tamasan∗

Dept. of Mathematics, University of Toronto, Toronto, ON, Canada M5S 3G3

April 13, 2007

Abstract: In this paper we reconstruct convection coefficients from boundary
measurements. We reduce the Beals and Coifman formalism from a linear first
order system to a formalism for the ∂-equation.

1 Introduction

The works of Nachman and Ablowitz [16], Nachman [17] and Henkin and Novikov [11] intro-
duced the ∂∂- scattering methods to the parameter identification problems. In there, the linear
Schrödinger equation in the physical space is paired with a pseudo-analytic equation in the com-
plex space of the parameter. Another method, due to Beals and Coifman [2], pairs a first order
∂-system in the physical space with a pseudo-analytic matrix equation in the parameter space.
Sung analyzed lower regularity assumptions in [21, 22, 23]. This method was used by Brown and
Uhlmann [4] in the Calderón problem [5] of determining the conductivity σ in ∇ · σ∇u = 0, by
Francini [9] in finding complex conductivities (with sufficiently small permittivity ) and by Cheng
and Yamamoto [6], [7] in proving unique determination of the convection coefficients b1 and b2 in

∆u + b1ux + b2uy = 0. (1)

We consider here the scattering problem for the ∂- equation (Theorems 1.1 and 1.2 below).
Here ∂ = (∂x + i∂y)/2 is the Cauchy-Riemann operator. This can be seen as a diagonal version
of the formalism in Beals and Coifman, see Lemma 2.1 below. Due to the symmetry between the
scattered solutions in the physical space and the ones in the parameter space, we are able to present
a non-linear analog of the Fourier inversion formula. Unlike Beals and Coifman’s formalism, the
∂∂- scattering method for the ∂-equation extends to a class of systems ∂u − Qu = 0, where Q
is now a matrix-valued map whose eigenvectors have analytic entries. However, this extension is
beyond the purpose of this paper.

As an application, we revisit the inverse problem proposed in [7] and present a reconstruction
procedure. This problem has a potential industrial application in measuring magnetic fields inside
inaccessible narrow slabs. One can introduce a sheet of (homogeneous) metal and apply currents
on the sides measuring the resulting potential. The potential will then be distributed across the
metal sheet according to the equation (1).

The reconstruction method is a combination of the boundary characterization of the exponen-
tially growing solutions introduced by Knudsen and Tamasan in [13] with the ∂∂- scattering method
for the ∂-equation.

∗This work was done during the author’s visit at IPAM-UCLA in the Fall 2003
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For k ∈ C arbitrarily fixed, we say that u behaves like eizk (written u ∼ eizk) in Lr(R2
z) for large

z, if u(z, k)e−izk − 1 ∈ Lr(R2
z). We use the notation 〈k〉 = (1 + |k|2)1/2. The scattering method is

the content of the following two theorems.

Theorem 1.1 (Forward Scattering). Assume that q ∈ Lp̃
c(R2

z), p̃ > 2 has compact support. For
each k ∈ C, the equation

∂Ψ
∂z

(z) + q(z)Ψ(z) = 0, z ∈ C, (2)

has unique solutions Ψr(z, k) ∼ eizk and Ψi(z, k) ∼ ieizk in Lp̃(R2
z) for large z, and the scattering

transform

t(k) = − i

π

∫

R2

eizkq(z) (Ψr(z, k)− iΨi(z, k)) dµ(z) (3)

is well defined. Moreover, if q ∈ W ε,p̃
c (R2

z) for some ε > 0 and k ∈ C− {0}, we have

‖Ψr(z, k)e−izk − 1‖Lp̃(R2
z) + ‖Ψi(z, k)e−izk − i‖Lp̃(R2

z) ≤ C〈k〉−ε (4)

and

‖[Ψr(z, k)− iΨi(z, k)]e−izk − 2‖W 1,p̃(R2
z) ≤ C〈k〉−ε, (5)

and then t ∈ Lr(R2
k) for each r > 2/(ε + 1). In particular t ∈ Lr(R2

k) ∩ Lr′(R2
k) ∩ Lr̃(R2

k) for some
r < 2, where r̃−1 = r−1 − 1/2 and r′−1 + r−1 = 1.

