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Abstract. This paper considers the problem of determination of a planar vector field
when its Doppler data is modified by the presence of an unknown scalar field. Such a
problem occurs in the investigation of velocity distribution in a flow through a media of
variable sound speed. We show that the curl of the vector field can be stably recovered.
In absorbing media the integrals are weighted to account for the attenuation along the
path. When the boundary values of the vector field are known, its solenoidal part is
determined from its curl. We use Bukhgeim’s approach to the problem of tomography.
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1. Introduction

The attenuated Doppler transform of a vector field is the collection of weighted integrals

of its projections along lines. When occurring, the weight accounts for the loss of

intensity along the paths due to the absorption property of the medium. The inverse

problem consists in the recovery of the vector field from its Doppler data. Such a problem

occurs in the investigation of velocity distribution in a flow, or in the investigation of

the stress distribution in metals, by ultrasonic time-of-flight measurements, see Braun

and Hauk [2] and Norton [13]. For non-absorbing media the inversion problem has been

investigated by Sharafutdinov [15] in the general framework of Riemannian geometry,

and by Sparr et al. [16] in the Euclidean setting. The problem does not have a unique

solution: the superposition of any compactly supported gradient field is indistinguishable

from the data. However, the solenoidal part of the field is uniquely determined by the

traces of the field on the boundary. For the absorbing media, the problem was first

consider by Strahlen [17] in the case of constant attenuation. Surprisingly enough, in

planar domains the full vector field can be recovered in the regions of positive absorption

as shown by Kazantsev and Bukhgeim [9], and by Bal [3]. The former use A. L.

Bukhgeim’s theory of A-analytic functions [6], while the latter uses the inverse scattering

method of Novikov [14].

The derivation in [2] considers a background of constant sound speed much larger

then the magnitude of velocity. If one allows for an inhomogeneous background, we are

lead to the problem of determination of a vector field in the presence of an unknown

scalar field, which is the reciprocal of the background sound speed. In this case, the

classical Doppler data is altered by the superposition of the attenuated Radon transform

of the scalar field . We show that the curl of the vector field can be stably reconstructed

independently of the background sound speed. We use Bukhgeim’s approach to the

inversion of the attenuated Radon transform problem [1].

In our considerations, Ω is a strictly convex planar domain; in particular it has a C2

smooth boundary. The attenuation a ∈ C2
0(Ω) is assumed to be known. The unknowns

are the real vector field F = (F1, F2) ∈ C2
0(Ω;R2) and the real map f0 ∈ C2

0(Ω). Outside

the domain we extend a, F and f0 to be 0.

For each x ∈ Ω and θ = (cos ϕ, sin ϕ) ∈ S1 let us consider the divergence beam

transform:

Da(x, θ) =

∫ ∞

0

a(x + sθ)ds.

The measured data

m(x, θ) =

∫ ∞

−∞
(f0 + θ · F)(x + tθ)e−Da(x+tθ)dt (1)

are given by the superposition of the attenuated Doppler transform of F with the

attenuated Radon transform of f0 for all (x, θ) ∈ Ω × S1. Since m is invariant to

translations of x in the direction of θ, it is a function only on the tangent bundle of the
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circle S1. We show that m stably determines

curlF := ez · ∇ × (F1,F2,0) = ∂xF2 − ∂yF1

in Ω.

By Hodge decomposition, any vector field F ∈ H1(Ω;R2) decomposes into a

gradient field and a divergence-free (solenoidal) field:

F = ∇u + Fs, (2)

where u ∈ H2
0 (Ω) and Fs = (F s

1 , F s
2 ) ∈ H1

div(Ω;R2) with Fs|∂Ω = F|∂Ω. If F ∈ H2(Ω;R2)

and F|∂Ω is known, then curlF determines the solenoidal part Fs (see the section 3).

2. The transport model

The problem can be reformulated as an inverse boundary value problem associated with

the transport equation as follows. Let us consider the family (indexed in θ ∈ S1) of

problems {
θ · ∇u(x, θ) + a(x)u(x, θ) = f0(x) + θ · F(x), (x, θ) ∈ Ω× S1,

u(x, θ) = 0, (x, θ) ∈ Γ−,
(3)

where Γ± = {(x, θ) ∈ ∂Ω × S1 : ±n(x) · θ > 0} denotes the incoming (-), respectively

outgoing (+) boundary and n(x) denotes the outer normal at some boundary point x.

