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Abstract. We consider the problem of imaging the conductivity from knowledge of
one current and corresponding voltage on a part of the boundary of an inhomogeneous
isotropic object and of the magnitude |.J(z)| of the current density inside. The internal
data is obtained from Magnetic Resonance measurements. The problem is reduced to
a boundary value problem with partial data for the equation V - |[J(z)||Vu| 'Vu = 0.
We show that equipotential surfaces are minimal surfaces in the conformal metric
|J[2/(»=D]. In two dimensions, we solve the Cauchy problem with partial data and
show that the conductivity is uniquely determined in the region spanned by the
characteristics originating from the part of the boundary where measurements are
available. We formulate sufficient conditions on the Dirichlet data to guarantee the
unique recovery of the conductivity throughout the domain. The proof of uniqueness
is constructive and yields an efficient algorithm for conductivity imaging. The
computational feasibility of this algorithm is demonstrated in numerical experiments.
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1. Introduction

Traditionally, in Electrical Impedance Tomography (EIT) one seeks to determine the
conductivity inside an object from boundary measurements of multiple currents and
corresponding voltages. The sensitivity of the boundary data to variations of the
conductivity inside the object has been shown to be very low [5], [9], resulting in images
with resolution which deteriorates away from the boundary.

In this paper we consider a different kind of inverse problem, where in addition to
boundary data one has knowledge of the magnitude of one current density field inside.
Such information can be obtained from magnetic resonance measurements, as first shown
in [16]. When two current density fields are known, an isotropic conductivity can be
recovered in regions where the fields are transversal via an explicit local formula [10],
[13]. When the magnitudes of two currents are given, one can uniquely determine the
singular support of the conductivity distribution as shown in [11]. Moreover, a numerical
reconstruction can be obtained via the so called J-substitution algorithm [12], which
uses two injected currents. The latter works combined Ohm’s law J = —oVu with the
charge conservation law V - J = 0 to obtain the quasi-linear differential equation

V- (% u) = 0. (1.1)

Some examples of non-uniqueness and non-existence of the solution to the Neumann
problem for this equation were given in [11]. This showed that Neumann boundary data
and the magnitude of one current density are insufficient to determine the conductivity.

The problem that we study in this paper is whether knowledge of the magnitude |.J|
of one current density inside the domain together with the corresponding Cauchy data on
a part of the boundary is sufficient to determine the conductivity. For planar domains we
show that, in general, such data can determine the conductivity in a specific subregion of
the domain and cannot determine the conductivity elsewhere. We also identify sufficient
conditions which ensure that the conductivity is recovered in the whole domain.

We begin this paper with a geometric result (Theorem 2.1) valid in all dimensions
n > 2: The equipotential surfaces have zero mean curvature in the conformal metric
|J[#=D] given by the magnitude of the current density. In two dimensions, the
equipotential lines are geodesics in this metric. Moreover, they can also be viewed
as characteristics of the equation (1.1), which is parabolic according to the classical
classification. One can find the geodesics originating on the part of the boundary
where measurements are available by solving an initial value problem for a family of
nonlinear ordinary differential equations. The voltage potential u is determined in the
region spanned by these characteristics and the conductivity can then be calculated as
o=1J|/|Vul.

We are able to prove global uniqueness (Theorem 3.1) and conditional stability
(Theorem 3.2) results for a specific class of voltage distributions on the boundary. The
proof is constructive. It is used when developing the reconstruction algorithm. The last
section demonstrates the computational feasibility of this algorithm on synthetic data.
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2. Equipotential surfaces as minimal surfaces in a conformal metric

Let 2 C R™ be an open set endowed with the conformal metric ¢ = al for some
conformal factor a € C*(Q), a > 0. The length of a vector v in the g-metric is denoted
by |v|s, whereas for the Euclidean length we use |v].