Theorem 1.2 (Inverse Scattering). Let q, Ψr, Ψi and t(k) and r, r′, r̃ be as given in the forward
scattering. Then the equation

∂Φ
∂k

(k) + t(k)Φ(k) = 0, k ∈ C, (6)

has unique solutions Φr ∼ eizk and Φi ∼ ieizk in Lr̃(R2
k) for large k ∈ C. Moreover, Ψ’s and Φ’s

are related by

ReΦi = − ImΨr, ReΦr = ReΨr, (7)
ImΦi = Im Ψi, ImΦr = −ReΨi,

in particular Φr − iΦi = Ψr − iΨi and

q(z) = − i

π

∫

R2

eizkt(k) (Φr(z, k)− iΦi(z, k)) dµ(k). (8)

Let Ω ⊂ R2 be a bounded, simple connected domain with Lipschitz boundary and p̃ > 2. For
b1, b2 ∈ Lp̃(Ω) and g ∈ W 2−1/p̃,p̃(∂Ω), let u ∈ W 2,p̃ be the unique solution of the boundary value
problem

∆u(x) + b1(x)
∂u

∂x1
(x) + b2(x)

∂u

∂x2
(x) = 0, x ∈ Ω (9)

u(x) = g(x), x ∈ ∂Ω.

The Dirichlet to Neumann map Λb1,b2 : W 2−1/p̃,p̃(∂Ω) → W 1−1/p̃,p̃(∂Ω) is given by

Λb1,b2g(x) = ν1(x)
∂u

∂x1
(x) + ν2(x)

∂u

∂x2
(x), x ∈ ∂Ω,

where (ν1(x), ν2(x)) is the outer normal at x on the boundary.
We prove the following reconstruction result.
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Theorem 1.3. Let Ω ⊂ R2 be bounded, simple connected domain with Lipschitz boundary. For
some ε > 0 assume that b1, b2 ∈ W ε,p̃

c (Ω) with support inside Ω. Then b1, b2 can be reconstructed
from Λb1,b2.

The coefficients do not need to vanish but rather their traces on the boundary need to be known
(which is the case in practical applications). Then one can extend them across the boundary,
preserving the regularity and have them vanish outside a larger disc. The Dirichlet-to-Neumann
map can be pushed to an outside boundary via an argument similar to the one in [18], see also
[13]. It has not been shown that the Dirichlet-to-Neumann for this problem uniquely determines
the boundary values of the coefficients.

While Lp̃(Ω) is enough regularity to prove unique determination of b1, b2, see [6], for the recon-
struction we need ε-extra regularity.

2 Proof of the theorems 1.1 and 1.2

We identify a point in R2 with a point in the complex plane by x1 + ix2 = z. By ∂
−1 we denote

the solid Cauchy transform ∂
−1

f(z) = 1
π

∫
R2

f(ζ)
z−ζ dµ(ζ), (here dµ(ζ) is the Lebesgue area). We also

denote by e(z, k) = exp(i(zk + zk)).
We look for solutions of (2) of the form Ψr = ψre

izk and Ψi = iψie
izk with ψr, ψi ∈ 1 + Lp̃(R2

z).
The equations for ψr respectively ψi are

∂

∂z
ψr + qe(z,−k)ψr = 0, (10)

∂

∂z
ψi − qe(z,−k)ψi = 0.

The Hardy-Littlewood-Sobolev inequality gives ∂
−1 : Lp(R2) → Lp̃(R2) is bounded (see Stein [19])

for p and p̃ related by

1
p̃

=
1
p
− 1

2
. (11)

These indexes preserve this meaning throughout the paper.
Since q ∈ Lp̃

c(R2) ⊂ L2(R2) and Lp̃(R2) · L2(R2) ⊂ Lp(R2) we have ∂
−1(q·) : Lp̃(R2) → Lp̃(R2)

is also bounded. Moreover, as q has compact support we can use Rellich imbedding to conclude
that ∂