Given a(x) for x ∈ Ω and u(x, θ) for (x, θ) ∈ ∂Ω× S1 find F(x) for x ∈ Ω. Integration

of the equation in (3) along the lines in the direction of θ shows the equivalence with

our initial problem. Let τ+(x, θ) denote the length of the vector in the direction of θ

originating at x ∈ Ω until the boundary is met; so that (x + τ+(x, θ)θ, θ) ∈ Γ+ and

m(x, θ) = u(x + τ+(x, θ)θ, θ), (x, θ) ∈ Ω× S1.

For strictly convex domains, the map τ+(x, ·) ∈ C2(S1). This regularity is needed later

to insure the appropriate decay in (9).

Following the simplified approach of Finch [7] the equation (3) are multiplied by

the integrating factor eb−Da(x, θ), where

b(x, θ) =
1

2
(I − iH)Pa(θ, x · θ⊥).

In the formula above, Pa(θ, s) =
∫
R a(sθ⊥ + tθ)dt is the x-ray transform of the

attenuation. The Hilbert transform Hf(s) = 1
π

∫
R

f(t)
s−t

dt is taken in the second variable

and evaluated at s = x · θ⊥. Since b(·, θ) is constant in the direction of θ we have that

v(x, θ) = eb(x,θ)−Da(x,θ)u(x, θ) (4)

solves the differential equation

θ · ∇v(x, θ) = (f0(x) + θ · F(x))eb(x,θ)−Da(x,θ). (5)

Throughout the paper, the angular notation θ = (cos ϕ, sin ϕ) has been used. It

was first noticed by Natterer [12] that all the negative or even index coefficients in the
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Fourier expansion (in the angular variable) of b − Da are zero; see also [7, 4] for an

elegant argument. Therefore e−b+Da has only nonnegative index modes:

e−b(x,θ)+Da(x,θ) =
∞∑

n=0

αn(x)einϕ. (6)

Provided that e−b+Da(x, ·) ∈ L2(S1), for every x ∈ Ω we have the Parseval identity

∥∥e−b+Da(x, ·)
∥∥2

L2(S1)
=

∞∑

k=0

|αk(x)|2. (7)

Consider now the Fourier expansions

u(x, θ) =
∞∑

n=−∞
un(x)einϕ, v(x, θ) =

∞∑
n=−∞

vn(x)einϕ, (8)

and let u = (u−1, u−2, ...), respectively v = (v−1, v−2, ...), denote the corresponding

sequence of their negative index coefficients.

Throughout this paper, we agree that sequences are indexed with negative indices

as above. In the followings l2 denotes the usual space of square sumable sequences and

we introduce l2,1+ to be the subspace of l2 defined by

l2,1+ := {v ∈ l2 :
∞∑

n=1

∞∑

k=0

|v−n−k|2 < ∞}. (9)

The following result specifies the connection between the regularity of the data and the

decay properties needed later.

Proposition 2.1 Let Ω be a strictly convex domain, a, f0 ∈ C2
0(Ω) and F ∈ C2

0(Ω;R2).

Then v,u ∈ C2(Ω; l2,1+) and u is calculated from v by the convolution formula:

un =
∞∑

k=0

αkvn−k, n ≤ −1, (10)

where αn’s are defined in (6).

Proof: The solution to (5) subject to v|Γ− = 0 is

v(x, θ) =

∫ 0

−∞
(f0 + θ · F)(x + tθ)e(b−Da)(x+tθ)dt. (11)

Since Ω is strictly convex τ+ ∈ C2(Ω × S1). Since Da =
∫ τ+(x,θ)

0
a(x + tθ)dt and

the Hilbert transform preserves the smoothness class, then both Da and b are also in

C2(Ω × S1). From (11) and (4) we get v, u ∈ C2(Ω; C2(S1)). Applying the Parseval’s

identity to the l2 sequence (n2v−n(z))n∈N, we obtain for any k < 3/2 and z ∈ Ω that

∞∑
n=1

nk|v−n|(z) ≤
( ∞∑

n=1

n2k−4

)1/2 ( ∞∑
n=1

n4|v−n(z)|2
)1/2

< ∞.

Since the series above is finite we also have |vn(z)|2 ≤ C|n|−2k for all n ≤ −1. Following

the fact that
∑∞

n=0

∑∞
j=1(n + j)−2k < ∞ for k > 1, we conclude that v ∈ C(Ω, l2,1+).

The reasoning above also applies to the first and second order partial derivatives of v.