Lemma 2.1. Let u € C'(Q) be such that |Vu| > 0. Then the level sets of u are
Cl-surfaces of mean curvature

1 =1 VU
H = :l:WV- (a p W) . (2.1)

Proof. From the implicit function theorem we know that the level sets are C'-
smooth surfaces. The mean curvature of a surface with the unit normal v, is given

by H = div,(v,), where
—1
div,() = \/dle_tg S oAt v = (2.2)
and v is the Euclidean unit normal (see,e.g., [7]). In the conformal case, we have
detg = a", g7'v = a7'v and |v|, = +/a|v| for any vector v. Therefore |g7'v|, =
Vva/alv| =1/y/a. If the surface is a level set of u then v = £Vu/|Vu| and v, = iﬁ%'
Substituting this formula into the equation (2.2) we obtain (2.1). O
Theorem 2.1.Let u € C'(Q) be an electric potential with current density J. If
J # 0 in §Q, then the level sets uw = c are surfaces of zero mean curvature in the
conformal metric g = |J|?™=VI. Moreover, they are critical surfaces for the functional

E(X) = /Z 17|dS, (2.3)

where dS is the FEuclidean surface measure.
Proof. Take a = |J|¥™ Y in (2.1). The nonlinear equation (1.1) satisfied by u is
equivalent to H = 0.

Consider now a local parametrization of ¥. = {z € Q : wu = ¢} given by
{(2/,¢(2',¢)) : 2/ € U} for some open U C R™'. The formula for the functional
(2.3) becomes

B e)) = [ VI 0@, )T+ [V o', 24

where V' denotes the gradient in the first n — 1 variables. The Euler-Lagrange equation

for the functional above is
v I (e, ) Vip(al, )\ O]
V1+ V(o) On

Along the surface ¥, the partial derivatives of u are calculated from the derivatives of

(a', (@, )\/1 + |[V(ar, e)[2.(2.5)

¥ by implicit differentiation in u(z’, ¥ (z',¢)) = ¢
Uy, = = Yo,/ Ve, U, =1/, (2.6)
Upiay = (Vagetbaitie + Vrictha Ve — Yeaba by = Va7 /62,
Unizn = (Yeclla; = Vasethe) [V,

= — e/ V2,

uxnxn
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fori,j=1,...,n— 1.
In the equation (1.1) at each point (2,1 (2, ¢)) on the surface 3. we replace the
derivatives of u in terms of the derivatives of ¥ from the formula (2.6). We obtain the

family (indexed by c¢) of the quasi-linear elliptic equations in 2’ = (xy, ..., Z,, 1)
n—1
A+ VO QoA+ VP = )z =2 D YV,
i=1 1<i<j<n—1
=Vin|J| - (V'y,1). (2.7)

This is an equivalent form of (2.5). O

In the equation (2.7), the function v appears nonlinearly in VIn |J|(z', (2, ¢)),
but ¢ appears as a parameter only. In two dimensional domains, the equation (2.7) is
simplified as follows. On the set Dy = {(z,y) € Q : uy(z,y) # 0}, an equipotential
curve is a graph of the function ¢ (z, ¢) that solves

J |z J
bl = (02(0,0) +1) |- vt st + e vt 29
On the set Dy = {(z,y) € Q : u.(z,y) # 0}, an equipotential curve is a graph of the
function ¢(c,y) that solves

(s = (6206, +1) | - 006,000,500 + 200500 29)

3. Uniqueness and conditional stability

Throughout this section 2 is assumed to be a simply connected planar domain with C''-
smooth boundary and o € L*(2) is a positive function. Further regularity on ¢ will
be specified in the theorems. A o-harmonic function is any solution v € H'(£2) of the
conductivity equation

V-oVu=0. (3.1)

Consider the following coefficient identification problem: Given the Cauchy data
(U, Q) on an arc T' of the boundary and the magnitude of the current density
|J| = |oVu| in Q, find the conductivity o in .

We formulate sufficient conditions on the boundary data for the unique solvability
of this problem. In some practical situations, such conditions can be satisfied.

Definition 3.1. A function f continuous on a simple closed contour will be
called almost two-to-one if it is a two-to-one map, except possibly at its maximum
and minimum.

There are exactly two maximal arcs on each of which the function f is strictly
monotonic. The lemma below describes the geometry of the level sets of o-harmonic
maps u with almost two-to-one traces on the boundary. It is a consequence of
Alessandrini’s result on the index of critical points [1].