−1(q·) : Lp̃(R2) → Lp̃(R2) is compact. Then we can apply Fredholm’s alternative in Lp̃(R2)
to the equivalent integral equation

{I + ∂
−1[q(·)e(·,−k)(·)]}(ψr(z)− 1) = ∂

−1[qe(·,−k)]. (12)

A similar equation holds for ψr. The homogeneous equation has only the null solution due to
Liouville’s theorem for pseudo-analytic functions with coefficients in Lp̃(R2

z) ∩ Lp(R2
z) shown by

Vekua [V62]. These prove the (uniform in k) bounded-ness of the map [I − ∂
−1

qe(·,−k)·]−1 from
Lp̃(R2

z) to itself. The estimate

||∂−1(e(·,−k)q)||Lp̃(R2
z) ≤ C〈k〉−ε||q||W ε,p(R2

z) (13)

from (Proposition 2.3) [13] concludes the decay estimates in (4).
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Next, we clarify the relation with the formalism of Beals and Coifman. This will help us show
the regularity property of Ψr + iΨi in (5) and prove the theorem 1.2. Let us define m1(z, k) and
m2(z, k) in terms of the ψ’s by

m1(z, k) =
1
2

(ψr(z, k) + ψi(z, k)) , (14)

m2(z, k) =
1
2
e(z,−k)

(
ψi(z, k)− ψr(z, k)

)
.

The result below shows that (m1,m2)t is the first column of the Jost matrix in the exponentially
growing solutions for the first order ∂ system considered by Beals and Coifman.

Lemma 2.1. Let m1 and m2 defined in (14). Then m1(·, k)−1,m2(·, k) ∈ Lp̃(Rz), and they satisfy

∂m1 = qm2, (15)
(∂ + ik)m2 = qm1.

Moreover, the following estimates hold:

||m1(·, k)− 1||W 1,p̃(R2
z) ≤ C〈k〉−ε, (16)

||m2(·, k)||Lp̃(R2
z) ≤ C〈k〉−ε. (17)

Proof. From their definition m1(·, k)− 1, m2(·, k) ∈ Lp̃(R2
z) since ψr, ψi ∈ Lp̃(R2

z) and |e(z, k)| = 1.
The fact that they solve the system (15) comes from a straightforward calculation and the equations
(10). The Lp̃(R2

z)-estimates of decay in k for both m1 and m2 come from the estimates (4) for ψr and
ψi proven above. We are left to justify the extra smoothness gained by m1. From the first equation
we have that m1−1 = ∂

−1(qm2). Since q ∈ Lp̃
c(R2) ⊂ L2(R2) we have ∂

−1(qm2) ∈ W 1,p̃(R2
z) with an

imbedding constant independent of k. From where ||m1(·, k)− 1||W 1,p̃(R2
z) = ‖∂−1(qm2)‖W 1,p̃(R2

z) ≤
C‖q‖L2(R2)‖m2(·, k)‖Lp̃(R2

z) ≤ C < k >−ε .

Since 2m1 = [Ψr(z, k)− iΨi(z, k)]e−izk−2 the lemma above shows the extra regularity estimate
in (5), thus finishing the proof of the Theorem 1.1.

The inverse scattering method of Beals and Coifman regards the behavior in k of the unique
solutions m1(z, k), m2(z, k) of (15) in the lemma above. More precisely, the map k → m(·, k) is
differentiable (in the strong operator norm topology from Lp

α to Lp̃
β, with α > 2/p′ and β > 2/p̃)

as shown by Nachman in [18] and for any in z ∈ C we have

∂

∂k
m1(z, k) = t(k)e(z,−k)m2(z, k), (18)

∂

∂k
m2(z, k) = t(k)e(z,−k)m1(z, k),

where
t(k) = − i

π

∫

R2

e(z, k)q(z)m1(z, k)dµ(z). (19)

For the proof of this see Beals and Coifman [2], Brown and Uhlmann [4] or Sung [21].
Look now for solutions of (6) in the form Φ(z, k) = ieizkφr(z, k) respectively Φi = eizkφr(z, k).

