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Differentiability with respect to λ ∈ (0, 1) is provided for the nonlinear pan-
tograph equations y′(t) = f(t, y(t), y(λt)) via the fibre contraction theorem
and Picard operators’ technique.

1 Introduction

The subject matter of this paper is the λ- dependence of the solution of the
initial value problems:

{
y′(t) = f(t, y(t), y(λt)), t > 0
x(0) = 0.

(1)

Occurring in number theory the linear version of (1), called the pantograph
equation (PE), was first studied by Kato and Mc Leod in [9]. As well as the
delay differential equations (DDE) y′(t) = f(t, y(t), y(t− τ)), the PE belong
to the class of functional differential equations (FDE). Differentiability with
initial data for the FDE was first established by Hale in [1], but differentia-
bility with respect to delays for DDE was proved relatively late by Hale and
Ladeira in [2] using a generalized uniform contraction principle for quasi-
Banach spaces. Also the soon to appear paper of Hokkanen and Moroşanu
[4] gives a simple proof for DDE case. Neither of the methods cited above
works on our problem. However the method presented by the author in [3]
for DDE works out for PE too.
The Picard operators’ technique proposed by Rus [5], [6] was first used on
PE by V. Mureşan [10] in proving continuity with respect to λ.
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Definition 1 Let (X, τ) be a topological space and T : X −→ X be a map-
ping. T is called Picard if the fixed point set of T namely FT = {x∗} and
T nx0 −→ x∗ whichever the starting point x0 ∈ X.

Unfortunately by itself this method is not sufficient. The additional tool used
is the fibre contraction theorem below [7], [8].

Theorem 1 (Fibre Contraction Theorem) Let (X, d) be a metric space,
(Y, ρ) be a complete metric space and T : X × Y −→ X × Y . Suppose
that

(i) T (x, y) = (T1(x), T2(x, y));
(ii) T1 : X −→ X is Picard;
(iii) ∃λ ∈ (0, 1) s. t. ρ(T2(x, y), T2(x, z)) ≤ λρ(y, z), ∀x ∈ X, y, z ∈ Y.

Then T is Picard.

The Picard operators’ technique consist in considering the unique solution
y∗ = y∗(t, λ) of (1) as the unique fixed point of the operator

T1y(t, λ) =
∫ t

0
f(s, y(s, λ), y(λs, λ))ds. (2)

Let yn = T n
1 y0 be the nth-iteration. In appropriate metric spaces we shall

prove
yn −→ y∗

and
∂yn

∂λ
−→ v∗.

Using an Weierstrass type argument we get v∗ is differentiable with respect
to λ and

v∗ =
∂y∗

∂λ
.

2 Differentiability with respect to λ

Throughout this paper we assume that f ∈ C[0, α]×R2n,Rn) and

f(t, ·, ·) ∈ C1(R2n,Rn) ∀t ∈ [0, α]
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and
∂f

∂y
,

∂f

∂z
∈ C([0, α]×R2n,Rn).

In particular for
f ∈ C1([0, α]×R2n,Rn) (3)

all the above hold.
Consider

X = {y ∈ BC([0, α]×(0, 1),Rn) : y(0, λ) = 0, y(·, λ) ∈ C1[0, α] ∀λ ∈ (0, 1)}
endowed with

‖y‖B1 = sup
(t,λ)∈[0,α]×(0,1)

|y(t, λ)|e−µt

and
Y = BC([0, α]× (0, 1),Rn)

with a similar norm

‖v‖B2 = sup
(t,λ)∈[0,α]×(0,1)

|y(t, λ)|e−νt

for some µ and ν to be specified later on.

Lemma 1 T1 : (X, ‖ · ‖B1) −→ (X, ‖ · ‖B1) given by (2) is a contraction for
µ large enough whence T1 is a Picard operator.

Proof: Using the Lipschitz condition of f(t, ·, ·) with a Lipschitz constant L
independent of t ∈ [0, α] we have

|T1y(t, λ)− T1z(t, λ)| ≤ L
∫ t

0
|y(s, λ)− z(s, λ)|e−µseµsds+

∫ t

0
|y(λs, λ)− z(λs, λ)|e−µλseµλsds ≤ 2L

µ
‖y − z‖B1e

µt

whence

‖T1y − T1z‖B1 ≤
2L

µ
‖y − z‖B1

and choose µ > 2L.
Consider now BR ⊂ X a closed ball of radius R. For α sufficiently small
using the continuity of f we have BR is invariant for T1 i.e. T1(BR) ⊂ BR.
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In the sequel we consider such an α that BR is invariant.
Consider now T2 : X × Y −→ Y defined by

T2(y, v)(t, λ) =
∫ t

0

∂f

∂y
(s, y(s, λ), y(λs, λ))v(s, λ)ds+

+
∫ t

0

∂f

∂z
(s, y(s, λs), y(λs, λ))

∂y

∂s
(λs, λ)sds+

+
∫ t

0

∂f

∂z
(s, y(s, λs), y(λs, λ))v(λs, λ)ds.