Lemma 3.1. Let Q) be a simply connected planar domain, o € C*(Q2), 0 < p < 1
and u be a-harmonic in Q with u|sq almost two-to-one. Then |Vu| > 0 in Q, and each
level set of u is a C"'-smooth curve inside ) with the two endpoints on the boundary.
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Proof. In two dimensions, the critical points of o-harmonic functions are isolated.
This is a consequence of the fact that (0, + i0,)u is pseudo-analytic. The regularity
of o implies that u € C1(Q) ( see, e.g., [17]). Alessandrini’s result (Theorem 1.1, [1])
and our choice of boundary data imply that all possible critical points in €2 have zero
index, so that there are no critical points inside. The maximum principle implies that no
critical points lie on the boundary either. It follows from the implicit function theorem
that each level set is a one dimensional manifold with boundary. Loops cannot occur.
Otherwise, by the maximum principle, u is constant in the region inside. Also, the level
set cannot have an arc ending inside since such an endpoint would be a critical point.
Each level set is thus one connected arc with endpoints on the boundary. Since each
level set is compact in €2, one can find a finite covering by closed balls, in each of which
the set has finite length. O

Theorem 3.1 [Unique determination]. Let 2 be a simply connected, bounded
domain in the plane with piecewise C'-smooth boundary. Let f € C*(0Q) be an almost
two-to-one function and let I' denote one of the maximal arcs on which f is strictly
monotonic. Given g € CY(T') and |J| € CYQ)NC?*(Q), there exists a unique pair
(o,u) € C*(Q) x C*(Q), such that u is o-harmonic and

o|Vu| = |J],
Ujp = f|ra
8Z,U|F =4d.

Proof. For o € C?*(2) we show that all equipotential curves can be traced inside
starting from points on I'. By choosing a curvilinear coordinate system with y along I"
and 0, transversal, without lost of generality, we consider I" to be the straight segment
{0} x [0,1]. From the lemma 3.1 we have that |[Vu| > 0 in Q and the level curves
can be locally described by the graphs of functions in = or of functions in y. For each
t € (f(0), f(1)) the Cauchy data u(0,y) = f(y) and u,(0,y) = g(y) determine the initial
data for ¢(-,t) via

0(0,t) = f7 (1), (3.2)
0, (0,8) = —% o f7(t).

Since u,(0,y) = f'(y) > 0, we have that u, > 0 in an open neighborhood of T
Since |J| € CYQ)NC%Q), the right-hand side of equation (2.8) is Lipschitz in 1.
From classical results on the existence and uniqueness theory for initial value problems
for differential equations (see, e.g., [6], [8]), the equation (2.8) subject to the initial
conditions (3.2) has a unique solution in a maximal interval [0, h(t)). Moreover,
for each x € [0,h (1)), ¥(x,-) € C'(f(0),f(1)). As x — h,(t), we have that
either (z,v(z,t)) reaches the boundary 002 or, at least on a sequence z, — h,,
Yz (x,,t) blows up. If the solution reached the boundary 02, we are done. Otherwise,
limy, 00 Yu (2, t) = 00, and from (2.6) we have u,(hy,9¥(hy,t)) = 0. Since Vu never
vanishes, then u,(hy, ¥ (hy,t)) # 0 and the equipotential line is the graph of a function
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in y. This function can be found by solving the initial value problem for (2.9) subject
to the initial conditions

¢(ta 0) = h+, (33)

oy(t,y) = 0.
As before, we can trace the equipotential line until we either reach the boundary or
we reach a point where u, vanishes. In the latter situation, we switch back to solving
another initial value problem for ¢ (x, t) in (2.8), which starts at the current position with
zero initial velocity. The graph parametrization implies that we traced the equipotential
line with super-unitary speed. Since the total length is finite, this process ends after
finitely many steps.

The choice of I' and the maximum principle ensure that any interior point lies on
an equipotential line reaching the boundary on I'. Therefore any interior point lies on
one equipotential line reaching the boundary on I' and thus u is uniquely determined at
all points in . Moreover, since 1) or ¢ are C' in both variables where defined, we get
u € C1(Q2). The conductivity is found by the formula

|/
o= W (3.4)
g

The result given below shows that, in general, outside the region spanned by the
characteristics originating on I' we have non-uniqueness. For each 0 < h < 1 and
0 < ¢ <1 we introduce the domains

c
Qpe= {(x,y) cx € (0,h), 0<y< x——l—l}

Proposition 3.1.[Non-uniqueness] There exist h > 0 and a domain € D Qp 19,
such that the equation (1.1) with |J|(x,y) = +/(x +1)2 +y? has at least two different
solutions in €, both satisfying the Cauchy conditions uw(0,y) = u,(0,y) = y for
0 <y < 1/2. These solutions represent voltages for two different conductivities while
generating internal current density fields of the same magnitude.