As in the forward problem, they must satisfy an integral formulation analogous to (12) where the
role of k and z is reversed. Since t(k) ∈ Lr(R2

k) ∩ L2(R2
k) (for an r < 2 as in the Theorem 1.1)

4



we have existence and uniqueness for their solution in Lr̃(R2
k), where r̃−1 = r−1 − 1/2. Using the

equations (18) it is easy to check that

∂

∂k
(m1 −m2)(z, k) = −t(k)e(z,−k)m1 −m2(z, k),

∂

∂k
(m1 + m2)(z, k) = t(k)e(z,−k)m1 + m2(z, k).

By the uniqueness result for solutions of such systems we must have

φi(z, k) = m1(z, k) + m2(z, k), (20)
φr(z, k) = m1(z, k)−m2(z, k).

The following equalities show the relation between solutions of the forward and inverse equation.

Φi = ieizkφi = ieizk(m1 + m2) =
ieizk

2
(ψr + ψi) +

ieizk

2
e(z,−k)(ψi − ψr),

=
i

2
Ψr +

1
2
Ψi − 1

2
Ψi − i

2
Ψr = − ImΨr + i ImΨi.

Similarly, Φr = Re Ψr − i ReΨi. These prove the identities (7).
The reconstruction formula (8) is due to a symmetry argument as follows. Starting with q

produce Ψr and Ψi by solving (2) subject to the exponential behavior. Define tq(k) by (3) and
solve now (6) subject to the exponential behavior and produce Φr and Φi. Define

q1(z) = − i

π

∫

R2

eizktq(k) (Φr(z, k)− iΦi(z, k)) dµ(k).

Due to the identities (7) we have that ∂Ψr(z, k)+q1(z)Ψr(z, k) = 0 in the z-plane for any parameter
k ∈ C. On the other hand we knew that Ψr solves ∂Ψr(z, k) + q(z)Ψr(z, k) = 0, as we started that
way. In particular we have (q(z)− q1(z))Ψr(z, k) = 0 for all k ∈ C and all z ∈ C. Hence q = q1.

3 Reconstructing convection coefficients

In this section we apply the above scattering method to reconstruction of the convection coefficients
b1, b2 in

∆u(x) + b1
∂u

∂x
(x) + b2(x)

∂u

∂x
(x) = 0, x ∈ Ω (21)

from the Dirichlet-to-Neumann map Λb1,b2 . Here Ω ⊂ R2 is a bounded, simply connected domain
with Lipschitz boundary. We assume that b1, b2 ∈ W ε,p̃

c (Ω), p̃ > 2 are real valued maps with
compact support in Ω and set b = (b1 + ib2)/4.

The following result from Vekua [V62] makes the reduction of (21) to a ∂-equation. If u is a
solution of (21) then w = ∂u solves

∂w(z) + b(z)w(z) + b(z)w(z) = 0. (22)

Lemma 3.1. Let Ω be simply connected with Lipschitz boundary. If u ∈ W 2,p̃(Ω) is a solution of
(21), then w = ∂u ∈ W 1,p̃(Ω) is a solution of (22). Conversely, if w ∈ W 1,p̃(Ω) is a solution of
(22) then there exists an u ∈ W 2,p̃(Ω) solution of (21) and such that ∂u = w in Ω.
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Proof. By Sobolev imbedding u ∈ W 2,p̃ ⊂ C2−2/p̃(Ω), hence w ∈ C1−2/p̃(Ω). As a direct conse-
quence of the Poincaré lemma, notice that if ∂̄w is real valued, then w = ∂u for some real valued
u. Indeed 2∂̄w = (∂x + i∂y)(f + ig) = (∂xf − ∂yg) + i(∂xg + ∂yf). By assumption ∂xg = −∂yf ,
from where the one-form gdy − fdx is exact. Therefore, there exists a real valued F such that
dF = (−f)dx + gdy. We have w = f + ig = ∂x(−u)− i∂y(−u) = ∂(−2F ). The equivalence is now
apparent.

Now we extend b ∈ W ε,p̃
c (Ω) by zero outside Ω. Its extension denoted also by b preserves

regularity b ∈ W ε,p̃
c (R2). From now on we shall work with solutions of (22) in the whole plane.