The equation (10) represents the convolution in the angular variable and the series is in

the l2 sense. ¤
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3. Stable reconstruction of the curlF

In this section we make use of the following complex notations:

z = x1 + ix2, ∂ = (∂x1 + i∂x2)/2, ∂ = (∂x1 − i∂x2)/2, f1 = (F1 + iF2)/2.

By using the equivalence θ · ∇ = e−iϕ∂ + eiϕ∂ and by identifying modes in the

Fourier series expansions, the equation (3) translates into the system:

∂u1(z) + ∂u−1(z) + a(z)u0(z) = f0(z), (12)

∂u0(z) + ∂u−2(z) + a(z)u−1(z) = f1(z), (13)

∂un(z) + ∂un−2(z) + a(z)un−1(z) = 0, n ≤ −1. (14)

Notice that u0 and f0 are real valued, while f1 is complex valued.

Similarly, by identifying modes in the Fourier series expansion , the equation (5)

implies

∂vn(z) + ∂vn−2(z) = 0, n ≤ −1. (15)

The sequence valued map z → v(z) = (v−1(z), v−2(z), ...) which solves (15) is L2-analytic

in the sense of Bukhgeim [6]. In here L2 denotes the double left translation operator:

L2(v−1, v−2, v−3...) = (v−3, v−4, ...). (16)

If v ∈ C1(Ω; l2)
⋂

C(Ω; l2) is L2-analytic then its values inside Ω can be computed via a

Cauchy-type integral formula from their boundary values as shown in [6]. In [7], Finch

proves

vn(z) =
1

2πi

∫

∂Ω

vn(ζ)

ζ − z
dζ (17)

+
1

2πi

∞∑
j=1

∫

∂Ω

vn−2j(ζ)

(
ζ − z

ζ − z

)j {
dζ

ζ − z
− dζ

ζ − z

}
,

for n ≤ −1, x ∈ Ω, without appealing to L2-analyticity. The Proposition 2.1 allows

us to interpret the series in (17) in the l2 sense.

Theorem 3.1 (Reconstruction) Let Ω be a strictly convex domain, a, f0 ∈ C2
0(Ω)

and F ∈ C2
0(Ω;R2). Then the Doppler data m(x, θ) defined in (1) uniquely determine

curlF in Ω.

Proof: The trace v|∂Ω given in (4) is determined by the data:

v(x, θ) =

{
m(x, θ)eb(x,θ), θ · n(x) > 0,

0, θ · n(x) ≤ 0,
(18)

where n(x) denotes the outer unit normal at some point x ∈ ∂Ω. The Proposition

2.1 gives that v|∂Ω ∈ C2(∂Ω, l2,1+). In the reconstruction procedure we only need

v|∂Ω ∈ C(∂Ω, l2), however for the stability result the extra decay is needed. Using the

Cauchy integral formula (17) we calculate v inside Ω and then u by the convolution
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formula (10). The series in (17) are l2 convergent. Since u0, u−1, u−2 ∈ C2(Ω), we can

take ∂ on both sides of (13) to get

1

4
∆u0 + ∂2u−2 + ∂(au−1) = ∂f1. (19)

Moreover, since u0 is real valued by equating the imaginary part in (19) we get

curlF = 4Im(∂f1) = 4Im{∂2u−2 + ∂(au−1)}. (20)

¤
Next we prove that the reconstruction method in the proof of the Theorem (3.1) is

in fact stable. The result is based on the stability of the Cauchy integral formula [19, 5].

To simplify notation, let 〈·, ·〉 denote the l2-inner product on the space of sequences, and

|| · || be its corresponding norm. The following result is the Green’s formula for sequence

valued maps.

Lemma 3.2 Let Ω be a planar domain with C1 boundary. For v ∈ C1(Ω; l2) we have

2

∫

Ω

||∂v||2dx = 2

∫

Ω

||∂v||2dx + i

∫

∂Ω

〈v, ∂sv〉ds, (21)

where ∂s is the tangential derivative at the boundary.

Proof: For two functions f, g rewrite the Green’s formula in complex notations

2

∫

Ω

∂fgdx =

∫

∂Ω

νfgds− 2

∫

Ω

f∂gdx,

2

∫

Ω

∂fgdx =

∫

∂Ω

νfgds− 2

∫

Ω

f∂gdx, (22)

where ν = n1+in2 is the complexified outer normal n = (n1, n2) on the boundary. In the

first equation let f range over each component of v and g range over the corresponding

component of ∂v. In the second equation, let f range over the components of v and g

range over the corresponding ∂v. Sum each of the equations over the components, then

subtract them to get

2

∫

Ω

||∂v||2dx = 2

∫

Ω

||∂v||2dx +

∫

∂Ω

〈v, (ν∂ − ν∂)v〉ds.