It is clear that T2 is linear in v and is easy to see that T2 : BR×Y −→ Y is a
contraction in the v-variable with respect the ‖ · ‖B2- norm with a Lipschitz
constant independent on x ∈ BR.
Using the above facts and applying the fibre contraction theorem we are lead
to the following

Lemma 2 T : BR × Y −→ BR × Y defined by T = (T1, T2) is a Picard
operator.

We are now ready to state and prove our main result.

Theorem 2 Let f ∈ C1([0, h]×R2n,Rn) then the unique solution of (1) is
differentiable with respect to λ.

Proof: For the beginning we work with T ∈ [0, α].
Let (y∗, v∗) be the unique fixed point of T as given by Lemma 2. In particular
y∗ is the unique fixed point of T1 hence the solution of (1). Consider now
y0 = 0 and v0 = 0 then

y1(t, λ) = T10(t, λ) =
∫ t

0
f(s, 0, 0)ds

is independent on λ whence

∂y1

∂λ
(t, λ) = 0.

But also v1(t, λ) = T2(0, 0)(t, λ) = 0.
Inductively, suppose that yn is differentiable in λ and

∂yn

∂λ
(t, λ) = vn(t, λ), ∀t ∈ [0, α], λ ∈ (0, 1).
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We have by the induction hypothesis

yn+1 = T1yn

vn+1 = T2(yn, vn) = T2(yn, ∂yn

∂λ
)

(4)

But

T2(yn,
∂yn

∂λ
)(t, λ) =

∫ t

0

∂f

∂y
(s, y(s, λ), y(λs, λ))

∂yn

∂λ
(s, λ)ds+

+
∫ t

0

∂f

∂z
(s, y(s, λs), y(λs, λ))

∂yn

∂s
(λs, λ)sds+

+
∫ t

0

∂f

∂z
(s, y(s, λs), y(λs, λ))

∂yn

∂λ
(λs, λ)ds.

It’s a simple computation that

T2(yn,
∂yn

∂λ
)(t, λ) =

∂T1yn

∂λ
(t, λ) =

∂yn+1

∂λ
(t, λ)

Therefore
∂yn

∂λ
= vn, ∀n ∈ N.

So far we got a sequence (yn) in X such that

yn

‖·‖B1−→ y∗

and
∂yn

∂λ

‖·‖B2−→ y∗.

Using a Weierstrass argument we conclude v∗ is differentiable and

v∗ =
∂yn

∂λ
.

In order to consider the solution extended on larger t note for t ∈ [α, α
λ
]

we have λt ∈ [λα, α] where we already know the solution is differentiable
in λ. Also we know that differentiability with respect to parameters for the
solutions of ODE holds.
Assuming differentiability for solutions defined on In = [0, α

λn ] we prove it for
solutions defined on In+1 = [0, α

λn+1
].

Let ψ be the solution of (1) restricted to In i.e.

ψ(t) = y∗(t), ∀t ∈ In
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For t ∈ In+1 we have y∗ satisfies the following ODE

y′(t) = f(t, y(t), ψ(λt))

Remains to remark that the application

(t, λ) ∈ In × (0, 1) −→ ψ(λt)

is differentiable. Applying now the classical result for ODE we got differen-
tiability for In+1.

3 Remarks

(i) The existence result and continuity with respect to λ result are hidden in
our proof in the convergence

yn

‖·‖B1−→ y∗

and do not require any small α so that the result apply on the whole interval
[0, h].
(ii) For the linear case studied by Kato and McLeod [9]

y′(t) = ay(t) + by(λt)

we have
∂f

∂y
(t, y, z) and

∂f

∂y
(t, y, z)

are bounded on the whole [0, h]×R2n whence we can work with the operator
T1 defined on the entire space X rather than on a closed ball and so we can
also drop the assumption of α small enough from the very beginning.
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