Lemma 3.2. The equation (22) has unique solutions in the whole plane Wr(z, k) ∼ eizk respec-
tively Wi(z, k) ∼ ieizk in Lp̃(R2

z) for large z. Moreover, e−izkWr − 1, e−izkWi − i ∈ W 1,p̃(R2
z) and

Wr(·, k), Wi(·, k) ∈ W 1,p̃
loc (R2).

Proof. As in the proof of theorem 1.1, we look for solutions W (z, k) = eizkw(z, k) with w − 1 ∈
Lp̃(R2

z). The equation for w is

∂(w(z)− 1) + b(z)(w(z)− 1) + e(z,−k)b(z)(w(z)− 1) = −b(z)− e(z,−k)b. (23)

Using the fact that ∂
−1 : f ∈ Lp̃

c(R2) 7→ W 1,p̃(R2) together with b of compact support we get
∂
−1(b·) : Lp̃(R2

z) → Lp̃(R2
z) is a compact operator. We apply Fredholm’s alternative in Lp̃(R2

z) to
the equivalent integral equation {[I + ∂

−1[b(·) + e(·,−k)b(·)]}(w(z)− 1) = −∂
−1[b + e(·,−k)b]. As

mentioned earlier, uniqueness comes from Liouville’s theorem for the ∂-equation. By construction
we already have that g = wr − 1 ∈ W 1,p̃(R2

z). Then Wr(z, k) = eizk(g + 1) ∈ Lp̃
loc(R

2
z), ∂Wr =

ikeizkg(z, k) + ikeizk + eizk∂g ∈ Lp̃
loc(R

2
z) and ∂Wr = eizk∂g ∈ Lp̃

loc(R
2
z). Similar relations hold for

Wi.

To simplify notations, let

q(z) = b(z)e∂
−1

b(z)−∂−1b(z) (24)

denote a new potential and notice that if w is a solution of (22) then v = e∂
−1

bw is a solution of

∂v + qv = 0. (25)

Since b ∈ Lp̃(R2) ∩ Lp(R2) we have that ∂
−1

b ∈ L∞(R2) ∩ C1−2/p̃(R2), see Vekua [V62]. Then
e−∂

−1
b ∈ L∞(R2) and so q ∈ Lp̃(R2) ∩ Lp(R2) .

The next theorem relates scattering solutions of (22) to scattering solutions of (25) and gives
the behavior in k of Wr(z, k) and Wi(z, k).

Proposition 3.3. Let b ∈ W ε,p̃
c (R2), for some ε > 0. Let Wr and Wi be the scattering solutions for

(22) as given by the lemma above, and let Ψr and Ψi be the scattering solutions of (25) as given
by the theorem 1.1. Then Wr = e−∂

−1
bΨr, Wi = e−∂

−1
bΨi and

‖Wr(z, k)e−izk − e−∂
−1

b‖Lp̃(R2
z) + ‖Wi(z, k)e−izk − ie−∂

−1
b‖Lp̃(R2

z) ≤ C〈k〉−ε, (26)∥∥∥[Wr(z, k)− iWi(z, k)]e−izk − 2e−∂
−1

b
∥∥∥

W 1,p̃(R2
z)
≤ C〈k〉−ε.
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Proof. The fact that Wr and Wi solve (22) is trivial. Uniqueness result of lemma 3.2 ensures that
they are the scattering solutions of (22). The estimates follow directly from the estimates for ψr

and ψi in (4) and (5) and from the fact that e−∂
−1

b ∈ L∞(R2
z) as noticed before. Again, the

imbedding W 1,p̃(R2) ⊂ C1−2/p̃(R2) shows that the estimates (26) hold pointwise in z ∈ C.