Since (ν∂ − ν∂) = −i∂s the lemma is proved. ¤
To simplify notation, for any integer n let Pn denote the projection onto the n-th

tail:

Pn(v−1, ...v−n, v−n−1, ...) = (0, ..., 0︸ ︷︷ ︸
n times

, v−n−1, ...).

The identities below are special cases of Bukhgeim’s identity in [19, 5].

Lemma 3.3 Let v ∈ C1(Ω; l2)
⋂

C1(∂Ω; l2,1+) be a solution of (15). Then

2

∫

Ω

||∂v||2dx = i
∞∑

j=0

∫

∂Ω

〈v, P2j∂sv〉ds, (23)

2

∫

Ω

||∂v||2dx = i

∞∑
j=1

∫

∂Ω

〈v, P2j∂sv〉ds. (24)
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Proof: We remark first that each term in the right hand side of (23) is purely imaginary

since for each n ≤ −1:

2Re

∫

∂Ω

vn∂sv̄nds =

∫

∂Ω

vn∂sv̄nds +

∫

∂Ω

v̄n∂svnds =

∫

∂Ω

∂s|vn|2ds = 0.

From Green’s identity (21) and the L2-analyticity equation (15) we get

2

∫

Ω

||∂v||2dx = 2

∫

Ω

||L2∂v||2dx + i

∫

∂Ω

〈v, ∂sv〉ds

(25)

For j = 1, ..., k successively replace in the identity above v by L2jv and add them

together:

2

∫

Ω

||∂v||2dx = 2

∫

Ω

||L2k∂v||2dx + i

k∑
j=0

∫

∂Ω

〈v, P2j∂sv〉ds. (26)

Now use limk→∞
∫
Ω
||L2k∂v||2dx = 0 to conclude the proof of (23). The equation (24)

follows now from the Lemma 3.2. ¤

Corollary 3.4 Let v ∈ C1(Ω; l2)
⋂

C1(∂Ω; l2,1+) be a solution of (15). Then
∫

Ω

||v||2dx ≤ C

(∫

∂Ω

||v||2ds + i

n∑
j=0

∫

∂Ω

〈v, P2j∂sv〉ds

)
, (27)

where C > 0 depends only on the diameter of Ω.

Proof: For each n ≤ −1, the Poincaré inequality

∫

Ω

|vn(x)|2dx ≤ C

(∫

Ω

|∇vn(x)|2dx +

∫

∂Ω

|vn(x)|2dx

)

holds with a constant C > 0 dependent on the diameter of Ω only. Sum all the terms

in n ≤ −1, use the trivial bound |∇vn|2 ≤ 4|∂vn|2 + 4|∂vn|2, and the identities (23) and

(24) to conclude the result. ¤
We are now able to prove that the reconstruction method is stable.

Theorem 3.5 (Stability) Let Ω be a strictly convex domain, a, f0 ∈ C1
0(Ω) and

F ∈ C1
0(Ω;R2). Then

∫

Ω

|curlF|2dx ≤ C

(∫

∂Ω

||v||2ds + i

∞∑
j=0

∫

∂Ω

〈v, P2j∂sv〉ds (28)

+i

∞∑
j=0

∫

∂Ω

〈∂v, P2j∂s∂v〉ds

)
,

where the constant C depends on the diameter of the domain and the C2(Ω)-sup-norm

of a.
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Proof: Following the equation (20) we estimate: |curlF| ≤ 2(|(∂a)u−1| + |a∂u−1| +
|∂2u−2|) or

|curlF|2 ≤ 12
(|(∂a)u−1|2 + |a∂u−1|2 + |∂2u−2|2

)
. (29)

Integrate in Ω to get

1

12

∫

Ω

|curlF|2dx ≤ sup
Ω

|∇a|
∫

Ω

|u−1|2dx (30)

+ sup
Ω

|a|
∫

Ω

|∂u−1|2dx +

∫

Ω

|∂2u−2|2dx. (31)

We estimate each of the integrals in the right hand side above in terms of v . From (10)

we have for each z ∈ Ω:

|u−1(z)|2 =

∣∣∣∣∣
∞∑

k=0

αk(z)v−k−1(z)

∣∣∣∣∣

2

≤
( ∞∑

k=0

|αk(z)|2
)
||v(z)||2.