Proof. We first notice that @(z,y) = (x4 1)y is a solution of (1.1) in €, ; that satisfies
the boundary conditions on {0} x [0,1/2]. Next, we construct a different solution in a
sub-domain of 2; ;. To simplify notations, let

£101(2,0) = bl ) = (42(,0) + 1) [ v, ot
1,
+ (oo,

(see the equation (2.8)).
For ¢, h € (0, 1) consider the family of boundary value problems

1 13
LR (r,0) = 0,(0,¢) = e, v(h,) = 7= (c+hmax{o,c— >} )
From the theory of ordinary differential equations (see, e.g., [8]), there exists a

sufficiently small A > 0, such that for each ¢ € [0,1] the corresponding problem has
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a unique solution in x € [0, h]. Moreover, since the boundary data is C*-smooth in the
parameter ¢ and the equation is independent of ¢, we have that ¢ € C?((0,h) x (0,1)).
Let ¢)(x,¢) = ¢/(x + 1). For ¢ € [0,1/2], one can check that t(z,c) = (z,c). Since
Ye(z,1/2) > 1/(h+ 1) > 0 for every = € [0, h] due to the uniform continuity in ¢ of v,
we have that ¢.(z,¢) > 1/2(h+ 1) > 0 when ¢ < € + 1/2 for some ¢ > 0. Note that
W(h,c) > p(h,c) for 1/2 < ¢ < 1/2+ €. Since the boundary value problem for £[1)] = 0
has a unique solution on [0, h] for any 0 < hy < h, it follows that ¥ (z,c) > ¢(z, ¢) for
all x, 0 <z < h, and

¥(0,0) > ¥s(0, ). (3.5)
On the domain Q = {(x,¥(z,¢)) : = € (0,h), ¢ < 1/2+ €} we define
u(z,y) =P, )" (). (3.6)

The domain 2 contains €2, 1 /2 and the restriction of u to €1 /5 is equal to @ = (x4 1)y.
Following its definition in (3.6) and using the implicit differentiation as in (2.6), we
calculate

Vel o (o) (oo — L o
A <|vu|v)< @,0) = e Ll ) = 0.

Therefore, the function u defined in (3.6) solves the equation (1.1) in 2 and satisfies the
boundary conditions u(0,y) = u,(0,y) = y for y € [0,1/2]. Comparing the level sets
y = ¥(z,c) and y = (x, ¢) of u and 1, respectively, we see that u(z,y) < @(z,y) for
(x,y) €Q, y>1/2(h+1).

We now show that for a sufficiently small € > 0, |Vu(0,y)| # |[Va(0,y)],
y € (1/2,1/2 + ¢). Assume the opposite, i.e., |Vu(0,y)| = |Va(0,y)|. Then since
uy(0,y) = 4,(0,y) = 1 for y € (0,1/2 + ¢), we have u,(0,y) = *£u,(0,y). Also,
u.(0,y) = y > 1/2, so that by virtue of the continuous dependence of solutions
to the equation (2.8) on the data, we obtain w,(0,h) > 0, h € (1/2,1/2 + € for a
sufficiently small €. Therefore, we would have u,(0,y) = 4,(0,y),y € (1/2,1/2+ EN) and
¥(0,¢) = ¥(0,¢) and 1,(0,¢) = 1,(0,¢), contradicting (3.5). We then conclude that
since v and @ share the same |.J|, they correspond to conductivities o = |J|/|Vu| and
& = |J|/|Va|, which differ in a neighborhood of the segment {0} x (1/2,1/2+¢). O

Based on the classical results of continuous dependence on the data of solutions
of ordinary differential equations, we now show that the reconstruction is conditionally
stable. Let u,u be two admissible o-harmonic, respectively g-harmonic maps and let

u. = foiy. = f,1J] = o|Vuld,uy. = g,0,a, = §,|J| = &|Vil.
Let
M = max{||VIn |J|||01(§), IV In |j|||01(§)}- (3.7)

Denote || - ||oo the sup-norm in Q, and [ullor@) = lulloo + [[VUlloo-

Theorem 3.2 [Conditional Stability]. Let Q) be a simply connected domain with
smooth boundary and f, f € C?(09Q) be almost two-to-one maps which have a common
maximal arc I'. Assume that

inf f' > e.inf f' > ¢
> einf ' >
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and

g g _ ra -
max{ | I ?ch), 1= ey, IV L] = [ Il or @y} <7

for some n > 0. Then
lo =l < P(n),

a/f

where @ : [0,00) — [0,00) is a map depending on €, M and |G|,
with lim, o ®(n) = 0.