We have now all the ingredients necessary for reconstruction. Since q in (24) has compact
support in Ω, the scattering transform depends only on the traces on ∂Ω of the scattering solutions
Ψr and Ψi. Let ν = ν1 + iν2 be the complex-normal to the boundary. Then

t(k) = − i

π

∫

Ω
eizkq(z) (Ψr(z, k)− iΨi(z, k)) dµ(z) =

i

π

∫

Ω
eizk

(
∂Ψr(z, k)− i∂Ψi(z, k)

)
dµ(z)

=
i

2π

∫

∂Ω
eizkν(z)

(
Ψr(z, k)− iΨi(z, k)

)
dσ(z), (27)

The last equality uses the fact that ∂(eizk) = 0 .
Next we show how to reconstruct traces of Ψr and Ψi to ∂Ω from the Dirichlet to Neumann

map Λb1,b2 . First we reconstruct traces of Wr and Wi to ∂Ω.
As in Knudsen and Tamasan [13], we consider the single layer potential operator Sk : Cα(∂Ω) →

Cα(∂Ω), α = 1− 2/p̃, defined by

Skf(z) =
1

2πi
p.v.

∫

∂Ω
f(ζ)gk(ζ − z)dζ, z ∈ ∂Ω,

where gk(z) = e−izk/(πz) is a Cauchy kernel for ∂ which also takes into account the exponential
behavior at infinity. For Lipschitz boundary Sk is a bounded operator (e.g. see Muskhelishvili [15]).
Since q has compact support we have that Wr and Wi are analytic outside Ω and behaves like eizk

at infinity. Traces of such functions will satisfy a singular boundary equations involving Sk. Inside
Ω they satisfy a pseudo-analytic equation. This will impose constrains (in terms of Λb1,b2) on their
trace. We will prove that these two conditions are sufficient to determine the traces.

We noticed already that Wr(·, k),Wi(·, k) ∈ Cα(R2) with α = 1− 2/p̃, hence their traces on ∂Ω
are in Cα(∂Ω). Let

Cα
0 (∂Ω) := {h ∈ Cα(∂Ω) :

∫

∂Ω
h(s)ds = 0}.

Define now a right inverse of the tangential vector field ∂s (here s is the arc length) on ∂Ω by

∂−1
s f(t) =

∫ t

0
f(s)ds, (28)

for f ∈ Cα
0 (∂Ω). In the above integral we fixed an arbitrary point on ∂Ω from where we measure the

arc length counter-clockwise. Notice that ∂−1
s : Cα

0 (∂Ω) → C1+α(∂Ω) is a well defined (independent
of the reference point) bounded operator. The following result defines a Hilbert transform for the
pseudo-analytic maps.

Lemma 3.4. Hb ≡ −Λb1,b2∂
−1
s : Cα

0 (∂Ω) → Cα(∂Ω) is a bounded operator.

Proof. Let g = ∂−1
s f ∈ Cα+1(∂Ω) ⊂ W 2−1/p̃,p̃. Classical theory of PDE (e.g. Gilbarg and Trudinger

[10]) gives that the boundary value problem

∆u(x) + b1
∂u

∂x
(x) + b2(x)

∂u

∂x
(x) = 0, x ∈ Ω (29)

u|∂Ω(x) = g(x), x ∈ ∂Ω
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has a unique solution up to a constant in W 2,p̃(Ω) and ||u||W 2,p̃(Ω) ≤ C||g||W 2−1/p̃,p̃(∂Ω). Using the
mapping properties of the Dirichlet to Neumann map we have

‖Hbf‖Cα(∂Ω) ≤ ‖Λb1,b2g‖W 1,p̃(∂Ω) ≤ ‖∇u‖W 1,p̃(Ω) ≤ ||u||W 2,p̃(Ω)

≤ C||g||W 2−1/p̃,p̃(∂Ω) ≤ C||g||C1+α(∂Ω) ≤ C‖f‖Cα(∂Ω).

Next we show that Hb reconstructs traces of the exponentially growing solutions on ∂Ω.

Theorem 3.5 (Trace theorem). Let b ∈ W ε,p̃
c (Ω). Consider the class of functions

B = {h ∈ Cα(∂Ω) : Im(νh) ∈ Cα
0 (∂Ω)}.

