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MOTIVATION
There is growing interest in studying epidemiological models that incorporate
post-infection mortality and partial immunity. This is because there are diseases, such as
COVID, that have both of these properties.
In this project, we investigate how the choice of transmission term influences disease
dyanmics in a model that includes post-infection mortality and partial immunity.
We are particularly interested in characterizing parameter regions where periodic
solutions exist.

OVERVIEW
We incorporate post-infection mortality into the recovered class as an additional death
rate, αR. We incorporate partial immunity a constant ϵ in front of the incidence rate
from the recovered to infected class. Our model uses the following compartment
diagram:
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Figure 1. Compartment Diagram

From this compartment diagram, we have the following system of differential equations.

Ṡ = r(N) − f (S, I, N) − dS

İ = f (S, I, N) + ϵf (R, I, N) − γI − dI − αII

Ṙ = γI − ϵf (R, I, N) − dR − αRR

N = S + I + R

Our new model uses different recruitment and incidence functions compared to the
original model [3].

Model Recruitment r(N) Incidence f (S, I, N)
Original Λ λSI “Mass-action Incidence”
New bN βSI/N “Standard Incidence”

The incidence rate that a model uses depends on assumptions about how individuals
interact and how the infectiousness of the disease depends on population size.

Incidence Rate Mass Action Standard
Response to Population Size λSI ∝ N 2 βSI/N ∝ N

Figure 2. Standard Incidence: Spread-out
population; assumes that every susceptible
individual interacts with a proportion of the
infected population.

Figure 3. Mass-action Incidence: Dense
population; assumes that every susceptible
individual interacts with every infectious
individual.

NUMERICALRESULTS
Original Model Parameters New Model

Λ = b = d = 0.0004
β = 2.5
γ = 1
ϵ = 1

αI = 0
αR = 0.0008

Λ = b = d = 0.005
β = 5
γ = 3

ϵ = 0.1
αI = 0.05
αR = 0.01

ANALYTICALRESULTS
The new model evolves according to the system of differential equations:

Ṡ = bN − βSI

N
− dS

İ = βSI

N
+ ϵβRI

N
− γI − dI − αII

Ṙ = γI − ϵβRI

N
− dR − αRR

Because of our choice of recruitment and incidence functions, we can make the change of variables
s = S/N , i = I/N , and r = R/N to reduce this model to 2 dimensions.

ṡ = b − bs − βsi + αIsi + αRs(1 − s − i)
i̇ = βsi + ϵβi(1 − s − i) − (b + αI + γ)i + αIi

2 + αRi(1 − s − i)
s, i, and r are population proportions, so we restrict our attention to the feasible set Γ.
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Figure 4. Γ = {(s, i) : s + i ≤ 1, s ≥ 0, i ≥ 0}

THEOREMS
Following the next-generation matrix method [1], define the Basic Reproductive Number (R0) as

R0 = β

b + γ + αI
.

1. If R0 ≤ 1, the Disease Free Equilibrium is globally stable in Γ.
Proof uses a novel Lyapunov Function and modification of Lasalle’s Invariance Principle [2].

2. If R0 > 1, there is a unique Endemic Equilibrium and the Disease Free Equilibrium is unstable.
3. If R0 > 1 and αI ≤ αR + ϵβ, the Endemic Equilibrium is globally stable in Γ.

Proof uses Dulac Criterion and Poincaré-Bendixson Theorem.
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PARAMETERS
Parameter Biological Meaning Range

Λ, b Birth rate Λ = b > 0
β, λ Transmission Coefficient β = λ > 0

ϵ Immunity 0 ≤ ϵ ≤ 1
d Death rate d > 0
γ Recovery rate γ > 0
αI Disease-induced mortality αI ≥ 0
αR Post-infectious mortality αR ≥ 0

CONCLUSIONS
From our numerical analysis, we found that the new model does not produce cycles in
cases when the original model does; for example, when αI = 0.
We have analytically shown that the Disease Free Equilibrium is globally stable if
R0 ≤ 1, and that cycles cannot occur when αI < αR + ϵβ.
Thus, we have shown that the choice of recruitment and incidence functions can have
an impact on global dynamics, particularly on the existence of cycles.

FUTURERESEARCH
We are interested in applying our Lyapunov function to other models. In fact, it can be
used to prove the global stability of the disease-free equilibrium in the original model [3].
We would like to further examine the impact of post-infection mortality on the
endemicity. We do not have a mathematical explanation for why the endemicity of each
compartment responds to R0 in the following manner:

Figure 5. Final proportion of susceptible, infectious, and recovered classes with respect to R0
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