Proof. It suffices to perform all the estimates locally around each point Q¢ = (o, yo) €
Q. To fix ideas, let us assume that u,(zg,y9) # 0. Thus, the equipotential curve of u

e

passing through @)y is locally the graph of a function of x — ¥(x,t), and from (2.6) we
have for some 6 > 0 that

0<6<|VY| <! <0

near (o. Due to the continuous dependence of solutions of the initial value problems
on the data (see, e.g., [6], [8]), we also have

0<6<|VY| <0 <0

in a (possibly smaller) neighborhood of Q. The equipotential curve of @ passing
through @) is thus also the local graph of a function of z, i.e. Qo = (zo, ¥ (x0,ty)) =
(20, (z0, 1)), for some tg,t5 € (£(0), (1)), the corresponding potentials u and @ at Q.

Since ||¢¢|| < 1/6 and |Vu| = 1/%?—] > ﬁ, we have the estimate

L]
\Vu| |Vl

1 ~ - -
< = (I = Tlloe + 151V = Vo) .

lo(0,Y0) — (20, Yo)| (0, ¥0)

The last term in this formula can be estimated by using the implicit differentiation
formulae (2.6) as follows.

~ 2 2
|Vu — Vil < J <% - i—) + <% — 1%) < 5—12\/62 +1||VY — VY |oo-

Classical results (see, e.g., [6, 8]) imply that ||Vi) — Vi)||s is of order O(). The

result follows. O
Note that since ® depends on ||& ||, this proof shows only conditional stability.

4. Numerical experiments

To demonstrate the computational feasibility of the reconstruction algorithm, some
numerical experiments were conducted. The computations were performed on a laptop

PC with Pentium IV, 2.8 GHz CPU, 1 Gb of RAM, running under Windows XP.
In programming, the Interactive Data Language f(IDL 6.2) was used. The time of

1 Software product of Research Systems, Inc.
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computations varied from a few minutes to an hour depending on both the grids and
accuracy desired.

Two experiments are conducted. In the first experiment, the voltage is almost
two-to-one on the boundary, whereas in the second one it is not.

4.1. Simulation of the data
Let © = (0,1) x (0,1) be the unit square. The model conductivity is given by

o(x,y) =14 ooz, y),
where o is a function with support in 2 modelled by the CT-image of a human
body. The density distribution in the original CT-image was rescaled to simulate the
conductivity distribution in €2 with values varying from 1 to 1.8 S/m. The simulated
conductivity distribution in a human body is shown in Figure 1.

Figure 1. The original conductivity distribution.

In the first experiment, the data are generated from the numerical solution of
the Dirichlet problem for the conductivity equation (3.1) in €2 subject to the boundary
conditions: u; = y on the vertical sides, u; = 1 on the top side and u; = 0 on the bottom
side. In the second experiment, we generate the data from the Dirichlet problem for the
conductivity equation (3.1) in €2 subject to ug = cos(z/2) cosh((y + 1)/2) on 9. Then
f=u|r, g = —ug|r and |J| = o|Vul.

The Dirichlet problem in the unit square 2 is solved by the finite-difference
method on a uniform grid. The resulting five-diagonal symmetric system is solved
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by a preconditioned conjugate gradient method. The second-order approximation and
convergence of the finite-difference solution to the exact one follows from [15]. Once
the numerical solutions are computed, the Dirichlet and Neumann conditions are found
as u;(zo,y) and u;(z1,y), (j = 1,2). The computation of |J| on the grid requires
the numerical differentiation of the voltage potential u. However, it was observed in
numerical experiments and then confirmed by Theorem 3.2 that the reconstruction
algorithm is sensitive to the numerical differentiation of the voltage potential. To ensure
the appropriate accuracy, Stechkin’s optimal regularizing operators (see, e.g., [3]) are
used. The shaded surfaces of |J| for the two experiments are shown in Figure 2.

Figure 2. The shaded surfaces of magnitudes |J| used in the first (left) and second
(right) experiments.

4.2. Inversion of simulated data

The reconstruction of the conductivity distribution o(z,y) is accomplished in four steps.
Step 1. Data preparation. The parameterized initial conditions

B(t) = f'(8),alt) = % o (1)

are given for ¢ € [t,t], where t = f(1) and ¢t = f(0). To invert the boundary data, we first
do an interpolation and then swap the argument with the function values. Finally, we
compute V In |J| from the magnitude |J| on the grid by Stechkin’s optimal regularizing
operators.