Then, for each k ∈ C arbitrarily fixed, the traces hr = Wr(·, k)|∂Ω., respectively hi = Wi(·, k)|∂Ω are
the unique solution in B of the systems

(I − iSk)hr(z) = 2eizk, z ∈ ∂Ω, (30)
Hb(Im(νhr))(z) = Re(νhr)(z), z ∈ ∂Ω, (31)

respectively,

(I − iSk)hi(z) = 2ieizk, z ∈ ∂Ω,

Hb(Im(νhi))(z) = Re(νhi)(z), z ∈ ∂Ω.

Proof. We argue only for Wr, the arguments for Wi are similar.
We prove first the necessity. The arguments for (30) are identical to the ones in [13] reason for

which we do not reproduce them here. They are based on the Green -Gauss and Plemelj’s formulae.
We show first the necessity of (31). Recall from lemma 3.2 that Wr(z) = ∂u(z) for some

u ∈ W 2,p̃(Ω) which solve the equation (21). Therefore

hr = Wr|∂Ω =
1
2
(∂x − i∂y)u|∂Ω. (32)

For z ∈ ∂Ω let (ν1(z), ν2(z)) be the unit outer normal, we also let ν(z) = ν1(z) + iν2(z). Next
we express the partial derivatives for points on the boundary in terms of the tangent ∂s and the
normal ∂ν derivatives

∇u(x) =
(−ν2 ν1

ν1 ν2

) (
∂su

Λb1,b2u

)
, (33)

where we recall ∂νu = Λb1,b2u. Therefore 2hr = (∂x − i∂y)u = −iν∂su + νΛb1,b2u, or, using νν = 1,

2νhr = Λb1,b2u− i∂su. (34)

Note that Im(νhr) = −∂su/2 and thus hr ∈ B and ∂−1
s (Im(νhr)) makes perfect sense. Identifying

the real part in (34) gives (31). Notice not only that we proved necessity but also we provided
existence of solutions for (31) and (30).

Conversely, let h ∈ B be a solution of the system (31) and (30). We extend h inside Ω by the
following procedure. Inspired by (34) define g = −∂−1

s Im(2νh) ∈ Cα(∂Ω) then uniquely solve the
boundary value problem (9) for u ∈ W 2,p̃(Ω). Notice g is real valued hence u has also real values.
Define Wr(z) = ∂u(z) inside Ω and notice that ∂u|∂Ω ∈ Cα(∂Ω). Now check that ∂u|∂Ω = h.
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Indeed, as before,2∂u = −iν∂su + νΛb1,b2u = iν Im(2νh) + ν Re(2νh). The last equality used the
fact that h is a solution of (31). Multiplication by ν gives ∂u = h.

Extend hr analytically outside Ω by

Wr(z) = eizk − 1
2πi

∫

∂Ω

e−i(ζ−z)kh(ζ)dζ

ζ − z
.

The fact that h solves (30) implies that limz→z0∈∂Ω Wr(z) = h(z0). Thus Wr is an outside continuous
extension of h. Moreover, e−izkWr − 1 = O(1/z) for z large, hence Wr ∈ Lp̃(C− Ω).

We produced a continuous map in R2 which solves (22) both inside and outside Ω and behaves
like eizk for z large. We need to check that it solves the equation (22) across the boundary. Since b
has compact support inside Ω we have that Wr is in fact analytic in both sides of the boundary and
continuous across. Morera’s theorem asserts that Wr must be in fact analytic across. Therefore
Wr solves (22) in the whole plane and has the right behavior at infinity. Uniqueness in lemma 3.2
concludes the proof.

Immediate consequence to the proposition 3.3 and to the pointwise estimates (26) we can
determine the traces on ∂Ω of Ψr and Ψi. Moreover by formula (27) we determine the scattering
transform.

Corollary 3.6 (Reconstruction of the scattering transform). Under the assumptions of the
proposition 3.3 we have

e−∂
−1

b(z) = lim
k→∞

Wr(z, k), z ∈ ∂Ω. (35)

and for any k ∈ C we recover

Ψr(z, k) = e∂
−1

b(z)Wr(z, k), z ∈ ∂Ω, (36)

Ψi(z, k) = e∂
−1

b(z)Wi(z, k), z ∈ ∂Ω. (37)

Moreover,

t(k) =
i

2π

∫

∂Ω
eizkν(z)

(
Ψr(z, k)− iΨi(z, k)

)
dσ(z), (38)

is a function in Lr(R2) ∩ Lr̃(R2) ∩ Lr′(R2) for some r < 2, r̃−1 = r−1 − 1/2 and r−1 + r′−1 = 1.