Upon integration in Ω and making use of (7) we conclude the first estimate:∫

Ω

|u−1|2dx ≤ sup
z∈Ω

‖e−b+Da(z, ·)‖2
L2(S1)

∫

Ω

||v||2dx. (32)

Similarly, ∫

Ω

|∂u−1|2dx ≤ sup
z∈Ω

‖∂ (
e−b+Da

)
(z, ·)‖2

L2(S1)

∫

Ω

||v||2dx (33)

+ sup
z∈Ω

‖e−b+Da(z, ·)‖2
L2(S1)

∫

Ω

||∂v||2dx.

Next we estimate the last term of (30). By taking ∂2 in (10) we get

∂2u−2 =
∞∑

k=0

(∂2αk)v−k−2 + 2
∞∑

k=0

(∂αk)v−k−2 +
∞∑

k=0

αk(∂
2v−k−2).

Similarly, by Cauchy inequality followed by integration, we obtain∫

Ω

|∂2u−2|2 ≤ 3 sup
z∈Ω

‖∂2
(
e−b+Da

)
(z, ·)‖2

L2(S1)

∫

Ω

||v||2dx (34)

+ 6 sup
z∈Ω

‖∂ (
e−b+Da

)
(z, ·)‖2

L2(S1)

∫

Ω

||∂v||2dx

+ 3 sup
z∈Ω

‖e−b+Da(z, ·)‖2
L2(S1)

∫

Ω

||∂2v||2dx.

Due to the commutativity of differentiation and since v ∈ C2(Ω, l2)
⋂

C1(Ω, l2) we have

that ∂v is also L2-analytic and the Lemma 3.3 applies:

2

∫

Ω

||∂2v||2dx = i

∞∑
j=0

∫

∂Ω

〈∂v, P2j∂s∂v〉ds. (35)

Using the bounds of
∫
Ω
‖v‖dx,

∫
Ω
‖∂v‖dx and

∫
Ω
‖∂2v‖dx in terms of their boundary

values in (27), (23) and (35) we obtain the stability estimate 28. The constant C depends
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on the sup-norm over Ω of eb−Da and its derivatives up to the second order, which in

turn are bounded by derivatives of a of the same order. ¤
The solenoidal part of F in (2) can be stably recovered from the curlF as follows.

By taking the curl in (2) and using the fact that Fs is divergence free, we obtain the

system ∂x2F
s
1 − ∂x1F

s
2 = curlF and ∂x1F

s
1 + ∂x2F

s
2 = 0. One more differentiation implies

that each component of Fs solves in Ω the Dirichlet problem:
{

∆F s
1 (x) = −∂x2(curlF(x)),

F s
1 (x) = F1(x), x ∈ ∂Ω

and

{
∆F s

1 (x) = ∂x2(curlF(x)),

F s
1 (x) = F1(x), x ∈ ∂Ω.

If the trace F|∂Ω is also known, by solving the Dirichlet problems above, one can

determine Fs in Ω.

4. Concluding Remarks

We considered the integral geometry problem of reconstructing a planar vector field

when its doppler data is superposed with the Radon data of an unknown scalar field.

Using Bukhgeim’s approach to the tomography problem we showed that, in both the

attenuated and non attenuated case, the solenoidal part of a vector field could be stably

recovered from these altered data and from its traces on the boundary.

In the region {z ∈ Ω : a(z) > 0}⋂{z ∈ Ω : f0(z) = 0} the equation (12) gives

u0 = −2Re(∂u−1)/a and, following (13), the entire vector field can be recovered via the

formula

F1 + iF2 = 2∂u−2 + 2au−1 − 4∂

(
Re(∂u−1)

a

)
. (36)

This is a bit more general than the reconstruction result in [9] since the data we consider

are influenced by regions where f0 is non-vanishing.

The stability result shows that, in principle, the reconstruction method can be

numerically implemented. Caution is however in order. Although the formula (20)

contains only u−1 and u−2, they depend on all the coefficients v−1, v−2, .... Preliminary

numerical experiments show that merely truncating the Fourier series in (8) introduces

numerical instability, even for noiseless data. The same problem occurs in the classical

attenuated Doppler transform. In [9] the problem was successfully overcome by

developing a new basis for symmetric 2-tensor fields based on bivariate Chebyshev’s

ridge polynomials. Similar ideas may work for the numerical implementation of this

work.
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