Conductivity imaging 11

Step 2. Picard successive approximations.
The Cauchy problem (2.8), (3.2) is solved by the Picard method for the operator

Tp(z, —i—/ (S p(s,t), B(t) —i—/o p(r, t)dr> ds, (4.1)

where
F(s,u,v) = —(u® +u)oy In | J|(s,v) + (u® + 1), In |.J|(s, v).

The function p(z,t) is a fixed point of T if and only if the function ¥(z,t) =
B(t) + [y p(s,t)ds is the solution of the Cauchy problem (2.8), (3.2).

Some of the early successive approximations may yield curves which do not lie
entirely in €. For computational purposes we have extended the field |.J| continuously
to a larger domain. The successive approximations are known to converge to geodesics
lying in €2, which are the solutions of (2.8) depending only on the values of |J| inside 2.

Given a(ty), B(ty) for ty € [t,7] and VIn|J| on the grid, we compute the discrete
function p(z;,t) for (z;,t;) € [0,a] x [t,f] by Picard successive approximations

Pn1 =T(pn), (n=0,1,2,...).
The initial approximation was chosen as
aty) at xg
bo= { >0 for z; € (0,H],
where H € (0,1]. To advance in the interval (0, H|, we use the recurrencies
L(xjp1) = L(zj) + L(Az), (j=1,2,...,7),

where

I(e) = [ F (spls.0.80) + [ plr)dr) ds,
0 0

Ar = x4 — .
The value of VIn|J| at each point (s,tx) is determined by a bilinear interpolation of
precomputed VIn|J| on the grid. Note that the successive approximations converge
uniformly with respect to the t-variable because of the contraction property of 7' in
C'0, 1] with the weighted Bielecki norm

Iplls = sup p(z, t)e 7],

z€[0,1

for a sufficiently large A > 0 (see, e.g., [14]).
Step 3. Determining ¢(z,t). Given p(z;,t;) and [(tx), we compute ¥ (z;,t) from
the finite-difference analogue of the formula

(. ) = /:p(s,t>ds+5(t).

The characteristics ¢ (z,t) for some values of the parameter ¢ are shown in Figure 3
Step 4. Recovering o. Given ¢(x;,t;) and |.J|, we compute o in the region bounded
by the characteristics originating from I'. Since u(z;,y;) = ¥~ '(x;,)(y:), the inversion
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Figure 3. Characteristics computed in the unit square §2 in the first (left) and second
(right) experiments.

is performed by interpolating and swapping as indicated in the step 1. The discrete
analogue of o(z,y) is computed as

_ ]
) =
x Y
4.8. Results

To simulate noisy data, both the Cauchy and current density data were perturbed by
adding Gaussian pseudo-random vectors with zero means. The standard deviations were
chosen to provide the preassigned level of errors of 1% in the Cauchy data and 5% in the
current density. Such numbers correspond to the typical level of noise in measurements
of the voltage potential and FID (Free Induction Decay) signals in MRI systems.

Figure 4 shows the conductivity recovered from the data associated with first
model. In this case, the characteristics span the entire domain ) (see Figure 3
(left)). Therefore, the conductivity is uniquely reconstructed in €. Figure 5 shows
the conductivity recovered from the data associated with the second model. In this
case, the characteristics do not span the entire region (2, specifically, the right lower
corner is not covered (see Figure 3 (right)). Thefefore, the reconstruction in this area is
meaningless.

Also, the results of recovering the conductivity from noisy data show the stability
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Figure 4. The conductivity images reconstructed from the noiseless (left) and noisy
(right) data simulated in the first experiment.

of the reconstruction algorithm.

5. Conclusions

We have formulated the problem of conductivity imaging from one voltage-current
measurement on a part of the boundary and knowledge of the magnitude of one interior
current density field.

In two dimensional inhomogeneous isotropic models, the conductivity can be
recovered in a specified region. In general, this region depends on the boundary and
internal data. We have identified a simple sufficient condition on the Dirichlet data
which guarantees that the conductivity will be recovered in the entire domain. Since
the proofs are constructive, we have also developed a reconstruction algorithm. The
inversion and stability results are based on classical arguments on the existence and
stability of solutions of ordinary differential equations. The computational feasibility
of the reconstruction algorithm has been demonstrated in numerical experiments with
a simulated conductivity distribution of a human torso. The resulting images show
very good resolution throughout the domain, even though they are based on a single
measurement.
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Figure 5. The conductivity images reconstructed from the noiseless (left) and noisy
(right) data simuilated in the second experiment.
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