Now we use the inverse scattering method of theorem 1.2 to reconstruct q.

Corollary 3.7. Let Φr ∼ eizk and Φi ∼ ieizk in Lp̃ for large k ∈ C be the unique solutions

∂Φ
∂k

(k) + t(k)Φ(k) = 0, k ∈ C. (39)

Then

q(z) = − i

π

∫

R2

eizkt(k) (Φr(z, k)− iΦi(z, k)) dµ(k). (40)

Knowing q we also know |b| since from (24) we have |q| = |b|. Moreover, Cheng and Yamamoto
showed that (24) has a unique solution [6]. We will show in the lemma below how to find this
solution.
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Lemma 3.8 (Phase unwrapping). Let v ∈ 1 + Lp̃(R2) be the unique solution of

∂v = qv (41)

then v vanishes on a set of measure zero. Define b = qv/v on the set where v does not vanish, else
we can set b = q. Then b ∈ Lp̃(Ω) is the unique solution of

q(z) = b(z)e∂
−1

b(z)−∂−1b(z).

Proof. Existence and uniqueness of v follows from the Fredholm alternative as before. It is known
from Vekua [V62] that the set of zeroes of pseudo-analytic functions has measure zero . Since
bv = qv we have that v also solves ∂v = bv in the whole plane. Equivalently ∂(e−∂

−1
bv) = 0. Thus

e−∂
−1

bv is analytic and also goes to 1 as |z| → ∞. By Liouville’s theorem we have v = e∂
−1

b. From
its definition we have

b = qe−∂−1b+∂
−1

b.

4 Remarks

In order to solve the inverse problem, one needs to find first the traces of the exponentially growing
solutions. It is a question of unique continuation from the boundary and such it is severely ill-
posed. In theory one could solve the integral equation (30) subject to constrains given by (31) by
minimization techniques which regularize. However, accuracy is also important since there is only a
logarithmic type stability, see Barcelo et. al. in [1]. A similar problem was carried out numerically
by Siltanen et. al. [20] in the radially symmetric case, see also Knudsen [14].

For radially symmetric problems, (i.e. Ω is a disc, b1 = c(r) cos θ and b2 = c(r) sin θ) one can
show that Hb(zn) = λnzn for all n ∈ Z and compute λn accurately. Moreover, any solution of (30)
can be represented as a series W (z, k) = eizk

∑∞
n=0 anz−n, with unknown coefficients an. Using

(31) one ends up with a linear system for an. This system is again severely ill-conditioned and it
is not yet clear how to effectively overcome this problem.

The second step consists in constructing the scattering transform t(k) via the formulae of
corollary 3.6. Next we solve the weakly singular integral equations (6) in the k-space. This part
is stable. It is here that we need the ε-extra regularity. One needs t ∈ Lr(R2

k) for some r < 2 in
order to solve (6). If q is only in Lp̃

c then t ∈ L2(R2) (according to Sung [22] as corrected by Brown
and Uhlmann [4]) and this suffices for uniqueness. This covers the uniqueness result of Cheng and
Yamamoto. It is not clear how to find solutions of (6) when t ∈ L2(R2

k).
Reconstruct q from the formula (8). Notice that we have estimates of decay in k for t ∈ Lr(R2

k)
as well as for e−izk(Φr − iΦi) − 2 as given in (5). These can lead to estimates of the truncation
error in the integral in (8).

In section 2 we exhibit the one-to-one connection between pseudo-analytic functions with expo-
nentially growing behavior at infinity and solutions of the first order ∂-system of Beals and Coifman.
Since we characterized traces of the former in terms of a generalized Hilbert transform (31), we also
characterized the Cauchy data of the solutions of the first order system, thus answering a question
in [25]. We point out that a partial answer was given before in [13] for potentials of a special type
(q = ∂f for some real valued f).
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